帳號:guest(18.220.187.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊介皓
作者(外文):Chuang, Chieh-Hao
論文名稱(中文):鎢與碳化物共晶瓷金之研究
論文名稱(外文):Eutectic W-Carbide Cermets
指導教授(中文):陳瑞凱
嚴大任
指導教授(外文):Chen, Swe-Kai
Yen, Ta-Jen
口試委員(中文):洪健龍
薛立人
口試委員(外文):Hung, Chien-Lung
Hsueh, Li-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031520
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:398
中文關鍵詞:瓷金複材熔融複材耐火金屬格隙型碳化物共價型碳化物共晶層狀結構
外文關鍵詞:CermetsFused CompositesRefractory MetalsInterstitial CarbidesCovalent CarbidesEutectic lamellar structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:185
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究之熔融複材,主要以熔點高的鎢金屬,膠結硬度高及熔點高之碳化物,並透過成分及比例之調配,製造出熔點高與機械性質優之複材,期望能廣泛應用於工業及軍事的特殊用途上。
本研究有三個主要部份。
第一部份研究添加共價型SiC碳化物系統。將SiC添加進一元格隙型碳化物系列,觀察到在高溫熔融期間SiC會發生裂解揮發反應,使得試片中剩餘含矽量偏低。因此也嘗試利用純矽取代SiC,以避開SiC高溫裂解揮發的問題。
第二部份討論二元格隙型碳化物系統,了解個別碳化物之間的反應行為,挑選性質最好的二元系統,進行多元組合基礎,以得到優異的多元複材。
第三部份研究層狀結構。藉定量WDS,熔煉出完全層狀結構且具優異性質之複材。
實驗結果顯示,本研究之複材,因為都具有高硬度及高熔點性質,所以在磨耗行為及高溫特性的表現,皆屬優良。
The composites in this study are mainly those composed of and manufactured by melting high-melting point (m. p.) & high-hardness carbides that are cemented with high-m. p. tungsten in various ratios. It is expected that these composites may be extensively used in specific applications in related industry and military aspects. Three main investigations are conducted as follows.
The first focuses on covalent SiC-bearing systems that are added in unary interstitial carbides. It was observed that at high temperatures SiC decomposes and vaporizes so that remained SiC content in product is very much lowered. The attempt of Si in place of SiC was tried to solve the problem. The second involves possible combinations of binary interstitial carbide systems. The best binary systems will thus be selected as the developing base of the multi interstitial carbide systems. The third will be studying the full laminar structure by WDS quantitatively determining the composition of the laminar in achieving optimum properties of composites. Experiments show that the composites in this study possess superior properties in wear and high temperature behavior.
摘要 I
致謝 III
目錄 VI
圖目錄 XIII
表目錄 XXXVIII
第1章 前言 1
第2章 文獻回顧 3
2.1 碳化物簡介 3
2.1.1 碳化物分類 3
2.1.2 格隙型碳化物 5
2.1.3 共價型碳化物 16
2.2 超硬合金 20
2.2.1 超硬合金及瓷金發展史 20
2.2.2 超硬合金及瓷金的發展現況 22
2.3 鎢合金 26
2.3.1 鎢合金簡介 26
2.3.2 鎢合金傳統固相燒結法 27
2.3.3 鎢合金目前發展與未來展望 31
2.4 熔融複材 35
2.4.1 熔融複材簡介 35
2.4.2 熔融複材之研究 37
第3章 實驗步驟 41
3.1 實驗流程 41
3.2 複材成份設計 42
3.3 複材製備 47
3.4 X光繞射分析 48
3.5 微結構觀察與成分分析 49
3.6 維式硬度量測與破裂韌性計算 51
3.7 擦損磨耗試驗 53
3.8 高溫硬度試驗 54
第4章 結果與討論 55
4.1 本研究實驗規劃 55
4.2 SiC系列 56
4.2.1 SiC + W系列 58
4.2.1.1 S3W7 58
4.2.1.2 S4W6 61
4.2.1.3 S5W5 64
4.2.1.4 S6W4 67
4.2.2 SiC + Ta, Nb系列 70
4.2.2.1 S5Ta5 70
4.2.2.2 S5Nb5 73
4.2.3 SiC + Interstitial Carbides系列 76
4.2.3.1 S3T3 76
4.2.3.2 S3A3 80
4.2.3.3 S3N3 83
4.2.3.4 S3Z3 87
4.2.3.5 S3H3 90
4.2.3.6 S3W3 94
4.2.3.7 S3V3 97
4.2.4 SiC + NT系列 101
4.2.4.1 NT1S 101
4.2.4.2 NT3S 104
4.2.4.3 NT3aS 108
4.2.4.4 NT3bS 111
4.2.5 純Si系列 115
4.2.5.1 T3W4Si3 115
4.2.5.2 Z3W4Si3 120
4.2.5.3 Ti3Si3C6W4 124
4.2.5.4 Zr3Si3C6W4 128
4.2.6 SiC系列小結 133
4.3 二至五元碳化物系列 147
4.3.1 二元系列 148
4.3.1.1 T3A3 148
4.3.1.2 T3N3 151
4.3.1.3 T3Z3 154
4.3.1.4 T3H3 157
4.3.1.5 T3W3 160
4.3.1.6 T3V3 164
4.3.1.7 A3N3 167
4.3.1.8 A3Z3 170
4.3.1.9 A3H3 173
4.3.1.10 A3W3 176
4.3.1.11 A3V3 180
4.3.1.12 N3Z3 183
4.3.1.13 N3H3 186
4.3.1.14 N3W3 189
4.3.1.15 N3V3 193
4.3.1.16 Z3H3 196
4.3.1.17 Z3W3 199
4.3.1.18 Z3V3 203
4.3.1.19 H3W3 206
4.3.1.20 H3V3 210
4.3.1.21 W3V3 213
4.3.2 TiC, TaC變量系列 216
4.3.2.1 T1A5 216
4.3.2.2 T2A4 220
4.3.2.3 T4A2 223
4.3.2.4 T5A1 227
4.3.3 TiC, TaC多元添加系列 230
4.3.3.1 T3A3N1 230
4.3.3.2 T3A3N2 234
4.3.3.3 T3A3N3 237
4.3.3.4 T3A3W1 240
4.3.3.5 T3A3W2 244
4.3.3.6 T3A3W3 247
4.3.3.7 T3A3V1 251
4.3.3.8 T3A3V2 254
4.3.3.9 T3A3V3 258
4.3.3.10 T3A3N2W2 261
4.3.3.11 T3A3N2V1 265
4.3.3.12 T3A3W2V1 268
4.3.3.13 T3A3N2W2V1 272
4.3.4 二元至五元碳化物系列小結 276
4.4 層狀結構系列 291
4.4.1 A3N3 – LS 292
4.4.1.1 A3N3 – LS1 292
4.4.1.2 A3N3 – LS2 295
4.4.2 T3A3 – LS 299
4.4.2.1 T3A3 – LS1 299
4.4.2.2 T3A3 – LS2 302
4.4.3 NT3a – LS 306
4.4.4 NT3aVW – LS 310
4.4.5 C7M1 – LS 314
4.4.6 層狀結構系列小結 318
4.5 擦損磨耗試驗分析 325
4.5.1 商用超硬合金WC-6 Co對照組 326
4.5.2 二元系列 329
4.5.3 TiC, TaC多元添加系列 354
4.5.4 層狀結構系列 364
4.5.5 擦損磨耗小結 378
4.6 高溫硬度試驗分析 379
4.7 切削試驗分析 385
第5章 結論 392
第6章 參考文獻 395

[1] J. Deng, H. Zhang, Z. Wu, Y. Lian, J. Zhao, Friction and wear behaviors of WC/Co cemented carbide tool materials with different WC grain sizes at temperatures up to 600°C, International Journal of Refractory Metals and Hard Materials, 31 (2012) 196-204.
[2] 葉裕安, 多元高熵碳化物合成及其燒結瓷金之開發研究, 材料科學工程研究所, 國立清華大學 (新竹2010).
[3] 陳瑞凱, 超高熔點耐火金屬基陶瓷化合物熔融型多重複合材料(Refractory metal matrix-ceramic compound multi-component composite material with super-high melting point, 2013)中華民國專利I561494號。
[4] H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, 1st ed., William Andrew (Norwich, NY, 1996).
[5] Q.J. Hong, A. van de Walle, Prediction of the material with highest known melting point from ab initio molecular dynamics calculations, Physical Review, B 92 (2015) 020104(R).
[6] H. Holleck, Material selection for hard coatings, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4 (1986) 2661-2669.
[7] X.X. Yu, G.B. Thompson, C.R. Weinberger, Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides, Journal of the European Ceramic Society, 35 (2015) 95-103.
[8] A.N. Emelyanov, The thermal conductivity and diffusivity of transition-metal carbides at high temperatures, High Temperatures-High Pressures (HTHP), The International Journal of Thermophysical Properties Research, 26 (1994) 663-671.
[9] W.D. Kingery, Introduction to Ceramics, John Wiley & Sons (New York, 1967).
[10] C. Kittel, Introduction to Solid State Physics, 7th ed., John Wiley & Sons (New York, 1996).
[11] G.M. Song, Y.J. Wang, Y. Zhou, Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications, International Journal of Refractory Metals and Hard Materials, 21 (2003) 1-12.
[12] 鍾宜臻, Co-Ni-Fe-Cr-Mn(Al)合金系列X光繞射強度、硬度、熱傳導及熱膨脹之研究, 材料科學工程研究所, 國立清華大學(新竹2007).
[13] L.E. Toth, Transition Metal Carbides and Nitrides, 1st ed., Academic Press, (New York, 1971).
[14] R.F. Bunshah, Mechanical properties of refractory compound films, American Institute of Physics Conference Proceedings, 149 (1986) 130-156.
[15] A. Krajewski, L. D'Alessio, G. De Maria, Physiso-chemical and thermophysical properties of cubic binary carbides, Crystal Research and Technology, 33 (1998) 341-374.
[16] L.H. Van Vlack, Elements of Materials Science and Engineering, 6th ed., Addison-Wesley (Reading, MA, 1987).
[17] R.S. Kern, L.B. Rowland, S. Tanaka, R.F. Davis, Solid solutions of AlN and SiC grown by plasma-assisted, gas-source molecular beam epitaxy, Journal of Materials Research, 8 (2011) 1477- 1480.
[18] M. Srinivasan, The Silicon Carbide Family of Structural Ceramics in Treatise on Materials Science and Technology, Vol. 29 (J.B. Wachtman, Jr. ed., Academic Press (Boston, 1989).
[19] R. Tu, N. Li, S. Zhang, L. Zhang, Q. Li, T. Goto, Microstructure and mechanical properties of B4C–HfB2–SiC ternary eutectic composites prepared by arc melting. Journal of the European Ceramic Society, 36 (2016) 959-966.
[20] W.D. Schubert, E. Lassner, W. Böhlke, Cemented carbides – A success story, Tungsten, ITIA Newsletter, June, 2010.
[21] M.G. Gee, M.J. Reece, B. Roebuck, High resolution electron microscopy of Ti (C, N) cermets, Journal of Hard Materials (UK), 3 (1992) 119-142.
[22] B. Mills, Recent developments in cutting tool materials, Journal of Materials Processing Technology, 56 (1996) 16-23.
[23] W.D. Schubert, A. Bock, B. Lux, General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. International Journal of Refractory Metals and Hard Materials, 13 (1995) 281-296.
[24] S. Park, S. Kang, Toughened ultra-fine (Ti,W)(CN)–Ni cermets. Scripta Materialia, 52 (2005) 129-133.
[25] S. Park, Y.J. Kang, H.J. Kwon, S. Kang, Synthesis of (Ti, M1, M2)(CN)–Ni nanocrystalline powders, International Journal of Refractory Metals and Hard Materials, 24 (2006) 115-121.
[26] Z.Z. Fang, X. Wang, T. Rye, K.S. Hwang, H.Y. Sohn, Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review. International Journal of Refractory Metals and Hard Materials, 27 (2009) 288-299.
[27] 張幼珍, 鄭貴元, 曾宦雄, 噴霧粉體製程製備新穎特用粉體之關鍵技術與研發現況(2009).
http://yzuir.yzu.edu.tw/handle/310901000/64702.
[28] R.M. German, Liquid Phase Sintering, Plenum Press (New York, 1985).
[29] K. Narasimhan, S.P. Boppana, D.G. Bhat, Development of a graded TiCN coating for cemented carbide cutting tools – a design approach, Wear, 188 (1995) 123-129.
[30] Y.L. Su, S.H. Yao, Z.L. Leu, C.S. Wei, C.T. Wu, Comparison of tribological behavior of three films – TiN, TiCN and CrN – grown by physical vapor deposition, Wear, 213 (1997) 165-174.
[31] Scott S.R. Liu, Hyper-carbide cutting tools (2012). http://www.sme.org/uploadedFiles/Events/Annual_Conference/2012/liu.pdf.
[32] M.A. Umer, D. Lee, H.J. Ryu, S.H. Hong, High temperature ablation resistance of ZrNp reinforced W matrix composites. International Journal of Refractory Metals and Hard Materials, 42 (2014) 17-22.
[33] I. Charit, D. Butt, M. Frary, M. Carroll, Fabrication of tungsten-rhenium cladding materials via spark plasma sintering for ultra high temperature reactor applications, Technical Report, 2012, Battelle Energy Alliance LLC, United States.
[34] H. Ibrahim, A. Aziz, A. Rahmat, Enhanced liquid-phase sintering of W–Cu composites by liquid infiltration, International Journal of Refractory Metals and Hard Materials, 43 (2014) 222-226.
[35] A. Luo, K.S. Shin, D.L. Jacobson, High temperature tensile properties of W-Re-ThO2 alloys, Materials Science and Engineering, A 148 (1991) 219-229.
[36] Y. W. Zhao, Y.J. Wang, X.Y. Jin, P. Jia, L. Chen, Microstructure and properties of ZrC–W composite fabricated by reactive infiltration of Zr2Cu into WC/W preform, Materials Chemistry and Physics, 153 (2015) 17-22.
[37] D. Lee, M.A. Umer, H.J. Ryu, S.H. Song, The effect of HfC content on mechanical properties HfC–W composites. International Journal of Refractory Metals and Hard Materials, 44 (2014) 49-53.
[38] S. Miao, Z.M. Xie, X.D. Yang, R. Liu, R. Gao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, X. Liu, Y.Y. Lian, Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W-0.5 wt.% TaC alloys, International Journal of Refractory Metals and Hard Materials, 56 (2016) 8-17.
[39] S. Lang, Q. Yan, Y. Wang, X. Zhang, N. Sun, L. Deng, C. Ge, Preparation and microstructure characterization of W–0.1 wt.% TiC alloy via chemical method, International Journal of Refractory Metals and Hard Materials, 55 (2016) 33-38.
[40] 陳尚遠, 鎢膠結熔融碳化物研究, 材料科學工程研究所, 國立清華大學 (新竹2014).
[41] 林伯澔, 鉬膠結熔融碳化物研究, 材料科學工程研究所, 國立清華大學 (新竹2014).
[42] 莊晴凱, 鎢與各種碳化物組成之3000°C高溫熔融複材研究, 材料科學工程研究所, 國立清華大學 (新竹2015).
[43] 曾淯澤, 二元至六元碳化物與耐火金屬組成之3000°C超高溫熔融複材研究, 材料科學工程研究所, 國立清華大學 (新竹2015).
[44] 陳家均, 鎢與格隙型碳化物熔融複材之研究, 材料科學工程研究所, 國立清華大學 (新竹2016).
[45] 楊凱逢, 熔融鉬、鎢、鈮與鉭膠結之硼化物與碳化物複材研究, 材料科學工程研究所, 國立清華大學 (新竹2016).
[46] 顏孝書, 二元及三元硼化物與碳化物3000°C高溫熔融複材研究, 材料科學工程研究所, 國立清華大學 (新竹2015).
[47] ASTM G132-96 (2013) Standard Test Method for Pin Abrasion Testing, ASTM International, West Conshohocken, PA.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *