帳號:guest(52.14.12.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊貽晴
作者(外文):Yang, Yi-Ching
論文名稱(中文):硫化鉛量子點之合成、特性分析與其在光學性質上之研究
論文名稱(外文):Synthesis and Characterization of PbS-based Quantum Dots and Study on their Optical Properties
指導教授(中文):陳學仕
指導教授(外文):Chen, Hsueh-Shih
口試委員(中文):吳志明
鍾淑茹
口試委員(外文):Wu, Jyh-Ming
Chung, Shu-Ru
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031507
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:98
中文關鍵詞:量子點硫化鉛硫化鉛-硫化鎘核殼結構
外文關鍵詞:Quantum dotsPbSPbS/CdSCore/shellThick shell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:116
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
硫化鉛量子點因具有尺寸可調控之紅外光放光波長而受到廣泛研究,其特殊之光電性質在光電元件應用上有突出之發展潛力,如太陽能電池,發光二極體及螢光太陽能集中器等。本研究藉由改變不同的反應參數,包含調控不同的反應溫度,前驅物莫耳比率及前驅物的反應性,最後可得到放光波長範圍介於950到1600 nm之間的硫化鉛量子點,我們並比較了硫化鉛量子點不同的光學性質與表面化學特性間之關係。此外,我們利用陽離子交換法合成出硫化鉛-硫化鎘核殼量子點結構,經表面化學分析確認,可知因硫化鎘殼層的包覆鈍化了硫化鉛量子點的表面缺陷,使得此核殼量子點的光致放光(PL)相對強度有效提升。最後,在探討提高反應溫度(> 150 °C)以成長厚殼(> 1.5 nm)硫化鎘結構之過程中,我們發現此核殼量子點之吸收會受到硫化鎘之影響而在短波長大幅提升,但放光仍維持在長波長紅外光範圍,此ㄧ特殊的光學性質預期在下轉換發光(LDS)及螢光太陽能集中器(LSC)之開發上有相當好的潛力,轉換後的紅外光可符合矽太陽能電池的吸收波段並產生電能。
Colloidal PbS quantum dots (QDs) have been studied extensively for their size-tunable infrared emission. Due to their unique electronic and optical properties, PbS QDs provide prominent potential for optoelectronic applications (e.g., solar cells, light-emitting diodes, and luminescent solar concentrators). In this work, we prepare PbS QDs with emission wavelength between 950 to 1600 nm by varying the synthetic parameters such as the reaction temperature, precursor molar ratio, and reactivity of precursors in a viscous system. Hereafter, we synthesize core/shell PbS/CdS QDs by the cation-exchange process using PbS as cores. The enhancement of PL intensity can be observed owing to the effective shell passivation of the PbS surface evidenced by the surface chemistry study. Furthermore, it is found that thicker CdS shell (i.e., > 1.5 nm) grown at a higher shelling temperature (i.e., > 150 °C) results in an increasing absorbance in the shorter wavelength below 500 nm. These unique optical properties may provide potential in some specific applications such as luminescent down-shifting (LDS) or luminescent solar concentrators (LSC).
Abstract i
中文摘要 ii
Table of Contents iv
I. Introduction 1
1.1 Semiconductor nanocrystal 1
1.2 Classical nucleation 3
1.3 Classical growth 6
1.4 Ostwald ripening 8
1.5 Core-type quantum dots 9
1.6 Core-shell quantum dots 10
1.7 Infrared quantum dots 12
II. Literature Reviews 13
2.1 PbS quantum dots 13
2.2 PbS/CdS core/shell QDs 18
2.3 Applications of PbS-based QDs 22
2.4 Motivations of this work 25
III. Experimental 26
3.1 Nanocrystal synthesis 26
3.1.1 Materials 26
3.1.2 PbS QDs Synthesis 26
3.1.3 Purification/Ligand Exchange 28
3.1.4 PbS/CdS core/shell QDs synthesis 28
3.2 Characterization 30
3.2.1 Ultraviolet-visible absorption spectroscopy (UV-Vis) 30
3.2.2 Photoluminescence spectroscopy (PL) 31
3.2.3 X-ray diffraction (XRD) 32
3.2.4 Transmission electron microscopy (TEM) 34
3.2.5 X-ray photoelectron spectrometer (XPS) 36
IV. Results and Discussion 38
4.1 Synthesis of PbS QDs 38
4.1.1 Size tunable infrared PbS QDs 38
4.1.2 Optical properties of PbS QDs 49
4.1.3 Surface chemistry of PbS QDs 51
4.2 Synthesis of PbS/CdS core/shell QDs 56
4.2.1 Optical properties of PbS/CdS QDs 56
4.2.2 Characterization of PbS/CdS QDs 61
4.2.3 Surface Chemistry of PbS/CdS QDs 64
4.2.4 PbS/CdS QDs with thicker shell 68
V. Conclusions 90
VI. References 92
[1] Rajh, T., Micic, O. I., Nozik, A. J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J. Phys. Chem. 1993, 97 (46), 11999–12003.
[2] Peng, Z. A., Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123 (1), 183–184.
[3] Norris, D. J., Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 1996, 53 (24), 16338.
[4] Peng, X., Manna, L., Yang, W., Wickham, J. Shape control of CdSe nanocrystals. Nature 2000, 404 (6773), 59.
[5] Chen, Y., Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Anal. Chem. 2002, 74 (19), 5132–5138.
[6] Bae, W. K., Nam, M. K., Char, K., Lee, S. Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1− xZnxS/ZnS nanocrystals. Chem. Mater. 2008, 20 (16), 5307–5313.
[7] Bang, J., Park, J., Lee, J. H., Won, N., Nam, J., Lim, J., Chang, B. Y., Lee, H. J., Chon, B., Shin, J., et al. ZnTe/ZnSe (core/shell) type-II quantum dots: their optical and photovoltaic properties. Chem. Mater. 2009, 22 (1), 233–240.
[8] Smith, C. A., Lee, H. W. H., Leppert, V. J., Risbud, S. H. Ultraviolet-blue emission and electron-hole states in ZnSe quantum dots. Appl. Phys. Lett. 1999, 75 (12), 1688–1690.
[9] Chen, H. S., Wang, S. J. J., Lo, C. J., Chi, J. Y. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes. Appl. Phys. Lett. 2005, 86 (13), 131905.
[10] Wang, H. F., He, Y., Ji, T. R., Yan, X. P. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal. Chem. 2009, 81 (4), 1615–1621.
[11] Fang, X., Zhai, T., Gautam, U. K., Li, L., Wu, L., Bando, Y., Golberg, D. ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 2011, 56 (2), 175–287.
[12] Micic, O. I., Curtis, C. J., Jones, K. M., Sprague, J. R., Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98 (19), 4966–4969.
[13] Tessier, M. D., Dupont, D., De Nolf, K., De Roo, J., Hens, Z. Economic and Size-Tunable Synthesis of InP/ZnE (E= S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27 (13), 4893–4898.
[14] Heinrichsdorff, F., Mao, M. H., Kirstaedter, N., Krost, A., Bimberg, D., Kosogov, A. O., Werner, P. Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1997, 71 (1), 22–24.
[15] Ustinov, V. M., Maleev, N. A., Zhukov, A. E., Kovsh, A. R., Egorov, A. Y., Lunev, A. V., Volovik, B. V., Krestnikov, I. L., Musikhin, Yu. G., Bert, N. A., et al. InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Appl. Phys. Lett. 1999, 74 (19), 2815–2817.
[16] Wise, F. W. Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 2000, 33 (11), 773–780.
[17] Steckel, J. S., Coe‐Sullivan, S., Bulović, V., Bawendi, M. G.1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 2003, 15 (21), 1862–1866.
[18] Luther, J. M., Beard, M. C., Song, Q., Law, M., Ellingson, R. J., Nozik, A. J. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 2007, 7 (6), 1779–1784.
[19] Peterson, J. J., Krauss, T. D. Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett. 2006, 6 (3), 510–514.
[20] Brown, P. R., Kim, D., Lunt, R. R., Zhao, N., Bawendi, M. G., Grossman, J. C., Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8 (6), 5863–5872.
[21] Einevoll, G. T. Confinement of excitons in quantum dots. Phys. Rev. B 1992, 45 (7), 3410.
[22] LaMer, V. K., Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72 (11), 4847–4854.
[23] Thanh, N. T., Maclean, N., Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114 (15), 7610–7630.
[24] Ostwald, W. Lehrbuch der Allgemeinen Chemie, Vol. 2, Part 1, Engelmann, Leipzig, 1896.
[25] Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38 (1), 231–252.
[26] Smith, A. M., Nie, S. Chemical analysis and cellular imaging with quantum dots. Analyst, 2004, 129 (8), 672–677. 
[27] Reiss, P., Protiere, M., Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5 (2), 154–168.
[28] Neo, M. S., Venkatram, N., Li, G. S., Chin, W. S., Ji, W. Synthesis of PbS/CdS Core− Shell QDs and their Nonlinear Optical Properties. J. Phys. Chem. C 2010, 114 (42), 18037–18044.
[29] Justo, Y., Geiregat, P., Hoecke, K. V., Vanhaecke, F., De Mello Donega, C., Hens, Z. Optical properties of PbS/CdS core/shell quantum dots. J. Phys. Chem. C 2013, 117 (39), 20171–20177.
[30] Li, L., Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130 (35), 11588–11589.
[31] Hines, M. A., Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100 (2), 468–471.
[32] Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M. G. (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101 (46), 9463–9475.
[33] Zhang, Q., Chen, G., Yang, Y., Shen, X., Zhang, Y., Li, C., Yu, R., Luo, Y., Li, D., Meng, Q. Toward Highly Efficient CdS/CdSe Quantum Dots-Sensitized Solar Cells Incorporating Ordered Photo-anodes on Transparent Conductive Substrates. Phys. Chem. Chem. Phys. 2012, 14, 6479−6486. 
[34] Tian, J., Zhang, Q., Zhang, L., Gao, R., Shen, L., Zhang, S., Qu, X., Cao, G. ZnO/TiO2 Nanocable Structured Photoelectrodes for CdS/CdSe Quantum Dot Co-Sensitized Solar Cells. Nanoscale 2013, 5, 936−943.
[35] Sheng, P., Li, W., Cai, J., Wang, X., Tong, X., Cai, Q., Grimes, C. A. A Novel Method for the Preparation of a Photocorrosion Stable Core/Shell CdTe/CdS Quantum Dot TiO2 Nanotube Array Photo- electrode Demonstrating an AM 1.5G Photoconversion Efficiency of 6.12%. J. Mater. Chem. A 2013, 1, 7806−7815.
[36] Wang, J., Mora-Sero,́ I., Pan, Z., Zhao, K., Zhang, H., Feng, Y., Yang, G., Zhong, X., Bisquert, J. Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum- Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2013, 135, 15913−15922.
[37] Nanda, K. K., Kruis, F. E., Fissan, H., Behera, S. N. Effective mass approximation for two extreme semiconductors: Band gap of PbS and CuBr nanoparticles. J. Appl. Phys. 2004, 95 (9), 5035–5041.
[38] Carey, G. H., Abdelhady, A. L., Ning, Z., Thon, S. M., Bakr, O. M., Sargent, E. H. Colloidal Quantum Dot Solar Cells. Chem. Rev. 2015, 115, 12732−12763.
[39] Zhao, N., Osedach, T. P., Chang, L.-Y., Geyer, S. M., Wanger, D., Binda, M. T., Arango, A. C., Bawendi, M. G., Bulović, V. Colloidal PbS Quantum Dot Solar Cells with High Fill Factor. ACS Nano 2010, 4, 3743–3752.
[40] Chuang, C. H. M., Brown, P. R., Bulović, V., Bawendi, M. G. Improved Performance and Stability in Quantum Dot Solar Cells through Band Alignment Engineering. Nat. Mater. 2014, 13, 796−801.
[41] McDonald, S. A., Konstantatos, G., Zhang, S., Cyr, P. W., Klem, E. J. D., Levina, L., Sargent, E. H. Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics. Nat. Mater. 2005, 4, 138−142. 
[42] Shcherbatyuk, G. V., Inman, R. H., Wang, C., Winston, R., Ghosh, S. Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators. Applied Physics Letters, 2010, 96, 191901.
[43] Yang, Z., Voznyy, O., Liu, M., Yuan, M., Ip, A. H., Ahmed, O. S., Levina, L., Kinge, S., Hoogland, S., Sargent, E. H. All-quantum-dot infrared light-emitting diodes. ACS Nano 2015, 9, 12327–12333.
[44] Supran, G. J., Song, K. W., Hwang, G. W., Correa, R. E., Scherer, J., Dauler, E. A., Shirasaki, Y., Bawendi, M. G., Bulović, V. High‐performance shortwave-infrared light-emitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv. Mater. 2015, 27, 1437–1442.
[45] Gong, X., Yang, Z., Walters, G., Comin, R., Ning, Z., Beauregard, E., Adinolfi, V., Voznyy, O., Sargent, E. H. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 2016, 10 (4), 253–257.
[46] Hines, M. A., Scholes, G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater. 2003, 15, 1844–1849. 
[47] Cademartiri, L., Bertolotti, J., Sapienza, R., Wiersma, D. S., von Freymann, G., Ozin, G. A. Multigram Scale, Solvent-less, and Diffusion-Controlled Route to Highly Mono-disperse PbS Nanocrystals. J. Phys. Chem. B 2006, 110, 671–673.
[48] Moreels, I., Justo, Y., De Geyter, B., Haustraete, K., Martins, J. C., Hens, Z. Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study. ACS Nano 2011, 5, 2004−2012. 
[49] Weidman, M. C., Beck, M. E., Hoffman, R. S., Prins, F., Tisdale, W. A. Monodisperse, Air-Stable PbS Nanocrystals via Precursor Stoichiometry Control. ACS Nano 2014, 8, 6363−6371. 
[50] Yuan, L., Patterson, R., Cao, W., Zhang, Z., Zhang, Z., Stride, J. A., Reece, P., Conibeer, G., Huang, S. Air-stable PbS quantum dots synthesized with slow reaction kinetics via a PbBr2 precursor. RSC Adv. 2015, 5, 68579–68586.
[51] Chan, S., Liu, M., Latham, K., Haruta, M., Kurata, H., Teranishi, T., Tachibana, Y. Monodisperse and size-tunable PbS colloidal quantum dots via heterogeneous precursors. J. Mater. Chem. C, 2017, 5, 2182–2187.
[52] Pietryga, J., Werder, D., Williams, D., Casson, J., Schaller, R., Klimov, V., Hollingworth, J. Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission. J. Am. Chem. Soc. 2008, 130, 4879−4885.
[53] Zhao, H., Chaker, M., Wu, N., Ma, D. Towards controlled synthesis and better understanding of highly luminescent PbS/CdS core/shell quantum dots. J. Mater. Chem. 2011, 21, 8898–8904. 
[54] Neo, D. C. J., Cheng, C., Stranks, S. D., Fairclough, S. M., Kim, J. S., Kirkland, A. I., Smith, J. M., Snaith, H. J., Assender, H. E., Watt, A. A. R. Influence of Shell Thickness and Surface Passivation on PbS/ CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chem. Mater. 2014, 26, 4004−4013. 
[55] McDonald, S. A., Konstantatos, G., Zhang, S., Cyr, P. W., Klem, E. J. D., Levina, L., Sargent, E. H. Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics. Nat. Mater. 2005, 4, 138−142. 
[56] Chuang, C.-H. M., Brown, P. R., Bulović, V., Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.
[57] Lan, X., Voznyy, O., Kiani, A., García de Arquer, F. P., Abbas, A. S., Kim, G. H., Liu, M., Yang, Z., Walters, G., Xu, J., et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299–304.

[58] Liu, M., Voznyy, O., Sabatini, R., Arquer, F. P. G. D., Munir, R., Balawi, A. H., Lan, X., Fan, F., Walters, G., Kirmani, A. R., et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2016, 16, 258–263
[59] Purcell-Milton, F., Gun'ko, Y. K. Quantum dots for luminescent solar concentrators. J. Mater. Chem. 2012, 22 (33), 16687–16697.
[60] Zhou, Y., Benetti, D., Fan, Z., Zhao, H., Ma, D., Govorov, A. O., Vomiero, A., Rosei, F. Near infrared, highly efficient luminescent solar concentrators. Adv. Energ. Mater. 2016, 6 (11), 1501913.
[61] Swanson, H.E., Fuyat, R. K. Nat. Bur. Stand. (U.S.) Circ. 539, 1953, 2, 18.
[62] Moreels, I., Lambert, K., Smeets, D., De Muynck, D., Nollet, T., Martins, J. C., Vanhaecke, F., Vantomme, A., Delerue, C., Allan, G., et al. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano 2009, 3, 3023–3030. 
[63] Zhang, J., Gao, J., Miller, E. M., Luther, J. M., Beard, M. C. Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells. ACS Nano 2013, 8, 614−622. 
[64] Konstantatos, G., Levina, L., Fischer, A., Sargent, E. H. Engineering the Temporal Response of Photoconductive Photodetectors via Selective Introduction of Surface Trap States. Nano Lett. 2008, 8, 1446–1450.
[65] Zhao, H. G., Wang, D. F., Zhang, T., Chaker, M., Ma, D. Two-step synthesis of high-quality water- soluble near-infrared emitting quantum dots via amphiphilic polymers. Chem. Commun., 2010, 46, 5301–5303.
[66] Yeh, C., Lu, Z.W., Froyen, S., Zunger, A. Phys. Rev. B 1992, 46, 10086.
[67] Li, C., Chen, W., Wu, D., Quan, D., Zhou, Z., Hao, J., Qin, J., Li, Y., He, Z., Wang, K. Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots. Sci. Rep. 2015, 5, 17777.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *