帳號:guest(3.137.180.214)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張智凱
作者(外文):Chang, Chih-Kai
論文名稱(中文):稻殼奈米結構在能源擷取與主動式感測元件之研究
論文名稱(外文):Study on The Rice Husks in Energy Harvesting and Active Sensor
指導教授(中文):吳志明
指導教授(外文):Wu, Jyh-Ming
口試委員(中文):陳學仕
呂奇明
口試委員(外文):Chen, Hsueh-Shih
Leu, Chyi-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031519
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:稻殼摩擦奈米發電機介電材料表面官能基化
外文關鍵詞:Rice husksTriboelectric nanogeneratorRHSiO2Dielectric-to-dielectricSurface functionalizationSingle-Electrode active sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:710
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗利用稻殼作為材料,製作出具有高輸出的摩擦奈米發電機(Triboelectric nanogenerator, TENG) 及主動式感測元件。稻殼經由熱退火、水解過程可轉變成具有多孔性的二氧化矽 (RHSiO2) 粉末,再將粉末塗佈在聚乙烯對苯二甲酸酯(polyethylene terephthalate, PET) 基板上,另一端則是用聚四氟乙烯 (Polytetrafluoroethylene, PTFE) 薄膜,製成摩擦奈米發電機的結構,兩者的材料相較於金屬薄膜則具有高度的化學、熱穩定性。多孔性RHSiO2粉末的孔徑大約為20-40 nm,且相較於商用的二氧化矽粉末,RHSiO2在粉末顆粒表面含有豐富的Si-O-Si 和OH 的鍵結,由於OH鍵會增加其RHSiO2粉末的表面電位,傾向帶更多正電,相較於商用的二氧化矽則更容易排斥電子,在摩擦的過程中,RHSiO2能夠排斥更多的電子給PTFE,摩擦發電機的功率密度和電流密度可分別高達0.84 W/m2 、5.7 mA/m2,是目前摩擦發電機在介電材料方面其性能、輸出為最好的一種材料。
RHSiO2粉末也具有許多優點,例如:重量很輕、低成本、高比表面積、高密度的孔洞、表面粗糙度、化學穩定性、熱穩定性,由於RHSiO2粉末是由廢棄的稻殼所萃取出來,因此RHSiO2粉末也非常具有環保性。
由於OH鍵能夠和矽烷溶液中的三烷氧基矽烷基鍵結,因此本研究利用RHSiO2粉末表面豐富的Si-OH與OH鍵,將粉末浸泡不同的矽烷溶液在進行表面官能基化,例如: 1H, 1H, 2H, 2H-全氟辛基三乙氧基矽烷,使其RHSiO2粉末表面接上具有氟原子的官能基,完成之後將粉末例如:RHSiO2-F,塗佈在PET基板上,另一端則是使用原本的RHSiO2粉末薄膜,製成奈米摩擦發電機。在摩擦的過程中,由於氟原子有著非常強的電子親和力,會使得原本的帶正電的RHSiO2粉末會因為接上含氟原子的官能基而轉變為帶負電,比原本RHSiO2- RHSiO2製成的摩擦奈米發電機電荷密度高達50倍以上。
因此本實驗藉由表面官能基化的特性、和RHSiO2粉末原有的多孔性、高比表面積、高粗糙度、重量輕等特性,將RHSiO2-F或RHSiO2-NH2粉末置於小玻璃瓶以及塑膠瓶內,並且在外面鍍上銅電極,接上導線,製成主動式感測元件,可偵測人在走路、跑步以及運動等。
In This work, we success to turn the raw rice husks (RH) into the nanoporous rice husk SiO2 (RHSiO2) fragments through acid hydrolysis and thermal annealing process, applying the RHSiO2 as a source material to the high output current density of the triboelectric nanogenerator (TENG) and single-electrode active sensors. The pore size of the RHSiO2 fragments is about 20-40 nm and the pores are uniformly distributed throughout the RHSiO2 fragments which are possessed of abundant in hydroxyl (-OH) and Si–O–Si stretching bonds. According to the previous research, hydroxyl (-OH) has the great tendency to repulse electron and increase the surface potential. Consequently, compared with the commercial SiO2 nanoparticles, RHSiO2 fragments can generate more positive charges. The RHSiO2 triboelectric nanogenerator's (RHSiO2-TENG) configuration is composed of RHSiO2 films and polytetrafluoroethene (PTFE) films, and the area power density, short-circuit current density, and open-circuit voltage of it reaches 0.84 W m-2, 5.7 mA m-2, and 270 V, respectively. The result of the short-curcuit current density is almost among the highest value reported for triboelectric nanogenerator based on dielectric/dielectric contact mode.
Additionally, the RHSiO2 fragments exhibit highly dense Si-OH and OH bonds which can be covalently linked with the trieoxysilane group of the functionalization, so we modify the surface of the RHSiO2 powder by using trieoxysilane with the different head group to change the surface potential. After FOTS treatment, the TENG’s charge density is enhanced ~ 50 times with fluoro (-F) as a head group. Finally, we combine surface functionalization and good roughness and lightweight feature of the RHSiO2 to fabricate the single-electrode active sensors which have high sensitivity and can sense current and voltage through external surrounding vibrating. Consequently, they are very suitable to be applied to environmental monitoring, wearable electronics, and medical device. RHSiO2 possess many outstanding features such as their excellent robustness, high porosity, thermal and chemical stability, light weight, being environmentally friendly, exceptionally low cost, makes it a worthy material for commercial and industrial applications.
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 5
2.1 稻殼 (Rice husks) 5
2.2 自組裝單層分子膜 (Self-assembly monolayer, SAM) 6
2.3 摩擦奈米發電機與主動式感測元件 8
2.4 垂直分離模式 (Vertical contact-separation mode) 9
2.4.1 多孔性基材藉由不同濃度的金奈米顆粒提高摩擦奈米發電機輸出 9
2.5 水平滑動模式 (Lateral sliding mode) 12
2.5.1 3-D多層結構滑動模式之摩擦奈米發電機 (3D-TENG) 12
2.6 單電極模式 (single-electrode mode) 15
2.6.1 極薄型單電極模式摩擦奈米發電機之能量擷取與力量感測器之應用 15
2.7 獨立靜電摩擦層模式 (Freestanding triboelectric-layer mode) 18
2.7.1 獨立靜電摩擦層模式之接觸與非接觸模式摩擦奈米發電機 18
2.8 分子工程表面之摩擦奈米發電機 (METS) 21
2.9 自供電的壓力感測器 (Self-powered active pressure sensors) 23
2.10 自供電的聲波感測器 (Self-powered active acoustic sensors) 26
2.11 自供電的紫外光感測器 (Self-powered active UV sensors) 28
2.12 自供電的化學感測器 (Self-powered active chemical sensors) 30
第三章 實驗方法與步驟 32
3.1 實驗藥品 33
3.2 多孔性RHSiO2粉末製備 33
3.3 RHSiO2薄膜與PTFE摩擦奈米發電機元件的製作 34
3.4 RHSiO2粉末表面官能基化的製備 36
3.5 主動式感測元件製作 37
3.6 材料特性分析儀器 38
3.6.1 冷場發射掃描式電子顯微鏡暨能量散佈分析儀器 38
3.6.2 WAG廣角X光繞射儀 (Powder X-Ray Diffraction, PXRD) 39
3.6.3 霍氏轉換紅外光譜儀 (Fourier transform infrared photo spectroscopy, FTIR) 40
3.6.4 高解析電子能譜儀 (High resolution X-ray photoelectron spectrometer, HRXPS) 41
3.6.5 接觸角量測儀 (Contact angle system) 42
3.6.6 線性馬達系統 (Linear motion system) 43
3.6.7 電性量測系統 43
第四章 結果與討論 45
4.1 粉末特性分析 45
4.1.1 冷場發射掃描式電子顯微鏡暨能量散佈儀器分析 45
4.1.2 WAG廣角X光繞射分析 46
4.1.3 霍氏轉換紅外光譜儀分析 47
4.1.4 多重物理量耦合模擬 (COMSOL Multiphysics) 分析 48
4.1.5 高解析電子能譜儀分析 50
4.1.6 接觸角量測儀分析 51
4.2 摩擦發電機與主動式感測元件特性分析 53
4.2.1 稻殼、RHSiO2粉末摩擦奈米發電機電性分析 53
4.2.2 RHSiO2粉末摩擦奈米發電機特性分析 58
4.2.3 RHSiO2粉末摩擦奈米發電機能量轉換效率分析 60
4.2.4 RHSiO2粉末表面官能基化之摩擦奈米發電機電性分析 62
4.2.5 主動式感測元件電性分析 70
4.2.6 主動式感測元件特性分析 73
4.2.7 主動式感測元件之應用 76
第五章 結論 78
第六章 未來展望 79
第七章 參考文獻 80
1. Peng, K.-Q., et al., Silicon nanowires for advanced energy conversion and storage. Nano Today, 2013. 8(1): p. 75-97.
2. Chen, Y.X., et al., Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat Commun, 2014. 5: p. 4036.
3. Qi, Y., et al., Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett, 2011. 11(3): p. 1331-6.
4. Yang, Y., et al., Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett, 2012. 12(6): p. 2833-8.
5. Zi, Y., et al., Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat Commun, 2015. 6: p. 8376.
6. Fan, F.-R., Z.-Q. Tian, and Z. Lin Wang, Flexible triboelectric generator. Nano Energy, 2012. 1(2): p. 328-334.
7. Yang, Y., et al., Pyroelectric nanogenerators for driving wireless sensors. Nano Lett, 2012. 12(12): p. 6408-13.
8. Hwang, B.-U., et al., Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS nano, 2015. 9(9): p. 8801-8810.
9. Wu, J.M., et al., Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS nano, 2012. 6(5): p. 4369-4374.
10. Hinchet, R., W. Seung, and S.W. Kim, Recent progress on flexible triboelectric nanogenerators for selfpowered electronics. ChemSusChem, 2015. 8(14): p. 2327-2344.
11. Fan, F.R., et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett, 2012. 12(6): p. 3109-14.
12. Lee, S., et al., Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor. Advanced Functional Materials, 2013. 23(19): p. 2445-2449.
13. Zhang, R., et al., Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection. Energy & Environmental Science, 2012. 5(9): p. 8528.
14. Wang, Z.L. and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006. 312(5771): p. 242-246.
15. Fan, F.R., et al., Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms. J. Mater. Chem. A, 2014. 2(33): p. 13219-13225.
16. Yu, Y., et al., Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development. Adv Mater, 2015. 27(33): p. 4938-44.
17. Wang, S., L. Lin, and Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 2015. 11: p. 436-462.
18. Niu, S., et al., A theoretical study of grating structured triboelectric nanogenerators. Energy & Environmental Science, 2014. 7(7): p. 2339-2349.
19. Invernizzi, F., et al., Energy harvesting from human motion: materials and techniques. Chemical Society Reviews, 2016. 45(20): p. 5455-5473.
20. Jung, D.S., et al., Recycling rice husks for high-capacity lithium battery anodes. Proc Natl Acad Sci U S A, 2013. 110(30): p. 12229-34.
21. Liu, N., et al., Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep, 2013. 3: p. 1919.
22. Song, G., et al., Molecularly Engineered Surface Triboelectric Nanogenerator by Self-Assembled Monolayers (METS). Chemistry of Materials, 2015. 27(13): p. 4749-4755.
23. Wang, S., et al., Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A, 2016. 4(10): p. 3728-3734.
24. Olah, G., Organized monolayers by adsorption, I. Formation and structure of oleophobic mixed monolayers on solid surfaces. 1980.
25. Saha, B., et al., A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes. Journal of Micromechanics and Microengineering, 2015. 26(1): p. 013002.
26. Fan, F.-R., Z.-Q. Tian, and Z.L. Wang, Flexible triboelectric generator. Nano Energy, 2012. 1(2): p. 328-334.
27. Zhong, J., et al., Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy, 2013. 2(4): p. 491-497.
28. Zhu, G., et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano letters, 2012. 12(9): p. 4960-4965.
29. Zheng, Q., et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS nano, 2016. 10(7): p. 6510-6518.
30. Chun, J., et al., Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci., 2015. 8(10): p. 3006-3012.
31. Lin, L., et al., Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano letters, 2013. 13(6): p. 2916-2923.
32. Zhu, G., et al., Linear-grating triboelectric generator based on sliding electrification. Nano letters, 2013. 13(5): p. 2282-2289.
33. Niu, S., et al., Theory of sliding‐mode triboelectric nanogenerators. Advanced materials, 2013. 25(43): p. 6184-6193.
34. Wang, S., et al., Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano letters, 2013. 13(5): p. 2226-2233.
35. Du, W., et al., A Three Dimensional Multi-Layered Sliding Triboelectric Nanogenerator. Advanced Energy Materials, 2014. 4(11): p. 1301592.
36. Zhang, H., et al., Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. Acs Nano, 2013. 8(1): p. 680-689.
37. Su, Y., et al., Fully enclosed cylindrical single-electrode-based triboelectric nanogenerator. ACS applied materials & interfaces, 2013. 6(1): p. 553-559.
38. Zhu, G., et al., Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano letters, 2014. 14(6): p. 3208-3213.
39. Yang, Y., et al., Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. Acs Nano, 2013. 7(8): p. 7342-7351.
40. Li, Y., et al., Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors. Nano Energy, 2015. 11: p. 323-332.
41. Chen, S.W., et al., An Ultrathin Flexible Single-Electrode Triboelectric-Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing. Advanced Energy Materials, 2017. 7(1): p. 1601255.
42. Wang, S., et al., Freestanding Triboelectric‐Layer‐Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non‐contact Modes. Advanced Materials, 2014. 26(18): p. 2818-2824.
43. Wang, S., et al., Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS nano, 2014. 8(12): p. 12004-12013.
44. Wang, S., et al., Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater, 2014. 26(18): p. 2818-24.
45. Lee, K.Y., et al., Fully Packaged Self‐Powered Triboelectric Pressure Sensor Using Hemispheres‐Array. Advanced Energy Materials, 2016. 6(11).
46. Yang, J., et al., Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. Acs Nano, 2014. 8(3): p. 2649-2657.
47. Lin, Z.-H., et al., Triboelectric Nanogenerator as an Active UV Photodetector. Advanced Functional Materials, 2014. 24(19): p. 2810-2816.
48. Lin, Z.H., et al., A self-powered triboelectric nanosensor for mercury ion detection. Angew Chem Int Ed Engl, 2013. 52(19): p. 5065-9.
49. Lin, Z.H., et al., Water–Solid Surface Contact Electrification and its Use for Harvesting Liquid‐Wave Energy. Angewandte Chemie International Edition, 2013. 52(48): p. 12545-12549.
50. Wu, J.M., C.K. Chang, and Y.T. Chang, High-output current density of the triboelectric nanogenerator made from recycling rice husks. Nano Energy, 2016. 19: p. 39-47.
51. Vieira, M., et al., Characterization and use of in natura and calcined rice husks for biosorption of heavy metals ions from aqueous effluents. Brazilian Journal of Chemical Engineering, 2012. 29(3): p. 619-634.
52. Chen, J., et al., Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. ACS Appl Mater Interfaces, 2016. 8(1): p. 736-44.
53. He, X., et al., Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale, 2015. 7(5): p. 1896-903.
54. Wang, J., et al., Synthesis of AgBiS2 microspheres by a templating method and their catalytic polymerization of alkylsilanes. Chemical Communications, 2007(46): p. 4931.
55. Zhang, W., et al., Biomimetic Intrafibrillar Mineralization of Type I Collagen with Intermediate Precursors-loaded Mesoporous Carriers. Sci Rep, 2015. 5: p. 11199.
56. Iwasaka, H., Prevention of nonspecific adsorption onto a poly(dimethylsiloxane) microchannel in a microsensor chip by using a self-assembled monolayer. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2010. 9(1): p. 013012.
57. Yamato, H., et al., Degradation of organic silane monolayers on silicon wafer during XPS measurement. Journal of Surface Analysis, 2014. 20(3): p. 216-220.
58. Nishino, T., et al., The lowest surface free energy based on− CF3 alignment. Langmuir, 1999. 15(13): p. 4321-4323.
59. Kovalchuk, N., et al., Fluoro-vs hydrocarbon surfactants: Why do they differ in wetting performance? Advances in colloid and interface science, 2014. 210: p. 65-71.
60. Niu, S., et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy & Environmental Science, 2013. 6(12): p. 3576-3583.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *