帳號:guest(18.117.105.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林柏宏
作者(外文):Lin, Po-Hung
論文名稱(中文):自旋軌道矩在鐵磁/反鐵磁系統的應用
論文名稱(外文):The study of spin-orbit torque in the ferromagnetic/antiferromagnetic material system
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):林秀豪
謝嘉民
楊朝堯
宋明遠
口試委員(外文):Lin, Hsiu-Hau
Shieh, Jia-Min
Yang, Chao-Yao
Song, Ming-Yuan
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031512
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:137
中文關鍵詞:自旋電子學磁性記憶體自旋軌道矩交換偏壓
外文關鍵詞:SpintronicsMRAMspin-orbit torqueExchange bias
相關次數:
  • 推薦推薦:0
  • 點閱點閱:301
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這篇論文中,我們研究了交換偏壓(Exchange bias, EB)和自旋軌道矩(Spin-orbit torque, SOT)在磁阻隨機存取記憶體(Magnetic-random access memory, MRAM)技術中的應用。本論文包括三個部分,每個部分研究交換偏壓或SOT的不同面向。在第一部分中,我們發現可以使用SOT來翻轉交換偏壓,不需要使用傳統的場退火過程。第二部分提出了使用反鐵磁材料(antiferromagnet, AFM)來實現垂直磁各向異性(Perpendicular magnetic anisotropy, PMA)材料的零場SOT翻轉。我們利用水平鐵磁層產生的外漏場或藉由插入FeMn層所產生帶有z分量的自旋電子流以去除對外部磁場的依靠。這些結果展示了AFM材料在MRAM技術中的潛在用途。第三部分則探討操縱SOT效率的新方法,藉由向Pd和Pt90Ir10等自旋霍爾效應材料施加氫氣,我們發現氫氣可以增加SOT效率,為改進SOT效率和擴展自旋電子學在MRAM技術中的應用提供了新的可能性。總體而言,本論文為使用反鐵磁材料和操控SOT方面提供更多的瞭解。
In this thesis, the application of exchange bias and spin-orbit torque (SOT) in Magnetic Random-Access Memory (MRAM) technology is explored. The thesis consists of three parts, each investigating different aspects of exchange bias or SOT. In the first part, the study discovers that the exchange bias can be switched by the spin-orbit torque, without the need of traditional field-annealing process. The second part proposes using antiferromagnetic (AFM) materials to achieve zero-field SOT switching for perpendicular magnetic anisotropy (PMA) material. The study suggests using the stray-field produced by the in-plane ferromagnetic layer or inserting a FeMn layer to produce the z-component spin current to eliminate the requirement of an external magnetic field. The results demonstrate the potential usefulness of AFM materials in MRAM technology. The third part explores new methods of manipulating SOT efficiency by applying hydrogen gas to the Pd and Pt90Ir10 spin hall effect materials. The findings show that hydrogen gas can increase SOT efficiency, indicating new possibilities for improving SOT efficiency and expanding the applications of spintronics in MRAM technology. In summary, this thesis provides valuable insights and directions for further research in the field of MRAM technology.
Table of Contents
1. Introduction 1
1.1 The introduction of MRAM 1
1.2 Motivation 3
2. Background 4
2.1 Antiferromagnetism of IrMn and FeMn 4
2.2 Exchange bias 5
2.2.1 Various exchange bi as model 7
2.3. Spin current 9
2.3.1 Spin transfer torque (STT) 9
2.3.2. Spin orbit torque 11
2.4. Interaction between spin current and AFM 21
2.4.1 Thermal switching of exchange bias (Thermally-assisted STT switching) 22
2.4.2 STT modification of exchange bias 23
2.4.3 The SOT switching of AFM itself. 24
2.4.4 Spin current transmission across AFM 24
2.5. Neuromorphic application 28
2.6. Hydrogen absorption 31
3. Experimental techniques 33
3.1 Deposition technique 33
3.2 Device fabrication 34
3.2.1Photolithography and Ion-beam etching 34
3.3 Characterization and measurement 36
3.3.1 Vibrating-sample magnetometer (VSM) 36
3.3.2 Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) 37
3.3.3 Magneto-Optical Kerr Effect (MOKE) and Kerr Microscopy 38
3.3.4 Harmonic Hall measurement for spin orbit torque 40
3.3.5 AHE hysteresis loop and spin-orbit torque measurement 41
4. The switching of exchange bias by spin-orbit torque in heavy metal/ferromagnet/antiferromagnet bilayer. 43
4.1 Introduction 43
4.2 Background and motivation 43
4.3 Current-pulse-induced exchange bias switching 45
4.4 Joule heating 50
4.4.1 The Time-resolved resistance measurement 52
4.4.2 Estimate temperature change by current pulses 54
4.4.3 Joule heating in AP-mode switching (or Joule heating in a Cu-based structure) 60
4.5 Role of the IrMn layer in terms of spin Hall effect 62
4.6 Ferromagnetic layer thickness dependence 63
4.7 The dependence of EB on FM domain configurations by SOT observed by MFM 65
4.8 Mechanism for exchange bias switching 67
4.9 SOT switching in AP-mode 71
4.10 Independent manipulations of FM magnetization and exchange bias 74
4.11 Conclusion 77
5. Toward zero-field switching and analog switching/multi-level switching/neuromorphic computing 79
5.1 Background and Motivation 79
5.2 Zero-field switching by stray field 80
5.3 Zero-field switching by z-component spin current 82
5.3.1 Zero field switching for [Co/Ni]2/FeMn/Pt 84
5.3.2 Reference sample 86
5.3.3 Changing the top layer to Ta 88
5.3.4 Alter the FeMn bulk spin structure by in-situ field deposition. 89
5.3.5 Cu insertion 91
5.3.6 Possible explanation discussion 92
5.3.7 Oersted field estimation 93
5.3.8 Blocking temperature 95
5.3.9 Device temperature measurement 95
5.3.10 Inverted structure: Pt/FeMn/[Co/Ni] 97
5.3.11 z-component effective field measurement by in-plane harmonic measurement (IMA sample) 98
5.4 Multi-level switching 102
5.4.1 Room temperature multi-level switching 102
5.4.2 Low-temperature (data in previous draft and need more) 103
5.4.3 Artificial neural network (ANN) application 103
6. The effect of hydrogen on the spin orbit torque. 107
6.1 Motivation 107
6.2 Experimental Setup and Hydrogen Gas Generation 107
6.3 Effects of Hydrogen Gas on Resistance 109
6.4 Influence of Hydrogen Gas on Magnetic Properties 113
6.5 Impact of Hydrogen Gas on Spin-Orbit Torque switching 114
6.6 Average total switching current 117
6.7 Exchange bias switching 118
6.8 Influence of Hydrogen Gas on Effective Field 119
6.9 Discussion 121
6.10 Conclusion 125
7. Conclusion 127
8. Reference 129

1. Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., and Piramanayagam, S.N. (2017) Spintronics based random access memory: a review. Materials Today, 20 (9), 530–548.
2. Kohn, A., Kovács, A., Fan, R., McIntyre, G.J., Ward, R.C.C., and Goff, J.P. (2013) The antiferromagnetic structures of IrMn 3 and their influence on exchange-bias. Sci Rep, 3, 1–7.
3. Feng, W., Hanke, J.P., Zhou, X., Guo, G.Y., Blügel, S., Mokrousov, Y., and Yao, Y. (2020) Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat Commun, 11 (1).
4. Hanke, J.P., Freimuth, F., Blügel, S., and Mokrousov, Y. (2017) Prototypical topological orbital ferromagnet γ-FeMn. Sci Rep, 7.
5. Shiomi, Y. (2018) Magnetotransport properties of γ-FeMn thin films grown by high-temperature sputtering. AIP Adv, 8 (8), 85018.
6. Bean, W.H.M. and C.P. (1956) New magnetig anisotropy. Phys. Rev., 102, 1413.
7. Baltz, V., Manchon, A., Tsoi, M., Moriyama, T., Ono, T., and Tserkovnyak, Y. (2018) Antiferromagnetic spintronics. Rev Mod Phys, 90.
8. Radu, F., and Zabel, H. (2008) Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures. Springer Tracts in Modern Physics, 227, 97–184.
9. Malozemoff, A.P. (1987) Random-field model of exchange anisotropy at rough ferromagnetic- antiferromagnetic interfaces. Phys Rev B, 35 (7), 3679–3682.
10. Kim, J. von, and Stamps, R.L. (2005) Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems: Magnetic defects and thermal effects. Phys Rev B Condens Matter Mater Phys, 71 (9).
11. Radu, F., Westphalen, A., Theis-Bröhl, K., and Zabel, H. (2006) Quantitative description of the azimuthal dependence of the exchange bias effect. Journal of Physics Condensed Matter, 18 (3).
12. J.C. Slonczewski (1996) Current-driven excitation of magnetic multilayers J.C. J Magn Magn Mater, 159, L1–L7.
13. Berger, L. (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B, 54 (13), 9353–9358.
14. Liu, L., Lee, O.J., Gudmundsen, T.J., Ralph, D.C., and Buhrman, R.A. (2012) Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin hall effect. Phys Rev Lett, 109 (9), 1–5.
15. Sinova, J., Valenzuela, S.O., Wunderlich, J., Back, C.H., and Jungwirth, T. (2015) Spin Hall effects. Rev. Mod. Phys., 87 (4), 1213–1260.
16. Miron, I.M., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., and Gambardella, P. (2010) Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater, 9 (3), 230–234.
17. Fukami, S., Anekawa, T., Zhang, C., and Ohno, H. (2016) A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat Nanotechnol, 11 (7), 621–625.
18. Hayashi, M., Kim, J., Yamanouchi, M., and Ohno, H. (2014) Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys Rev B Condens Matter Mater Phys, 89 (14), 1–15.
19. Lee, O.J., Liu, L.Q., Pai, C.F., Li, Y., Tseng, H.W., Gowtham, P.G., Park, J.P., Ralph, D.C., and Buhrman, R.A. (2014) Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys Rev B Condens Matter Mater Phys, 89 (2), 024418.
20. Pai, C.-F., Mann, M., Tan, A.J., and Beach, G.S.D. (2016) Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Phys Rev B, 93, 144409.
21. Van Den Brink, A., Vermijs, G., Solignac, A., Koo, J., Kohlhepp, J.T., Swagten, H.J.M., and Koopmans, B. (2016) Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat Commun, 7.
22. Lau, Y., Betto, D., Rode, K., Coey, J.M.D., and Stamenov, P. (2016) Spin – orbit torque switching without an external fi eld using interlayer exchange coupling. Nat Nanotechnol, 11 (9), 758–762.
23. Garello, K., Yasin, F., Hody, H., Couet, S., Souriau, L., Sharifi, S.H., Swerts, J., Carpenter, R., Rao, S., Kim, W., Wu, J., Sethu, K.K.V., Pak, M., Jossart, N., Crotti, D., Furnemont, A., and Kar, G.S. (2019) Manufacturable 300mm platform solution for Field-Free Switching SOT-MRAM. IEEE Symposium on VLSI Circuits, Digest of Technical Papers, 2019-June, T194–T195.
24. Baek, S.H.C., Amin, V.P., Oh, Y.W., Go, G., Lee, S.J., Lee, G.H., Kim, K.J., Stiles, M.D., Park, B.G., and Lee, K.J. (2018) Spin currents and spin-orbit torques in ferromagnetic trilayers. Nat Mater, 17 (6), 509–513.
25. MacNeill, D., Stiehl, G.M., Guimaraes, M.H.D., Buhrman, R.A., Park, J., and Ralph, D.C. (2017) Control of spin-orbit torques through crystal symmetry in WTe 2 /ferromagnet bilayers. Nat Phys, 13 (3), 300–305.
26. Hu, S., Shao, D.F., Yang, H., Pan, C., Fu, Z., Tang, M., Yang, Y., Fan, W., Zhou, S., Tsymbal, E.Y., and Qiu, X. (2022) Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat Commun, 13 (1).
27. Bhowmik, D., Nowakowski, M.E., You, L., Lee, O., Keating, D., Wong, M., Bokor, J., and Salahuddin, S. (2015) Deterministic Domain Wall Motion Orthogonal to Current Flow Due to Spin Orbit Torque. Sci Rep, 5.
28. Grimaldi, E., Krizakova, V., Sala, G., Yasin, F., Couet, S., Sankar Kar, G., Garello, K., and Gambardella, P. Single-shot dynamics of spin-orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions.
29. Gomonay, O., Baltz, V., Brataas, A., and Tserkovnyak, Y. (2018) Antiferromagnetic spin textures and dynamics. Nat Phys, 14 (3), 213–216.
30. Bernard Dieny, Ronald B. Goldfarb, K.-J.L. (2016) Introduction to Magnetic Random-Access Memory, Wiley-IEEE Press.
31. Wei, Z., Sharma, A., Nunez, A.S., Haney, P.M., Duine, R.A., Bass, J., MacDonald, A.H., and Tsoi, M. (2007) Changing exchange bias in spin valves with an electric current. Phys Rev Lett, 98 (11), 1–4.
32. Wei, Z., Basset, J., Sharma, A., Bass, J., and Tsoi, M. (2009) Spin-transfer interactions in exchange-biased spin valves. J Appl Phys, 105 (7).
33. Tang, X.L., Zhang, H.W., Su, H., Jing, Y.L., and Zhong, Z.Y. (2010) Spin-transfer effect and independence of coercivity and exchange bias in a layered ferromagnet/antiferromagnet system. Phys Rev B Condens Matter Mater Phys, 81 (5).
34. Tang, X.L., Zhang, H.W., Su, H., Zhong, Z.Y., and Jing, Y.L. (2007) Changing and reversing the exchange bias in a current-in-plane spin valve by means of an electric current. Appl Phys Lett, 91 (12).
35. Dai, N. v., Thuan, N.C., Hong, L. v., Phuc, N.X., Lee, Y.P., Wolf, S.A., and Nam, D.N.H. (2008) Impact of in-plane currents on magnetoresistance properties of an exchange-biased spin valve with an insulating antiferromagnetic layer. Phys Rev B Condens Matter Mater Phys, 77 (13).
36. Wadley, P., Howells, B., Železný, J., Andrews, C., Hills, V., Campion, R.P., Novák, V., Olejník, K., Maccherozzi, F., Dhesi, S.S., Martin, S.Y., Wagner, T., Wunderlich, J., Freimuth, F., Mokrousov, Y., Kuneš, J., Chauhan, J.S., Grzybowski, M.J., Rushforth, A.W., Edmond, K., Gallagher, B.L., and Jungwirth, T. (2016) Electrical switching of an antiferromagnet. Science (1979), 351 (6273), 587–590.
37. Gray, I., Moriyama, T., Sivadas, N., Stiehl, G.M., Heron, J.T., Need, R., Kirby, B.J., Low, D.H., Nowack, K.C., Schlom, D.G., Ralph, D.C., Ono, T., and Fuchs, G.D. (2018) Spin Seebeck imaging of spin-torque switching in antiferromagnetic Pt/NiO heterostructures. Phys Rev X, 9.
38. Baldrati, L., Gomonay, O., Ross, A., Filianina, M., Lebrun, R., Ramos, R., Leveille, C., Fuhrmann, F., Forrest, T.R., Maccherozzi, F., Valencia, S., Kronast, F., Saitoh, E., Sinova, J., and Kläui, M. (2019) Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging. Phys Rev Lett, 123.
39. Zhang, P., Finley, J., Safi, T., and Liu, L. (2019) Quantitative Study on Current-Induced Effect in an Antiferromagnet Insulator/Pt Bilayer Film. Phys Rev Lett, 123 (24).
40. Chen, X., Zhou, X., Cheng, R., Song, C., Zhang, J., Wu, Y., Ba, Y., Li, H., Sun, Y., You, Y., Zhao, Y., and Pan, F. (2019) Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat Mater, 18 (9), 931–935.
41. Shi, J., Lopez-Dominguez, V., Garesci, F., Wang, C., Almasi, H., Grayson, M., Finocchio, G., and Khalili Amiri, P. (2020) Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars. Nat Electron, 3 (2), 92–98.
42. DuttaGupta, S., Kurenkov, A., Tretiakov, O.A., Krishnaswamy, G., Sala, G., Krizakova, V., Maccherozzi, F., Dhesi, S.S., Gambardella, P., Fukami, S., and Ohno, H. (2020) Spin-orbit torque switching of an antiferromagnetic metallic heterostructure. Nat Commun, 11 (1).
43. Chiang, C.C., Huang, S.Y., Qu, D., Wu, P.H., and Chien, C.L. (2019) Absence of Evidence of Electrical Switching of the Antiferromagnetic Néel Vector. Phys Rev Lett, 123.
44. Lebrun, R., Ross, A., Bender, S.A., Qaiumzadeh, A., Baldrati, L., Cramer, J., Brataas, A., Duine, R.A., and Kläui, M. (2018) Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature, 561 (7722), 222–225.
45. Zhang, W., Jungfleisch, M.B., Jiang, W., Pearson, J.E., Hoffmann, A., Freimuth, F., and Mokrousov, Y. (2014) Spin hall effects in metallic antiferromagnets. Phys Rev Lett, 113 (19), 196602.
46. Saglam, H., Zhang, W., Jungfleisch, M.B., Sklenar, J., Pearson, J.E., Ketterson, J.B., and Hoffmann, A. (2016) Spin transport through the metallic antiferromagnet FeMn. Phys Rev B, 94 (14), 140412.
47. Wang, Y., Zhu, D., Yang, Y., Lee, K., Mishra, R., Go, G., Oh, S.H., Kim, D.H., Cai, K., Liu, E., Pollard, S.D., Shi, S., Lee, J., Teo, K.L., Wu, Y., Lee, K.J., and Yang, H. (2019) Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science (1979), 366 (6469), 1125–1128.
48. Wang, H., Finley, J., Zhang, P., Han, J., Hou, J.T., and Liu, L. (2019) Spin-Orbit-Torque Switching Mediated by an Antiferromagnetic Insulator. Phys Rev Appl, 10, 44070.
49. Wen, Y., Zhuo, F., Zhao, Y., Li, P., Zhang, Q., Manchon, A., and Zhang, X.-X. (2019) Competition between Electronic and Magnonic Spin Currents in Metallic Antiferromagnets. Phys Rev Appl, 10, 54030.
50. Gladii, O., Frangou, L., Forestier, G., Seeger, R.L., Auffret, S., Joumard, I., Rubio-Roy, M., Gambarelli, S., and Baltz, V. (2018) Unraveling the influence of electronic and magnonic spin-current injection near the magnetic ordering transition of IrMn metallic antiferromagnets. Phys Rev B, 98 (9), 094422.
51. Wang, X., Wan, C., Liu, Y., Shao, Q., Wu, H., Guo, C., Fang, C., Guang, Y., Yang, W., He, C., Tao, B., Zhang, X., Ma, T., Dong, J., Zhang, Y., Feng, J., Xiao, J., Wang, K.L., Yu, G., and Han, X. (2020) Spin transmission in IrMn through measurements of spin Hall magnetoresistance and spin-orbit torque. Phys Rev B, 101, 144412.
52. Cramer, J., Ritzmann, U., Dong, B.W., Jaiswal, S., Qiu, Z., Saitoh, E., Nowak, U., and Kläui, M. (2018) Spin transport across antiferromagnets induced by the spin Seebeck effect. J Phys D Appl Phys, 51 (14), 144004.
53. Zhao, X., Mao, S., Wang, H., Wei, D., and Zhao, J. (2021) Antiferromagnet-mediated spin-orbit torque induced magnetization switching in perpendicularly magnetized L10-MnGa. Appl. Phys. Lett, 118, 92401.
54. Russell, S., and Norvig, P. (2021) Artificial Intelligence: A Modern Approach, Pearson.
55. Isaac Abiodun, O., Jantan, A., Esther Omolara, A., Victoria Dada, K., AbdElatif Mohamed, N., and Arshad, H. (2018) State-of-the-art in artificial neural network applications: A survey. Heliyon, 4, 938.
56. Marković, D., Mizrahi, A., Querlioz, D., and Grollier, J. (2020) Physics for neuromorphic computing. Nature Reviews Physics, 2 (9), 499–510.
57. Zhou, G., Wang, Z., Sun, B., Zhou, F., Sun, L., Zhao, H., Hu, X., Peng, X., Yan, J., Wang, H., Wang, W., Li, J., Yan, B., Kuang, D., Wang, Y., Wang, L., and Duan, S. (2022) Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing. Adv Electron Mater, 8 (7).
58. Grollier, J., Querlioz, D., Camsari, K.Y., Everschor-Sitte, K., Fukami, S., and Stiles, M.D. (2020) Neuromorphic spintronics. Nat Electron, 3 (7), 360–370.
59. Kurenkov, A., Fukami, S., and Ohno, H. (2020) Neuromorphic computing with antiferromagnetic spintronics. J Appl Phys, 128 (1).
60. Ismael Salinas, R., Chen, P.C., Yang, C.Y., and Lai, C.H. (2023) Spintronic materials and devices towards an artificial neural network: accomplishments and the last mile. Mater Res Lett, 11 (5), 305–326.
61. Chang, P.C., Chuang, T.H., Wei, D.H., and Lin, W.C. (2020) Thermally modulated hydrogenation in FexPd1-x alloy films: Temperature-driven peculiar variation of magnetism. Appl Phys Lett, 116 (10).
62. Maksymov, I.S., and Kostylev, M. (2022) Magneto-Electronic Hydrogen Gas Sensors: A Critical Review. Chemosensors, 10 (2).
63. Lee, E., Lee, J.M., Koo, J.H., Lee, W., and Lee, T. (2010) Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas. Int J Hydrogen Energy, 35 (13), 6984–6991.
64. An, H., Haku, S., Kageyama, Y., Musha, A., Tazaki, Y., and Ando, K. (2020) Spin-Torque Manipulation for Hydrogen Sensing. Adv Funct Mater, 30 (30).
65. Das, S.S., Kopnov, G., and Gerber, A. (2020) Positive vs negative resistance response to hydrogenation in palladium and its alloys. AIP Adv, 10 (6).
66. Lewis, R., and Gomer, R. (1969) Adsorption of hydrogen on platinum. Surf Sci, 17, 333–345.
67. Kobayashi, H., Yamauchi, M., and Kitagawa, H. (2012) Finding hydrogen-storage capability in iridium induced by the nanosize effect. J Am Chem Soc, 134 (16), 6893–6895.
68. Kim, J., Sinha, J., Hayashi, M., Yamanouchi, M., Fukami, S., Suzuki, T., Mitani, S., and Ohno, H. (2013) Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat Mater, 12 (3), 240–245.
69. Garello, K., Miron, I.M., Avci, C.O., Freimuth, F., Mokrousov, Y., Blügel, S., Auffret, S., Boulle, O., Gaudin, G., and Gambardella, P. (2013) Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat Nanotechnol, 8 (8), 587–593.
70. Avci, C.O., Garello, K., Gabureac, M., Ghosh, A., Fuhrer, A., Alvarado, S.F., and Gambardella, P. (2014) Interplay of spin-orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers. Phys Rev B Condens Matter Mater Phys, 90 (22), 1–11.
71. Yu, G., Upadhyaya, P., Fan, Y., Alzate, J.G., Jiang, W., Wong, K.L., Takei, S., Bender, S.A., Chang, L. Te, Jiang, Y., Lang, M., Tang, J., Wang, Y., Tserkovnyak, Y., Amiri, P.K., and Wang, K.L. (2014) Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat Nanotechnol, 9 (7), 548–554.
72. Oh, Y.W., Baek, S.H.C., Kim, Y.M., Lee, H.Y., Lee, K.D., Yang, C.G., Park, E.S., Lee, K.S., Kim, K.W., Go, G., Jeong, J.R., Min, B.C., Lee, H.W., Lee, K.J., and Park, B.G. (2016) Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat Nanotechnol, 11 (10), 878–884.
73. Lau, Y.C., Betto, D., Rode, K., Coey, J.M.D., and Stamenov, P. (2016) Spin-orbit torque switching without an external field using interlayer exchange coupling. Nat Nanotechnol, 11 (9), 758–762.
74. Kimata, M., Chen, H., Kondou, K., Sugimoto, S., Muduli, P.K., Ikhlas, M., Omori, Y., Tomita, T., MacDonald, A.H., Nakatsuji, S., and Otani, Y. (2019) Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature, 565 (7741), 627–630.
75. Mook, A., Neumann, R.R., Johansson, A., Henk, J., and Mertig, I. (2020) Origin of the magnetic spin Hall effect: Spin current vorticity in the Fermi sea. Phys Rev Res, 2 (2).
76. Nogués, J., and Schuller, I.K. (1999) Exchange bias. J Magn Magn Mater, 192 (2), 203–232.
77. Kang, M.G., Choi, J.G., Jeong, J., Park, J.Y., Park, H.J., Kim, T., Lee, T., Kim, K.J., Kim, K.W., Oh, J.H., Viet, D.D., Jeong, J.R., Yuk, J.M., Park, J., Lee, K.J., and Park, B.G. (2021) Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures. Nat Commun, 12 (1).
78. Lee, H.Y., Kim, S., Park, J.Y., Oh, Y.W., Park, S.Y., Ham, W., Kotani, Y., Nakamura, T., Suzuki, M., Ono, T., Lee, K.J., and Park, B.G. (2019) Enhanced spin-orbit torque via interface engineering in Pt/CoFeB/MgO heterostructures. APL Mater, 7 (3).
79. Li, Y., Zha, X., Zhao, Y., Lu, Q., Li, B., Li, C., Zhou, Z., and Liu, M. (2022) Enhancing the Spin-Orbit Torque Efficiency by the Insertion of a Sub-nanometer β-W Layer. ACS Nano, 16 (8), 11852–11861.
80. Zhu, L., Zhu, L., and Buhrman, R.A. (2021) Fully Spin-Transparent Magnetic Interfaces Enabled by the Insertion of a Thin Paramagnetic NiO Layer. Phys Rev Lett, 126 (10).
81. DC, M., Shao, D.-F., Hou, V.D.-H., Quarterman, P., Habiboglu, A., Venuti, B., Miura, M., Kirby, B., Vailionis, A., Bi, C., Li, X., Xue, F., Huang, Y.-L., Deng, Y., Lin, S.-J., Tsai, W., Eley, S., Wang, W., Borchers, J.A., Tsymbal, E.Y., and Wang, S.X. (2020) Observation of anti-damping spin-orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3. ArXiv, 1–31.
82. P.-Y. Chen, X.P.S.Y. (2017) NeuroSim+: An Integrated Device-¬to-Algorithm Framework for Benchmarking Synaptic Devices and Array Architectures. 2017 IEEE International Electron Devices Meeting (IEDM) , 2–6.
83. Lin, P.H., Yang, B.Y., Tsai, M.H., Chen, P.C., Huang, K.F., Lin, H.H., and Lai, C.H. (2019) Manipulating exchange bias by spin–orbit torque. Nat Mater, 18 (4), 335–341.
84. Lee, K.S., Lee, S.W., Min, B.C., and Lee, K.J. (2013) Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl Phys Lett, 102 (11), 1–5.
85. Chen, P.C., Du, Y., Yang, B.Y., Lin, P.H., Guo, G.Y., Pakala, M., and Lai, C.H. (2018) Large enhancement of spin-orbit torques in Pd/CoFeB: The role of boron. Phys Rev Mater, 2 (6).
86. Kim, Y.J., Lee, M.H., Kim, G.W., Kim, T., Cha, I.H., Nguyen, Q.A.T., Rhim, S.H., and Kim, Y.K. (2020) Large reduction in switching current driven by spin-orbit torque in W/CoFeB heterostructures with W–N interfacial layers. Acta Mater, 200, 551–558.
87. Manchon, A., Železný, J., Miron, I.M., Jungwirth, T., Sinova, J., Thiaville, A., Garello, K., and Gambardella, P. (2019) Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev Mod Phys, 91 (3), 035004.
88. Hoffmann, A. (2013) Spin hall effects in metals. IEEE Trans Magn, 49 (10), 5172–5193.
89. Guo, G.Y. (2009) Ab initio calculation of intrinsic spin Hall conductivity of Pd and Au. J Appl Phys, 105 (7), 7–701.
90. Setayandeh, S.S., Webb, C.J., and Gray, E.M.A. (2020) Electron and phonon band structures of palladium and palladium hydride: A review. Progress in Solid State Chemistry, 60.
91. Kato, Y., Saito, Y., Yoda, H., Inokuchi, T., Shirotori, S., Shimomura, N., Oikawa, S., Tiwari, A., Ishikawa, M., Shimizu, M., Altansargai, B., Sugiyama, H., Koi, K., Ohsawa, Y., and Kurobe, A. (2018) Improvement of Write Efficiency in Voltage-Controlled Spintronic Memory by development of a Ta- B Spin Hall Electrode. Phys Rev Appl, 10 (4).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *