帳號:guest(3.144.252.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林丕晟
作者(外文):Lin, Pi-Chen
論文名稱(中文):透過優化薄層層析法與表面增強拉曼光譜結合之奈米微結構的多功能晶片實現混合物定量及快速篩檢分析
論文名稱(外文):Optimizing multifunctional nano-structured substrates of ultra-thin layer chromatography/ surface-enhanced Raman spectroscopy to achieve quantitative and rapid screening for mixtures
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen.
口試委員(中文):吳志明
鄭兆珉
口試委員(外文):WU, JYH-MING
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031514
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:82
中文關鍵詞:層析法表面增強拉曼光譜矽奈米線陣列三維奈米結構黃光微影圖樣化製作
外文關鍵詞:chromatographysurface-enhanced Raman spectroscopysilicon nanowire arrays3-dimensional nanostructurephotolithographypatterned fabrication
相關次數:
  • 推薦推薦:0
  • 點閱點閱:377
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
表面增強拉曼光譜是一項富有潛力且強力的分析工具,其能透過分辨材料分子結構的方式達到材料鑑定的效果。此外,因為表面增強拉曼光譜在量測的過程具有高的材料鑑別率及低時耗等特性,使得其在生物化學、生醫及食品安全等領域皆被廣泛使用。至今隨著其技術的成熟,愈來愈多科學團隊將注意放在將表面增強拉曼光譜與其他技術結合的多功能系統上,主要目的是在保有表面增強拉曼光譜優點的狀況下同時透過其他技術克服其先天缺點。受到相當多注目的問題在於拉曼量測時的所觀測到的雜訊,將表面增強拉曼光譜與能分離混合物的表面層析技術做結合能夠透過移除不同物質的干擾達到改善訊雜比的效果。
先前團隊成員研究利用單純的化學法所製備的矽奈米陣列搭配上銀奈米顆粒的新型薄層層析法與表面增強拉曼結合的多功基板。由先前的研究結果得知,矽奈米陣列搭配上銀奈米顆粒的基板能同時提供短距離混合物的分離以及強的拉曼訊號增益。接續先前的實驗,為了進一步的優化先前的基板,一開始我們透過改變成長的銀的反應時間,藉此將銀的奈米結構由原先的二維的奈米顆粒轉變為三維的奈米枝狀結構。目的透過三維的奈米枝狀結構能提供更多的熱區的特性進一步優化拉曼訊號增強的表現。除此之外,我們也印入不同圖形去解決先前基板所面臨包含向移動方向偏離、待測物的分離或是量測極限等的問題,並以此更進一步優化或是功能化基板。在這個實驗中,我們設計了包含流道型與圓型兩種圖形分別用於限制移動方向、集中待測物或是均勻化較黏稠的待測物在基板上的分布情形。在第一部分,我們集中於探討流道型圖樣對於分離過程中待測物移動情形的影響以及流道形狀對於集中待測物的效果。我們總共使用三種流道圖樣包含長方形、椎尖型以及不同長度的椎尖型流道。三種設計皆能透過流道將待測物進行初步的匯聚並且達到些許拉曼增強的效果。隨著流道限縮以及合適長度選擇,相比於無使用圖樣的基板而言,拉曼訊號的強度能被增強到原先的15.4倍。透過著些結果可發現到,圖樣的引入不僅能改善層析過程中所面臨到的問題,同時也能透過將待測物聚集的方式達到拉曼訊號提升的效果。
在實驗的第二部份中,我們則使用圓形的圖樣去改善高分子材料在乾燥後的待測物分布情形。隨著圓形圖樣的使用,待測物膜層能均勻從各個方向向內成長,最後形成相對均勻的待測物薄膜。之後我們也討論了圖樣尺寸以及成長環境所帶來的影響。從中也發現到較小的圖樣以及平衡的成長環境能夠為實驗帶來較小的分布誤差。此外,在分別確認過基板本身以及圖樣的再現性後,我們也量測不同濃度的待測物以了解圖樣基板的使用可行性。
從以上實驗所得到的結果可見,不同的圖樣的使用能對搭配上具奈米枝狀結構的銀的矽奈米線基板產生進一步優化或是功能化的效果,這也使得在實際領域上的應用淺力以及範圍都能夠增加。
SERS technique is a powerful and potential analytical technique that identify the materials with different molecule structure. Addition, basing on the high material discrimination and low time-consuming analytical process, SERS technique was applied to be use in many fields including biochemical, biomedical or food-safety. With the development of the SERS, most of the scientist paid attention to the multifunctional system consisted of SERS and others, which can not only keep the advantages but also overcome the inherent limitations of the SERS. A famous issue was about the signal noise during the Raman measurement. To further improve the signal-to-noise ratio(S/N) by resolving the interference from different material, one of the separation method called liquid chromatography technique was combined with SERS technique.
For our previous work, our team studied on a new bi-functional UTLC-SERS substrate which was consisted of the silicon nanowires array and silver nanoparticles fabricated by the simple chemical wet etching method. From the previous results, the SiNWs@AgNPs substrate could provide the short-distance mixture separation and strong Raman signal enhancement at the same time have been demonstrated. Following with the previous work, to all the more improve the signal enhancement performance of the SiNWs@AgNPs substrate. We changed the formation of silver from 2D nanoparticle to 3D nano-dendrites structure with increasing the reaction time due to the 3D nanostructure could provide more “hot spot” regions, which was corresponding to higher signal-enhance behavior.
Besides, we applied different pattern configurations to further optimize and functionalize the substrate with resolving some problem such as the shit of migration direction, separation of analyte or measurement limitation. In this work, we designed the fluidic- and circle-type patterns to respectively limit the migration direction, concentrate the analyte or uniform the distribution of stick analyte. At first part, we studied how the fluidic-shape pattern influenced the moving of analyte during the separation process and the concentration performance of channels with different length and formation. Three different fluidic patterns including rectangular shape, tapered shape and tapered shape with various lengths were applied, all of them could limit the migration direction by localizing the analyte within the channel, which could preliminarily enlarge the Raman signal. Besides, with shrinking channel from rectangular to tapered shape and choosing the length which was fitted to migration distance of analyte, Raman signal could be all the more enhanced with 15.4 times as compare with the un-patterned case. Base on those results, the application of pattern could not resolve the problem of TLC and enhance the Raman signal by concentrating the analyte.
At second part, we utilized circle-shape pattern to improve the analyte distribution of polymer material after drying. With the circle pattern was applied, analyte layer could be grown from all side homogeneously that made the relatively uniform layer was formed. Then, we also discuss the influence of the pattern size and stage horizontal and the smaller pattern size and horizontal stage had result in a better distribution deviation. Otherwise, after checking the reproducibility of the substrate and pattern, we applied the analyte with different concentration to understand the applied possibility of patterned substrate.
Basing on the results, SiNWs@AgNDs substrate could be all the more optimize or functionalize by different patterns were applied, which extremely increase the potential and filed of practical application.
Chapter 1 Introduction...................................1
Chapter 2 Literature Review..............................3
2.1 Raman.....................................3
2.2 Surface Enhanced Raman Scattering.........5
2.3 Paper-based SERS substrate...............10
2.4 TLC......................................12
2.5 UTLC.....................................16
2.6 UTLC-SERS................................24
2.7 Motivation...............................29
Chapter 3 Design of experiment..........................31
3.1 Patterned UTLC-SERS substrate fabrication31
3.2 Chromatography development...............38
3.3 Raman measurement........................41
Chapter 4 Result and Discussion.........................42
4.1 Optimization of the UTLC-SERS............42
4.2 Fluidic patterned UTLC-SERS substrate....46
4.3 Circle patterned SERS substrate..........54
Chapter 5 Conclusion....................................70
References..............................................73

1. Xiuli Fu, Ziyi Cheng et al., A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosensors and Bioelectronics, Vol. 78: 530-537 (2016)
2. Fang Gao,Yaxi Hu et al., Determination of sudan I in paprika Powder by molecularly imprinted polymers–thin layer chromatography–Surface Enhanced Raman Spectroscopic Biosensor. Talanta, Vol. 143: 344-352 (2015)
3. Wei W. Yua, Ian M. White, Chromatographic separation and detection of target analytes from complex samples using inkjet imprinted SERS substrates. Analyst, Vol. 138: 3679-3686 (2013)
4. Yixin Li, Kun Zhang et al., A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta, Vol. 147: 493-500 (2016)
5. Wenjie Yan, Longkun Yang et al., In situ two-step photoreduced SERS materials for on-ship single-molecule spectroscopy with high reproducibility. Advanced Materials, Vol. 29: 1702893 (2017)
6. A.G. Nassiopoulou, Violetta Gianneta et al., Si nanowires by a single-step Metal-Assisted Chemical Etching process on lithographically defined areas: Formation Kinetics. Nanoscale Research Letters, Vol. 6: issue. 597 (2011)
7. Konrad Rykaczewski, Owen J. Hildreth et al., Guided three-dimensional catalyst folding during Metal-Assisted Chemical Etching of silicon. Nano Lett., Vol. 11: 2369-2374 (2011)
8. Matthew J. Baker, Shawn R. Hussain et al., Developing and understanding biofluid vibrational spectroscopy: A Critical Review. Society of Chemistry Vol. 45: 1803-1818 (2016)
9. J Yang, J B Li, Q H Gong, High Aspect Ratio SiNW arrays with Ag nanoparticles decoration for strong SERS detection. Nanotechnology, Vol. 25: 465707 (2014)
10. Qingxia Zhu, Hao Li et al., A widely applicable silver sol for TLC detection with rich and stable SERS features. Nanoscale Research Letters, Vol. 11: issue. 220 (2016)
11. Jeanmarie D. L., Van Duyne, R.P., Surface Raman spectro-electrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode., Journal of Electroanalytical Chemistry, Vol. 84: 1-20 (1977)
12. M. Fleischmann, P.J. Hendra et al., Chem. Phys. Lett, Vol. 26: 163-166 (1974)
13. Aron Hakonen, P.O. Andersson et al., Explosive and chemical threat detection by Surface-Enhanced Raman Scattering: A Review. Anal. Chim. Acta, Vol. 893: 1-13 (2015)
14. E.C. Le Ru, P.G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and related Plasmonic effects, Elsevier, Chapter 2: 39-45 (2009)
15. S Fateixa, HIS Nogueira et al., Hybrid nanostructures for SERS: materials development and chemical detection. Phys. Chem. Chem. Phys., Vol. 17: 21046-21071. (2015)
16. Yoochan Hong, Yong-Min Huh et al., Nanobiosensors based on Localized Surface plasmon resonance for biomarker detection. Journal of Nanomaterials, Vol. 2012: A. ID. 759830 (2012)
17. Chang H. Lee, Mikella E. Hankus et al., Plasmonic paper ashighly efficient SERS substrate. Proceedings of SPIE, Vol. 8385: 825815-1 (2012)
18. G.C. Schatz, M.A. Young, Electromagnetic mechanism of SERS, in Surface-Enhanced Raman Scattering. Physics and Applications, Vol. 103: 19-46 (2006)
19. Procházka M., Surface-Enhanced Raman Spectroscopy., Springer International Publishing Switzerland, Chapter 3: 23-24 (2016)
20. D.O. Sigle, E. Perkins et al., Reproducible deep-UV SERRS on aluminum nanovoids. J. Phys. Chem. Lett., Vol. 4: 1449-1452 (2013)
21. Qi Jiwei, Li Yudong et al., Large-area High-Performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Research Letters, Vol, 8: issue. 437 (2013)
22. Limei Tian, Saide Z. Nergiz et al., Plasmonic paper for trace detection of analytes. SPIE Newsroom (2014)
23. Virginia Merk, Alexander nerz et al, "Design and characterization of new nanostructured or new nanostructured surface as planar SERS sensors", "Paper Session Presented at the 15th International Symposium Molecular Plasmonics" (2015)
24. Jian Huang, Feng Chen et al., 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance Surface-Enhanced Raman Scattering substrates. ACS Appl. Mater. Interfaces, Vol. 7: 5725-5735 (2015)
25. Jing Liu, Guowen Meng et al., Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform Surface Enhanced Raman Scattering substrates. Nanoscale Research Letters, Vol. 7: 18218-18224 (2015)
26. Hilal Torul, Hakan Çiftçi et al., Paper membrane-based SERS platform for the determination of glucose in blood samples. Anal. Bioanal. Chem., Vol. 407: 8243-8251 (2015)
27. Kun Zhang, Jingjing Zhao et al., Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl. Mater. Interfaces, Vol. 7: 16767-16774 (2015)
28. Wei W. Yu, Ian M. White, Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst, Vol. 138: 1020-1025 (2013)
29. Morlock Gertrud, Schwack Wolfgang, The contribution of planar chromatography to food analysis. Journal of Planar Chromatography, Vol. 20: 399-406 (2007)
30. G.T. Roman, R.T. Kennedy, Fully integrated microfluidic separations systems for biochemical analysis. Journal of Chromatography A, Vol. 1168: 170-188 (2007)
31. J. West, M. Becker et al., Micro total analysis systems: latest achievements. Anal. Chem. Insights, Vol. 80: 4403-4419 (2008)
32. Sherma J., Review of advances in the thin layer chromatography of pesricides 2012.2014. J. Environ. Sci. Heal. B., Vol. 50: 301-346 (2015)
33. S.R. Jia, A.J. Oko et al., Morphological modification of aanostructured ultrathin-layer chromatography stationary phases. Journal of Chromatography A, Vol. 1218: 7203-7210 (2011)
34. W. Clark Still, Micheal Kahn et al., Rapid chromatographic technique for preparative separation with moderate resolution. The Journal of Organic Chemistry, Vol. 43: 2923-2925 (1978)
35. Wall P.E., Thin Layer Chromatography : A modern practical approach. United state of America, Royal Society of Chemistry, Chapter 2: 6-55 (2005)
36. Cazes J., Encyelopedia of Chromatography 3rd. United state of America, marcel dekker inc (2009)
37. H.E. Hauck, O. Bund, W. Fischer, Ultra-thin layer chromatography - a new dimension in thin-Layer chromatography. J. Planar Chromatography, Vol. 14: 234-236 (2011)
38. Weidong Wang, Yongguang Yin et al., Coffee-ring effect-based simultaneous SERS substrate fabication and analyte enrichment for trace analysis. Nanoscale, Vol. 6: 9588-9593 (2014)
39. H.E. Hauck, M. Schulz, Ulrathin-layer chromatogrpahy. J. Chromatogr. Science, Vol. 40: 550-552 (2002)
40. Rashmin B. Patel, Mehul C. Gopani et al., UTLC: An advanced technique in planar chromatography. Chromatographia, Vol. 76: 1225-1231 (2013)
41. Poole S.K., Poole C.F., High performance stationary phases for planar chromatography. J Chromatogr A, Vol. 1218: 2648-2660 (2011)
42. Zhaorui Zhang, Saliya N. Ratnayaka et al., Protein UTLC-Maldi–MS using thin films of submicrometer silica particles. Journal of Chromatography A, Vol. 1218: 7196-7202 (2011)
43. Hauck H.E., Schulz M.J., Ultrathin-layer chromatography. Chromatographia, Vol. 57: 313-315 (2003)
44. Vovk I, Popovic G, Simonovska B et al. , Ultra-tin-lyer cromatography mass spectrometry and thinlayer chromatography massspectrometry of single peptides of agioensin-cnverting ezyme iibitors. J Chromatogr A, Vol. 128, 3089-3094 (2011)
45. A.M. Frolova, M.A. Chukhlieb et al., Open access producing of monolithic layers of silica for thin-layer chromatography by Sol-Gel Synthesis. The Open Surface Science Journal, Vol. 1: 40-45 (2009)
46. J.E. Clark, S. V Olesik, Electrospun glassy carbon ultra-thin layer chromatography devices. J. Chromatogr. A., Vol. 1217: 4655-4662 (2010)
47. T. Rojanarata, S. Plianwong et al., Electrospun cellulose acetate nanofibers as thin layer chromatographic media for eco-friendly screening of steroids adulterated in traditional medicine and nutraceutical products. Talanta, Vol. 115: 208-213 (2013)
48. Steven R. Jim, Michael J. Brett, "Instrumental thin-layer chromatography, Chapter 3 "Ultrathin and Nanostructured Stationary Phases". Elsevier Inc. All rights reserved (2015)
49. Supriya S. Kanyal, Tim T. Häbe, Microfabrication, separations, and detection by mass spectrometry on ultra-thin layer chromatography plates prepared via the low-pressure chemical vapor deposition of silicon nitride onto carbon nanotube templates. Journal of Chromatography A, Vol. 1404: 115-123 (2015)
50. Jun Song, David S. Jensen et al., Carbon-Nanotube-Templated microfabrication of porous Silicon-Carbon materials with application to chemical separations. Advanced Functional Materail, Vol. 21: 1132.1139 (2011)
51. S. R. Jim, M. T. Taschuk et al., Engineered anisotropic micro-structures for ultra-thin layer chromatography. Analytical Chemistry Insights, Vol. 82: 5349-5356 (2010)
52. S.R. Jim, A. Foroughi-Abari et al., Ultra-thin layer chromatography nanostructures modified by atomic layer deposition. Journal of Chromatography A, Vol. 1299: 118-125. (2013)
53. Chaoping Yao, Fansheng Cheng et al., Separation, identification and fast determination of organophosphate pesticide methidathion in tea leaves by thin layer chromatography–Surface-Enhanced Raman Scattering. Analytical Methods, Vol. 5: 5560-5564 (2013)
54. Fang Fang, Yunpeng Qi, Feng Lu, Highly sensitive on-site detection of drugs adulterated in botanical dietary supplements using thin layer chromatography combined with dynamic Surface-Enhanced Raman Spectroscopy. Talanta, Vol. 146: 351-357 (2016)
55. Lee P, Meisel D, Adsorption and Surface-Enhanced Raman of dyes on silver and fold sols. J Phys Chem, Vol. 86: 3391-3395 (1982)
56. Cong Wang, Fansheng Cheng et al., Single pointcalibration for semi-quantitative screening based on an internal eeference in thin layer chromatography-SERS: The case of ehodamine B in chili oil. Analytical Methods, Vol. 6: 7218-7223 (2014)
57. Huan Chen, Hui Wang et al., Wafer-ccale synthesis of single-crystal zigzag silicon nanowire arays with controlled turning angles. Nano Lett., Vol. 10: 864.868 (2010)
58. Ming-Liang Zhang, Kui-Qing Peng et al., Preparation of large-area uniform silicon nanowires arrays through Metal-Assisted Chemical Etching. Journal of Physical Chemistry C, Vol. 112: 4444-4450 (2008)
59. Sebastian P Scheeler, Simon Ullrich et al., Fabrication of porous silicon by Metal-Assisted Etching using highly ordered gold nanoparticle arrays. Nanoscale Research Letters, Vol. 7: issue 450 (2012)
60. Yongquan Qu, Hailong Zhou et al., Porous silicon nanowires. Nanoscale, Vol. 3: 4060-4068 (2011)
61. Zhipeng Huang, Nadine Geyer et al., Metal-Assisted Chemical Etching of silicon: A Review Advance Material, Vol. 23: 285-308 (2011)
62. Zhipeng Huang, Xuanxiong Zhang et al., Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by Metal-Assisted Chemical Etching. Nano Lett., Vol. 8: No. 9 (2008)
63. Joseph Sherma, Bernard Fried, Handbook of Thin-Layer Chromatography. Marcel Dekker, Inc. All Rights Reserved (2003)
64. Srivastava M., High-Performance Thin-Layer Chromatography (HPTLC). Springer-Verlag Berlin Heidelberg (2011)
65. Lasse Jensen, George C. Schatz, Resonance Raman ccattering of rhodamine 6G as calculated usingtime-dependent functional theory, J. Phys. Chem. A, Vol. 110: No. 18 (2006)
66. G. N. Xiao , S. Q. Man, Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles, Chemical Physics Letters, Vol. 447: 305–309 (2007)
67. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. Vol. 28: 988–994 (1936)
68. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc., Vol. 40: 546–551 (1944)
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *