|
[1] R.P. Feynman, There’s plenty of room at the bottom, Miniaturization, (1959) 282-296. [2] M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical Reviews, 104 (2004) 293-346. [3] J. Liu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium‐ion batteries, Angewandte Chemie International Edition, 54 (2015) 9632-9636. [4] W. Lu, C.M. Lieber, Nanoelectronics from the bottom up, Nature Materials, 6 (2007) 841-850. [5] C. Koch, Top-Down Synthesis of nanostructured materials: mechanical and thermal processing methods, Reviews on Advanced Materials Science, 5 (2003) 91-99. [6] X. Lu, C. Wang, Y. Wei, One‐dimensional composite nanomaterials: synthesis by electrospinning and their applications, Small, 5 (2009) 2349-2370. [7] Y.S. Zhao, H. Fu, F. Hu, A. Peng, W. Yang, J. Yao, Tunable emission from binary organic one‐dimensional nanomaterials: an alternative approach to white‐light emission, Advanced Materials, 20 (2008) 79-83. [8] C.J. Murphy, T.K. Sau, A. Gole, C.J. Orendorff, Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures, MRS Bulletin, 30 (2005) 349-355. [9] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 (1993) 603-605. [10] C.M. Lieber, One-dimensional nanostructures: chemistry, physics & applications, Solid State Communications, 107 (1998) 607-616. [11] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One‐dimensional nanostructures: synthesis, characterization, and applications, Advanced Materials, 15 (2003) 353-389. [12] K. Takeuchi, T. Hayashi, Y. Kim, K. Fujisawa, The State-of-the-art science and applications of carbon nanotubes, Nanosystems: Physics, Chemistry, Mathmatics, 5 (2014) 15-24. [13] P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications, Angewandte Chemie International Edition, 50 (2011) 2904-2939. [14] C. Askeljung, B.-O. Marinder, M. Sundberg, Effect of heat treatment on the structure of L-Ta2O5: a study by XRPD and HRTEM methods, Journal of Solid State Chemistry, 176 (2003) 250-258. [15] N. Stephenson, R. Roth, Structural systematics in the binary system Ta2O5–WO3. V. The structure of the low-temperature form of tantalum oxide L-Ta2O5, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 27 (1971) 1037-1044. [16] A.F. Wells, Structural Inorganic Chemistry, Oxford University Press (2012). [17] G. Wolten, A. Chase, Single-crystal data for ß Ta2O5 and A KP03, Z. Kristallogr, 129 (1969) 365-368 . [18] I. Zibrov, V. Filonenko, M. Sundberg, P.-E. Werner, Structures and phase transitions of B- Ta2O5 and Z- Ta2O5: two high-pressure forms of Ta2O5, Acta Crystallographica Section B: Structural Science, 56 (2000) 659-665. [19] P.W. Ho, F.O. Hatem, H.A.F. Almurib, T.N. Kumar, Comparison between Pt/TiO2/Pt and Pt/TaO X/TaO Y/Pt based bipolar resistive switching devices, Journal of Semiconductors, 37 (2016) 064001. [20] B.O. Loopstra, Neutron diffraction investigation of U3O8, Acta Crystallographica, 17 (1964) 651-654. [21] C. Chaneliere, J. Autran, R. Devine, B. Balland, Tantalum pentoxide (Ta 2 O 5) thin films for advanced dielectric applications, Materials Science And Engineering: R: Reports, 22 (1998) 269-322. [22] K. Sayama, H. Arakawa, Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysis, Journal of Photochemistry and Photobiology A: Chemistry, 77 (1994) 243-247. [23] P. Zhang, J. Zhang, J. Gong, Tantalum-based semiconductors for solar water splitting, Chemical Society Reviews, 43 (2014) 4395-4422. [24] H. Kominami, M. Miyakawa, S.-y. Murakami, T. Yasuda, M. Kohno, S.-i. Onoue, Y. Kera, B. Ohtani, Solvothermal synthesis of tantalum (V) oxide nanoparticles and their photocatalytic activities in aqueous suspension systems, Physical Chemistry Chemical Physics, 3 (2001) 2697-2703. [25] T. Sreethawong, S. Ngamsinlapasathian, Y. Suzuki, S. Yoshikawa, Nanocrystalline mesoporous Ta2O5-based photocatalysts prepared by surfactant-assisted templating sol–gel process for photocatalytic H2 evolution, Journal of Molecular Catalysis A: Chemical, 235 (2005) 1-11. [26] D. Jing, L. Guo, Hydrogen production over Fe-doped tantalum oxide from an aqueous methanol solution under the light irradiation, Journal of Physics and Chemistry of Solids, 68 (2007) 2363-2369. [27] L. Xu, J. Guan, L. Gao, Z. Sun, Preparation of heterostructured mesoporous In 2 O 3/Ta 2 O 5 nanocomposites with enhanced photocatalytic activity for hydrogen evolution, Catalysis Communications, 12 (2011) 548-552. [28] L. Xu, J. Guan, W. Shi, Enhanced interfacial charge transfer and visible photocatalytic activity for hydrogen evolution from a Ta2O5‐based mesoporous composite by the incorporation of quantum‐sized CdS, Chemcatchem, 4 (2012) 1353-1359. [29] R.V. Gonçalves, P. Migowski, H. Wender, D. Eberhardt, D.E. Weibel, F.C. Sonaglio, M.J. Zapata, J. Dupont, A.F. Feil, S.R. Teixeira, Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production, The Journal of Physical Chemistry C, 116 (2012) 14022-14030. [30] J. Huang, R. Ma, Y. Ebina, K. Fukuda, K. Takada, T. Sasaki, Layer-by-Layer assembly of TaO3 nanosheet/polycation composite nanostructures: Multilayer film, hollow sphere, and its photocatalytic activity for hydrogen evolution, Chemistry of Materials, 22 (2010) 2582-2587. [31] S. Lin, L. Shi, H. Yoshida, M. Li, X. Zou, Synthesis of hollow spherical tantalum oxide nanoparticles and their photocatalytic activity for hydrogen production, Journal of Solid State Chemistry, 199 (2013) 15-20. [32] S. Åsbrink, L.-J. Norrby, A refinement of the crystal structure of copper (II) oxide with a discussion of some exceptional esd's, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26 (1970) 8-15. [33] P. Poizot, C.-J. Hung, M.P. Nikiforov, E.W. Bohannan, J.A. Switzer, An electrochemical method for CuO thin film deposition from aqueous solution, Electrochemical and Solid-State Letters, 6 (2003) C21-C25. [34] C. Vidyasagar, Y.A. Naik, T. Venkatesha, R. Viswanatha, Solid-state synthesis and effect of temperature on optical properties of CuO nanoparticles, Nano-Micro Letters, 4 (2012) 73-77. [35] V. Palkar, P. Ayyub, S. Chattopadhyay, M. Multani, Size-induced structural transitions in the Cu-O and Ce-O systems, Physical review B, 53 (1996) 2167. [36] K. Nakaoka, J. Ueyama, K. Ogura, Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates, Journal of the Electrochemical Society, 151 (2004) C661-C665. [37] Y. Hori, K. Kikuchi, S. Suzuki, Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution, Chemistry Letters, 14 (1985) 1695-1698. [38] S. Somasundaram, C.R.N. Chenthamarakshan, N.R. de Tacconi, K. Rajeshwar, Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors, International Journal of Hydrogen Energy, 32 (2007) 4661-4669. [39] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress in Materials Science, 60 (2014) 208-337. [40] A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, U. Banin, Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition, ACS Nano, 4 (2010) 5962-5968. [41] M. Alonso, I. Marcus, M. Garriga, A. Goni, J. Jedrzejewski, I. Balberg, Evidence of quantum confinement effects on interband optical transitions in Si nanocrystals, Physical Review B, 82 (2010) 045302. [42] W.E. Buhro, V.L. Colvin, Semiconductor nanocrystals: shape matters, Nature Materials, 2 (2003) 138-139. [43] S. Rehman, A. Mumtaz, S. K. Hasanain, Size effects on the magnetic and optical properties of CuO nanoparticles, J Nanopart Res, 13 (2011) 2497–2507. [44] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells, Chemical Reviews, 110 (2010) 6446-6473. [45] R. Agrawal, M. Offutt, M.P. Ramage, Hydrogen economy‐an opportunity for chemical engineers, AIChE Journal, 51 (2005) 1582-1589. [46] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 38 (2009) 253-278. [47] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical Reviews, 110 (2010) 6503-6570. [48] F.E. Osterloh, B.A. Parkinson, Recent developments in solar water-splitting photocatalysis, MRS Bulletin, 36 (2011) 17-22. [49] N. Bao, L. Shen, T. Takata, K. Domen, Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light, Chemistry of Materials, 20 (2007) 110-117. [50] R.V. Gonçalves, R. Wojcieszak, P.M. Uberman, S.R. Teixeira, L.M. Rossi, Insights into the active surface species formed on Ta2O5 nanotubes in the catalytic oxidation of CO, Physical Chemistry Chemical Physics, 16 (2014) 5755-5762. [51] D. Tahir, S. Tougaard, Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy, Journal of Physics: Condensed Matter, 24 (2012) 175002. [52] S. Rehman, A. Mumtaz, S. Hasanain, Size effects on the magnetic and optical properties of CuO nanoparticles, Journal of Nanoparticle Research, 13 (2011) 2497-2507. [53] T.-H. Yang, Y.-W. Harn, M.-Y. Pan, L.-D. Huang, M.-C. Chen, B.-Y. Li, P.-H. Liu, P.-Y. Chen, C.-C. Lin, P.-K. Wei, Ultrahigh density plasmonic hot spots with ultrahigh electromagnetic field for improved photocatalytic activities, Applied Catalysis B: Environmental, 181 (2016) 612-624. [54] M.-H. Chang, H.-S. Liu, C.Y. Tai, Preparation of copper oxide nanoparticles and its application in nanofluid, Powder Technology, 207 (2011) 378-386. [55] M. Yin, C.-K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu, S. O'Brien, Copper oxide nanocrystals, Journal of the American Chemical Society, 127 (2005) 9506-9511.
|