|
1. Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., and Piramanayagam, S.N. (2017) Spintronics based random access memory: a review. Materials Today, 20 (9), 530–548. 2. Kohn, A., Kovács, A., Fan, R., McIntyre, G.J., Ward, R.C.C., and Goff, J.P. (2013) The antiferromagnetic structures of IrMn 3 and their influence on exchange-bias. Sci Rep, 3, 1–7. 3. Feng, W., Hanke, J.P., Zhou, X., Guo, G.Y., Blügel, S., Mokrousov, Y., and Yao, Y. (2020) Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat Commun, 11 (1). 4. Hanke, J.P., Freimuth, F., Blügel, S., and Mokrousov, Y. (2017) Prototypical topological orbital ferromagnet γ-FeMn. Sci Rep, 7. 5. Shiomi, Y. (2018) Magnetotransport properties of γ-FeMn thin films grown by high-temperature sputtering. AIP Adv, 8 (8), 85018. 6. Bean, W.H.M. and C.P. (1956) New magnetig anisotropy. Phys. Rev., 102, 1413. 7. Baltz, V., Manchon, A., Tsoi, M., Moriyama, T., Ono, T., and Tserkovnyak, Y. (2018) Antiferromagnetic spintronics. Rev Mod Phys, 90. 8. Radu, F., and Zabel, H. (2008) Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures. Springer Tracts in Modern Physics, 227, 97–184. 9. Malozemoff, A.P. (1987) Random-field model of exchange anisotropy at rough ferromagnetic- antiferromagnetic interfaces. Phys Rev B, 35 (7), 3679–3682. 10. Kim, J. von, and Stamps, R.L. (2005) Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems: Magnetic defects and thermal effects. Phys Rev B Condens Matter Mater Phys, 71 (9). 11. Radu, F., Westphalen, A., Theis-Bröhl, K., and Zabel, H. (2006) Quantitative description of the azimuthal dependence of the exchange bias effect. Journal of Physics Condensed Matter, 18 (3). 12. J.C. Slonczewski (1996) Current-driven excitation of magnetic multilayers J.C. J Magn Magn Mater, 159, L1–L7. 13. Berger, L. (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B, 54 (13), 9353–9358. 14. Liu, L., Lee, O.J., Gudmundsen, T.J., Ralph, D.C., and Buhrman, R.A. (2012) Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin hall effect. Phys Rev Lett, 109 (9), 1–5. 15. Sinova, J., Valenzuela, S.O., Wunderlich, J., Back, C.H., and Jungwirth, T. (2015) Spin Hall effects. Rev. Mod. Phys., 87 (4), 1213–1260. 16. Miron, I.M., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., and Gambardella, P. (2010) Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater, 9 (3), 230–234. 17. Fukami, S., Anekawa, T., Zhang, C., and Ohno, H. (2016) A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat Nanotechnol, 11 (7), 621–625. 18. Hayashi, M., Kim, J., Yamanouchi, M., and Ohno, H. (2014) Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys Rev B Condens Matter Mater Phys, 89 (14), 1–15. 19. Lee, O.J., Liu, L.Q., Pai, C.F., Li, Y., Tseng, H.W., Gowtham, P.G., Park, J.P., Ralph, D.C., and Buhrman, R.A. (2014) Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys Rev B Condens Matter Mater Phys, 89 (2), 024418. 20. Pai, C.-F., Mann, M., Tan, A.J., and Beach, G.S.D. (2016) Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Phys Rev B, 93, 144409. 21. Van Den Brink, A., Vermijs, G., Solignac, A., Koo, J., Kohlhepp, J.T., Swagten, H.J.M., and Koopmans, B. (2016) Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat Commun, 7. 22. Lau, Y., Betto, D., Rode, K., Coey, J.M.D., and Stamenov, P. (2016) Spin – orbit torque switching without an external fi eld using interlayer exchange coupling. Nat Nanotechnol, 11 (9), 758–762. 23. Garello, K., Yasin, F., Hody, H., Couet, S., Souriau, L., Sharifi, S.H., Swerts, J., Carpenter, R., Rao, S., Kim, W., Wu, J., Sethu, K.K.V., Pak, M., Jossart, N., Crotti, D., Furnemont, A., and Kar, G.S. (2019) Manufacturable 300mm platform solution for Field-Free Switching SOT-MRAM. IEEE Symposium on VLSI Circuits, Digest of Technical Papers, 2019-June, T194–T195. 24. Baek, S.H.C., Amin, V.P., Oh, Y.W., Go, G., Lee, S.J., Lee, G.H., Kim, K.J., Stiles, M.D., Park, B.G., and Lee, K.J. (2018) Spin currents and spin-orbit torques in ferromagnetic trilayers. Nat Mater, 17 (6), 509–513. 25. MacNeill, D., Stiehl, G.M., Guimaraes, M.H.D., Buhrman, R.A., Park, J., and Ralph, D.C. (2017) Control of spin-orbit torques through crystal symmetry in WTe 2 /ferromagnet bilayers. Nat Phys, 13 (3), 300–305. 26. Hu, S., Shao, D.F., Yang, H., Pan, C., Fu, Z., Tang, M., Yang, Y., Fan, W., Zhou, S., Tsymbal, E.Y., and Qiu, X. (2022) Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat Commun, 13 (1). 27. Bhowmik, D., Nowakowski, M.E., You, L., Lee, O., Keating, D., Wong, M., Bokor, J., and Salahuddin, S. (2015) Deterministic Domain Wall Motion Orthogonal to Current Flow Due to Spin Orbit Torque. Sci Rep, 5. 28. Grimaldi, E., Krizakova, V., Sala, G., Yasin, F., Couet, S., Sankar Kar, G., Garello, K., and Gambardella, P. Single-shot dynamics of spin-orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. 29. Gomonay, O., Baltz, V., Brataas, A., and Tserkovnyak, Y. (2018) Antiferromagnetic spin textures and dynamics. Nat Phys, 14 (3), 213–216. 30. Bernard Dieny, Ronald B. Goldfarb, K.-J.L. (2016) Introduction to Magnetic Random-Access Memory, Wiley-IEEE Press. 31. Wei, Z., Sharma, A., Nunez, A.S., Haney, P.M., Duine, R.A., Bass, J., MacDonald, A.H., and Tsoi, M. (2007) Changing exchange bias in spin valves with an electric current. Phys Rev Lett, 98 (11), 1–4. 32. Wei, Z., Basset, J., Sharma, A., Bass, J., and Tsoi, M. (2009) Spin-transfer interactions in exchange-biased spin valves. J Appl Phys, 105 (7). 33. Tang, X.L., Zhang, H.W., Su, H., Jing, Y.L., and Zhong, Z.Y. (2010) Spin-transfer effect and independence of coercivity and exchange bias in a layered ferromagnet/antiferromagnet system. Phys Rev B Condens Matter Mater Phys, 81 (5). 34. Tang, X.L., Zhang, H.W., Su, H., Zhong, Z.Y., and Jing, Y.L. (2007) Changing and reversing the exchange bias in a current-in-plane spin valve by means of an electric current. Appl Phys Lett, 91 (12). 35. Dai, N. v., Thuan, N.C., Hong, L. v., Phuc, N.X., Lee, Y.P., Wolf, S.A., and Nam, D.N.H. (2008) Impact of in-plane currents on magnetoresistance properties of an exchange-biased spin valve with an insulating antiferromagnetic layer. Phys Rev B Condens Matter Mater Phys, 77 (13). 36. Wadley, P., Howells, B., Železný, J., Andrews, C., Hills, V., Campion, R.P., Novák, V., Olejník, K., Maccherozzi, F., Dhesi, S.S., Martin, S.Y., Wagner, T., Wunderlich, J., Freimuth, F., Mokrousov, Y., Kuneš, J., Chauhan, J.S., Grzybowski, M.J., Rushforth, A.W., Edmond, K., Gallagher, B.L., and Jungwirth, T. (2016) Electrical switching of an antiferromagnet. Science (1979), 351 (6273), 587–590. 37. Gray, I., Moriyama, T., Sivadas, N., Stiehl, G.M., Heron, J.T., Need, R., Kirby, B.J., Low, D.H., Nowack, K.C., Schlom, D.G., Ralph, D.C., Ono, T., and Fuchs, G.D. (2018) Spin Seebeck imaging of spin-torque switching in antiferromagnetic Pt/NiO heterostructures. Phys Rev X, 9. 38. Baldrati, L., Gomonay, O., Ross, A., Filianina, M., Lebrun, R., Ramos, R., Leveille, C., Fuhrmann, F., Forrest, T.R., Maccherozzi, F., Valencia, S., Kronast, F., Saitoh, E., Sinova, J., and Kläui, M. (2019) Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging. Phys Rev Lett, 123. 39. Zhang, P., Finley, J., Safi, T., and Liu, L. (2019) Quantitative Study on Current-Induced Effect in an Antiferromagnet Insulator/Pt Bilayer Film. Phys Rev Lett, 123 (24). 40. Chen, X., Zhou, X., Cheng, R., Song, C., Zhang, J., Wu, Y., Ba, Y., Li, H., Sun, Y., You, Y., Zhao, Y., and Pan, F. (2019) Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat Mater, 18 (9), 931–935. 41. Shi, J., Lopez-Dominguez, V., Garesci, F., Wang, C., Almasi, H., Grayson, M., Finocchio, G., and Khalili Amiri, P. (2020) Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars. Nat Electron, 3 (2), 92–98. 42. DuttaGupta, S., Kurenkov, A., Tretiakov, O.A., Krishnaswamy, G., Sala, G., Krizakova, V., Maccherozzi, F., Dhesi, S.S., Gambardella, P., Fukami, S., and Ohno, H. (2020) Spin-orbit torque switching of an antiferromagnetic metallic heterostructure. Nat Commun, 11 (1). 43. Chiang, C.C., Huang, S.Y., Qu, D., Wu, P.H., and Chien, C.L. (2019) Absence of Evidence of Electrical Switching of the Antiferromagnetic Néel Vector. Phys Rev Lett, 123. 44. Lebrun, R., Ross, A., Bender, S.A., Qaiumzadeh, A., Baldrati, L., Cramer, J., Brataas, A., Duine, R.A., and Kläui, M. (2018) Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature, 561 (7722), 222–225. 45. Zhang, W., Jungfleisch, M.B., Jiang, W., Pearson, J.E., Hoffmann, A., Freimuth, F., and Mokrousov, Y. (2014) Spin hall effects in metallic antiferromagnets. Phys Rev Lett, 113 (19), 196602. 46. Saglam, H., Zhang, W., Jungfleisch, M.B., Sklenar, J., Pearson, J.E., Ketterson, J.B., and Hoffmann, A. (2016) Spin transport through the metallic antiferromagnet FeMn. Phys Rev B, 94 (14), 140412. 47. Wang, Y., Zhu, D., Yang, Y., Lee, K., Mishra, R., Go, G., Oh, S.H., Kim, D.H., Cai, K., Liu, E., Pollard, S.D., Shi, S., Lee, J., Teo, K.L., Wu, Y., Lee, K.J., and Yang, H. (2019) Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science (1979), 366 (6469), 1125–1128. 48. Wang, H., Finley, J., Zhang, P., Han, J., Hou, J.T., and Liu, L. (2019) Spin-Orbit-Torque Switching Mediated by an Antiferromagnetic Insulator. Phys Rev Appl, 10, 44070. 49. Wen, Y., Zhuo, F., Zhao, Y., Li, P., Zhang, Q., Manchon, A., and Zhang, X.-X. (2019) Competition between Electronic and Magnonic Spin Currents in Metallic Antiferromagnets. Phys Rev Appl, 10, 54030. 50. Gladii, O., Frangou, L., Forestier, G., Seeger, R.L., Auffret, S., Joumard, I., Rubio-Roy, M., Gambarelli, S., and Baltz, V. (2018) Unraveling the influence of electronic and magnonic spin-current injection near the magnetic ordering transition of IrMn metallic antiferromagnets. Phys Rev B, 98 (9), 094422. 51. Wang, X., Wan, C., Liu, Y., Shao, Q., Wu, H., Guo, C., Fang, C., Guang, Y., Yang, W., He, C., Tao, B., Zhang, X., Ma, T., Dong, J., Zhang, Y., Feng, J., Xiao, J., Wang, K.L., Yu, G., and Han, X. (2020) Spin transmission in IrMn through measurements of spin Hall magnetoresistance and spin-orbit torque. Phys Rev B, 101, 144412. 52. Cramer, J., Ritzmann, U., Dong, B.W., Jaiswal, S., Qiu, Z., Saitoh, E., Nowak, U., and Kläui, M. (2018) Spin transport across antiferromagnets induced by the spin Seebeck effect. J Phys D Appl Phys, 51 (14), 144004. 53. Zhao, X., Mao, S., Wang, H., Wei, D., and Zhao, J. (2021) Antiferromagnet-mediated spin-orbit torque induced magnetization switching in perpendicularly magnetized L10-MnGa. Appl. Phys. Lett, 118, 92401. 54. Russell, S., and Norvig, P. (2021) Artificial Intelligence: A Modern Approach, Pearson. 55. Isaac Abiodun, O., Jantan, A., Esther Omolara, A., Victoria Dada, K., AbdElatif Mohamed, N., and Arshad, H. (2018) State-of-the-art in artificial neural network applications: A survey. Heliyon, 4, 938. 56. Marković, D., Mizrahi, A., Querlioz, D., and Grollier, J. (2020) Physics for neuromorphic computing. Nature Reviews Physics, 2 (9), 499–510. 57. Zhou, G., Wang, Z., Sun, B., Zhou, F., Sun, L., Zhao, H., Hu, X., Peng, X., Yan, J., Wang, H., Wang, W., Li, J., Yan, B., Kuang, D., Wang, Y., Wang, L., and Duan, S. (2022) Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing. Adv Electron Mater, 8 (7). 58. Grollier, J., Querlioz, D., Camsari, K.Y., Everschor-Sitte, K., Fukami, S., and Stiles, M.D. (2020) Neuromorphic spintronics. Nat Electron, 3 (7), 360–370. 59. Kurenkov, A., Fukami, S., and Ohno, H. (2020) Neuromorphic computing with antiferromagnetic spintronics. J Appl Phys, 128 (1). 60. Ismael Salinas, R., Chen, P.C., Yang, C.Y., and Lai, C.H. (2023) Spintronic materials and devices towards an artificial neural network: accomplishments and the last mile. Mater Res Lett, 11 (5), 305–326. 61. Chang, P.C., Chuang, T.H., Wei, D.H., and Lin, W.C. (2020) Thermally modulated hydrogenation in FexPd1-x alloy films: Temperature-driven peculiar variation of magnetism. Appl Phys Lett, 116 (10). 62. Maksymov, I.S., and Kostylev, M. (2022) Magneto-Electronic Hydrogen Gas Sensors: A Critical Review. Chemosensors, 10 (2). 63. Lee, E., Lee, J.M., Koo, J.H., Lee, W., and Lee, T. (2010) Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas. Int J Hydrogen Energy, 35 (13), 6984–6991. 64. An, H., Haku, S., Kageyama, Y., Musha, A., Tazaki, Y., and Ando, K. (2020) Spin-Torque Manipulation for Hydrogen Sensing. Adv Funct Mater, 30 (30). 65. Das, S.S., Kopnov, G., and Gerber, A. (2020) Positive vs negative resistance response to hydrogenation in palladium and its alloys. AIP Adv, 10 (6). 66. Lewis, R., and Gomer, R. (1969) Adsorption of hydrogen on platinum. Surf Sci, 17, 333–345. 67. Kobayashi, H., Yamauchi, M., and Kitagawa, H. (2012) Finding hydrogen-storage capability in iridium induced by the nanosize effect. J Am Chem Soc, 134 (16), 6893–6895. 68. Kim, J., Sinha, J., Hayashi, M., Yamanouchi, M., Fukami, S., Suzuki, T., Mitani, S., and Ohno, H. (2013) Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat Mater, 12 (3), 240–245. 69. Garello, K., Miron, I.M., Avci, C.O., Freimuth, F., Mokrousov, Y., Blügel, S., Auffret, S., Boulle, O., Gaudin, G., and Gambardella, P. (2013) Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat Nanotechnol, 8 (8), 587–593. 70. Avci, C.O., Garello, K., Gabureac, M., Ghosh, A., Fuhrer, A., Alvarado, S.F., and Gambardella, P. (2014) Interplay of spin-orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers. Phys Rev B Condens Matter Mater Phys, 90 (22), 1–11. 71. Yu, G., Upadhyaya, P., Fan, Y., Alzate, J.G., Jiang, W., Wong, K.L., Takei, S., Bender, S.A., Chang, L. Te, Jiang, Y., Lang, M., Tang, J., Wang, Y., Tserkovnyak, Y., Amiri, P.K., and Wang, K.L. (2014) Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat Nanotechnol, 9 (7), 548–554. 72. Oh, Y.W., Baek, S.H.C., Kim, Y.M., Lee, H.Y., Lee, K.D., Yang, C.G., Park, E.S., Lee, K.S., Kim, K.W., Go, G., Jeong, J.R., Min, B.C., Lee, H.W., Lee, K.J., and Park, B.G. (2016) Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat Nanotechnol, 11 (10), 878–884. 73. Lau, Y.C., Betto, D., Rode, K., Coey, J.M.D., and Stamenov, P. (2016) Spin-orbit torque switching without an external field using interlayer exchange coupling. Nat Nanotechnol, 11 (9), 758–762. 74. Kimata, M., Chen, H., Kondou, K., Sugimoto, S., Muduli, P.K., Ikhlas, M., Omori, Y., Tomita, T., MacDonald, A.H., Nakatsuji, S., and Otani, Y. (2019) Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature, 565 (7741), 627–630. 75. Mook, A., Neumann, R.R., Johansson, A., Henk, J., and Mertig, I. (2020) Origin of the magnetic spin Hall effect: Spin current vorticity in the Fermi sea. Phys Rev Res, 2 (2). 76. Nogués, J., and Schuller, I.K. (1999) Exchange bias. J Magn Magn Mater, 192 (2), 203–232. 77. Kang, M.G., Choi, J.G., Jeong, J., Park, J.Y., Park, H.J., Kim, T., Lee, T., Kim, K.J., Kim, K.W., Oh, J.H., Viet, D.D., Jeong, J.R., Yuk, J.M., Park, J., Lee, K.J., and Park, B.G. (2021) Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures. Nat Commun, 12 (1). 78. Lee, H.Y., Kim, S., Park, J.Y., Oh, Y.W., Park, S.Y., Ham, W., Kotani, Y., Nakamura, T., Suzuki, M., Ono, T., Lee, K.J., and Park, B.G. (2019) Enhanced spin-orbit torque via interface engineering in Pt/CoFeB/MgO heterostructures. APL Mater, 7 (3). 79. Li, Y., Zha, X., Zhao, Y., Lu, Q., Li, B., Li, C., Zhou, Z., and Liu, M. (2022) Enhancing the Spin-Orbit Torque Efficiency by the Insertion of a Sub-nanometer β-W Layer. ACS Nano, 16 (8), 11852–11861. 80. Zhu, L., Zhu, L., and Buhrman, R.A. (2021) Fully Spin-Transparent Magnetic Interfaces Enabled by the Insertion of a Thin Paramagnetic NiO Layer. Phys Rev Lett, 126 (10). 81. DC, M., Shao, D.-F., Hou, V.D.-H., Quarterman, P., Habiboglu, A., Venuti, B., Miura, M., Kirby, B., Vailionis, A., Bi, C., Li, X., Xue, F., Huang, Y.-L., Deng, Y., Lin, S.-J., Tsai, W., Eley, S., Wang, W., Borchers, J.A., Tsymbal, E.Y., and Wang, S.X. (2020) Observation of anti-damping spin-orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3. ArXiv, 1–31. 82. P.-Y. Chen, X.P.S.Y. (2017) NeuroSim+: An Integrated Device-¬to-Algorithm Framework for Benchmarking Synaptic Devices and Array Architectures. 2017 IEEE International Electron Devices Meeting (IEDM) , 2–6. 83. Lin, P.H., Yang, B.Y., Tsai, M.H., Chen, P.C., Huang, K.F., Lin, H.H., and Lai, C.H. (2019) Manipulating exchange bias by spin–orbit torque. Nat Mater, 18 (4), 335–341. 84. Lee, K.S., Lee, S.W., Min, B.C., and Lee, K.J. (2013) Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl Phys Lett, 102 (11), 1–5. 85. Chen, P.C., Du, Y., Yang, B.Y., Lin, P.H., Guo, G.Y., Pakala, M., and Lai, C.H. (2018) Large enhancement of spin-orbit torques in Pd/CoFeB: The role of boron. Phys Rev Mater, 2 (6). 86. Kim, Y.J., Lee, M.H., Kim, G.W., Kim, T., Cha, I.H., Nguyen, Q.A.T., Rhim, S.H., and Kim, Y.K. (2020) Large reduction in switching current driven by spin-orbit torque in W/CoFeB heterostructures with W–N interfacial layers. Acta Mater, 200, 551–558. 87. Manchon, A., Železný, J., Miron, I.M., Jungwirth, T., Sinova, J., Thiaville, A., Garello, K., and Gambardella, P. (2019) Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev Mod Phys, 91 (3), 035004. 88. Hoffmann, A. (2013) Spin hall effects in metals. IEEE Trans Magn, 49 (10), 5172–5193. 89. Guo, G.Y. (2009) Ab initio calculation of intrinsic spin Hall conductivity of Pd and Au. J Appl Phys, 105 (7), 7–701. 90. Setayandeh, S.S., Webb, C.J., and Gray, E.M.A. (2020) Electron and phonon band structures of palladium and palladium hydride: A review. Progress in Solid State Chemistry, 60. 91. Kato, Y., Saito, Y., Yoda, H., Inokuchi, T., Shirotori, S., Shimomura, N., Oikawa, S., Tiwari, A., Ishikawa, M., Shimizu, M., Altansargai, B., Sugiyama, H., Koi, K., Ohsawa, Y., and Kurobe, A. (2018) Improvement of Write Efficiency in Voltage-Controlled Spintronic Memory by development of a Ta- B Spin Hall Electrode. Phys Rev Appl, 10 (4).
|