|
[1] Rajh, T., Micic, O. I., Nozik, A. J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J. Phys. Chem. 1993, 97 (46), 11999–12003. [2] Peng, Z. A., Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123 (1), 183–184. [3] Norris, D. J., Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 1996, 53 (24), 16338. [4] Peng, X., Manna, L., Yang, W., Wickham, J. Shape control of CdSe nanocrystals. Nature 2000, 404 (6773), 59. [5] Chen, Y., Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Anal. Chem. 2002, 74 (19), 5132–5138. [6] Bae, W. K., Nam, M. K., Char, K., Lee, S. Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1− xZnxS/ZnS nanocrystals. Chem. Mater. 2008, 20 (16), 5307–5313. [7] Bang, J., Park, J., Lee, J. H., Won, N., Nam, J., Lim, J., Chang, B. Y., Lee, H. J., Chon, B., Shin, J., et al. ZnTe/ZnSe (core/shell) type-II quantum dots: their optical and photovoltaic properties. Chem. Mater. 2009, 22 (1), 233–240. [8] Smith, C. A., Lee, H. W. H., Leppert, V. J., Risbud, S. H. Ultraviolet-blue emission and electron-hole states in ZnSe quantum dots. Appl. Phys. Lett. 1999, 75 (12), 1688–1690. [9] Chen, H. S., Wang, S. J. J., Lo, C. J., Chi, J. Y. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes. Appl. Phys. Lett. 2005, 86 (13), 131905. [10] Wang, H. F., He, Y., Ji, T. R., Yan, X. P. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal. Chem. 2009, 81 (4), 1615–1621. [11] Fang, X., Zhai, T., Gautam, U. K., Li, L., Wu, L., Bando, Y., Golberg, D. ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 2011, 56 (2), 175–287. [12] Micic, O. I., Curtis, C. J., Jones, K. M., Sprague, J. R., Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98 (19), 4966–4969. [13] Tessier, M. D., Dupont, D., De Nolf, K., De Roo, J., Hens, Z. Economic and Size-Tunable Synthesis of InP/ZnE (E= S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27 (13), 4893–4898. [14] Heinrichsdorff, F., Mao, M. H., Kirstaedter, N., Krost, A., Bimberg, D., Kosogov, A. O., Werner, P. Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1997, 71 (1), 22–24. [15] Ustinov, V. M., Maleev, N. A., Zhukov, A. E., Kovsh, A. R., Egorov, A. Y., Lunev, A. V., Volovik, B. V., Krestnikov, I. L., Musikhin, Yu. G., Bert, N. A., et al. InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Appl. Phys. Lett. 1999, 74 (19), 2815–2817. [16] Wise, F. W. Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 2000, 33 (11), 773–780. [17] Steckel, J. S., Coe‐Sullivan, S., Bulović, V., Bawendi, M. G.1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 2003, 15 (21), 1862–1866. [18] Luther, J. M., Beard, M. C., Song, Q., Law, M., Ellingson, R. J., Nozik, A. J. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 2007, 7 (6), 1779–1784. [19] Peterson, J. J., Krauss, T. D. Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett. 2006, 6 (3), 510–514. [20] Brown, P. R., Kim, D., Lunt, R. R., Zhao, N., Bawendi, M. G., Grossman, J. C., Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8 (6), 5863–5872. [21] Einevoll, G. T. Confinement of excitons in quantum dots. Phys. Rev. B 1992, 45 (7), 3410. [22] LaMer, V. K., Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72 (11), 4847–4854. [23] Thanh, N. T., Maclean, N., Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114 (15), 7610–7630. [24] Ostwald, W. Lehrbuch der Allgemeinen Chemie, Vol. 2, Part 1, Engelmann, Leipzig, 1896. [25] Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38 (1), 231–252. [26] Smith, A. M., Nie, S. Chemical analysis and cellular imaging with quantum dots. Analyst, 2004, 129 (8), 672–677. [27] Reiss, P., Protiere, M., Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5 (2), 154–168. [28] Neo, M. S., Venkatram, N., Li, G. S., Chin, W. S., Ji, W. Synthesis of PbS/CdS Core− Shell QDs and their Nonlinear Optical Properties. J. Phys. Chem. C 2010, 114 (42), 18037–18044. [29] Justo, Y., Geiregat, P., Hoecke, K. V., Vanhaecke, F., De Mello Donega, C., Hens, Z. Optical properties of PbS/CdS core/shell quantum dots. J. Phys. Chem. C 2013, 117 (39), 20171–20177. [30] Li, L., Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130 (35), 11588–11589. [31] Hines, M. A., Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100 (2), 468–471. [32] Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M. G. (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101 (46), 9463–9475. [33] Zhang, Q., Chen, G., Yang, Y., Shen, X., Zhang, Y., Li, C., Yu, R., Luo, Y., Li, D., Meng, Q. Toward Highly Efficient CdS/CdSe Quantum Dots-Sensitized Solar Cells Incorporating Ordered Photo-anodes on Transparent Conductive Substrates. Phys. Chem. Chem. Phys. 2012, 14, 6479−6486. [34] Tian, J., Zhang, Q., Zhang, L., Gao, R., Shen, L., Zhang, S., Qu, X., Cao, G. ZnO/TiO2 Nanocable Structured Photoelectrodes for CdS/CdSe Quantum Dot Co-Sensitized Solar Cells. Nanoscale 2013, 5, 936−943. [35] Sheng, P., Li, W., Cai, J., Wang, X., Tong, X., Cai, Q., Grimes, C. A. A Novel Method for the Preparation of a Photocorrosion Stable Core/Shell CdTe/CdS Quantum Dot TiO2 Nanotube Array Photo- electrode Demonstrating an AM 1.5G Photoconversion Efficiency of 6.12%. J. Mater. Chem. A 2013, 1, 7806−7815. [36] Wang, J., Mora-Sero,́ I., Pan, Z., Zhao, K., Zhang, H., Feng, Y., Yang, G., Zhong, X., Bisquert, J. Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum- Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2013, 135, 15913−15922. [37] Nanda, K. K., Kruis, F. E., Fissan, H., Behera, S. N. Effective mass approximation for two extreme semiconductors: Band gap of PbS and CuBr nanoparticles. J. Appl. Phys. 2004, 95 (9), 5035–5041. [38] Carey, G. H., Abdelhady, A. L., Ning, Z., Thon, S. M., Bakr, O. M., Sargent, E. H. Colloidal Quantum Dot Solar Cells. Chem. Rev. 2015, 115, 12732−12763. [39] Zhao, N., Osedach, T. P., Chang, L.-Y., Geyer, S. M., Wanger, D., Binda, M. T., Arango, A. C., Bawendi, M. G., Bulović, V. Colloidal PbS Quantum Dot Solar Cells with High Fill Factor. ACS Nano 2010, 4, 3743–3752. [40] Chuang, C. H. M., Brown, P. R., Bulović, V., Bawendi, M. G. Improved Performance and Stability in Quantum Dot Solar Cells through Band Alignment Engineering. Nat. Mater. 2014, 13, 796−801. [41] McDonald, S. A., Konstantatos, G., Zhang, S., Cyr, P. W., Klem, E. J. D., Levina, L., Sargent, E. H. Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics. Nat. Mater. 2005, 4, 138−142. [42] Shcherbatyuk, G. V., Inman, R. H., Wang, C., Winston, R., Ghosh, S. Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators. Applied Physics Letters, 2010, 96, 191901. [43] Yang, Z., Voznyy, O., Liu, M., Yuan, M., Ip, A. H., Ahmed, O. S., Levina, L., Kinge, S., Hoogland, S., Sargent, E. H. All-quantum-dot infrared light-emitting diodes. ACS Nano 2015, 9, 12327–12333. [44] Supran, G. J., Song, K. W., Hwang, G. W., Correa, R. E., Scherer, J., Dauler, E. A., Shirasaki, Y., Bawendi, M. G., Bulović, V. High‐performance shortwave-infrared light-emitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv. Mater. 2015, 27, 1437–1442. [45] Gong, X., Yang, Z., Walters, G., Comin, R., Ning, Z., Beauregard, E., Adinolfi, V., Voznyy, O., Sargent, E. H. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 2016, 10 (4), 253–257. [46] Hines, M. A., Scholes, G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater. 2003, 15, 1844–1849. [47] Cademartiri, L., Bertolotti, J., Sapienza, R., Wiersma, D. S., von Freymann, G., Ozin, G. A. Multigram Scale, Solvent-less, and Diffusion-Controlled Route to Highly Mono-disperse PbS Nanocrystals. J. Phys. Chem. B 2006, 110, 671–673. [48] Moreels, I., Justo, Y., De Geyter, B., Haustraete, K., Martins, J. C., Hens, Z. Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study. ACS Nano 2011, 5, 2004−2012. [49] Weidman, M. C., Beck, M. E., Hoffman, R. S., Prins, F., Tisdale, W. A. Monodisperse, Air-Stable PbS Nanocrystals via Precursor Stoichiometry Control. ACS Nano 2014, 8, 6363−6371. [50] Yuan, L., Patterson, R., Cao, W., Zhang, Z., Zhang, Z., Stride, J. A., Reece, P., Conibeer, G., Huang, S. Air-stable PbS quantum dots synthesized with slow reaction kinetics via a PbBr2 precursor. RSC Adv. 2015, 5, 68579–68586. [51] Chan, S., Liu, M., Latham, K., Haruta, M., Kurata, H., Teranishi, T., Tachibana, Y. Monodisperse and size-tunable PbS colloidal quantum dots via heterogeneous precursors. J. Mater. Chem. C, 2017, 5, 2182–2187. [52] Pietryga, J., Werder, D., Williams, D., Casson, J., Schaller, R., Klimov, V., Hollingworth, J. Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission. J. Am. Chem. Soc. 2008, 130, 4879−4885. [53] Zhao, H., Chaker, M., Wu, N., Ma, D. Towards controlled synthesis and better understanding of highly luminescent PbS/CdS core/shell quantum dots. J. Mater. Chem. 2011, 21, 8898–8904. [54] Neo, D. C. J., Cheng, C., Stranks, S. D., Fairclough, S. M., Kim, J. S., Kirkland, A. I., Smith, J. M., Snaith, H. J., Assender, H. E., Watt, A. A. R. Influence of Shell Thickness and Surface Passivation on PbS/ CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chem. Mater. 2014, 26, 4004−4013. [55] McDonald, S. A., Konstantatos, G., Zhang, S., Cyr, P. W., Klem, E. J. D., Levina, L., Sargent, E. H. Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics. Nat. Mater. 2005, 4, 138−142. [56] Chuang, C.-H. M., Brown, P. R., Bulović, V., Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801. [57] Lan, X., Voznyy, O., Kiani, A., García de Arquer, F. P., Abbas, A. S., Kim, G. H., Liu, M., Yang, Z., Walters, G., Xu, J., et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299–304.
[58] Liu, M., Voznyy, O., Sabatini, R., Arquer, F. P. G. D., Munir, R., Balawi, A. H., Lan, X., Fan, F., Walters, G., Kirmani, A. R., et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2016, 16, 258–263 [59] Purcell-Milton, F., Gun'ko, Y. K. Quantum dots for luminescent solar concentrators. J. Mater. Chem. 2012, 22 (33), 16687–16697. [60] Zhou, Y., Benetti, D., Fan, Z., Zhao, H., Ma, D., Govorov, A. O., Vomiero, A., Rosei, F. Near infrared, highly efficient luminescent solar concentrators. Adv. Energ. Mater. 2016, 6 (11), 1501913. [61] Swanson, H.E., Fuyat, R. K. Nat. Bur. Stand. (U.S.) Circ. 539, 1953, 2, 18. [62] Moreels, I., Lambert, K., Smeets, D., De Muynck, D., Nollet, T., Martins, J. C., Vanhaecke, F., Vantomme, A., Delerue, C., Allan, G., et al. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano 2009, 3, 3023–3030. [63] Zhang, J., Gao, J., Miller, E. M., Luther, J. M., Beard, M. C. Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells. ACS Nano 2013, 8, 614−622. [64] Konstantatos, G., Levina, L., Fischer, A., Sargent, E. H. Engineering the Temporal Response of Photoconductive Photodetectors via Selective Introduction of Surface Trap States. Nano Lett. 2008, 8, 1446–1450. [65] Zhao, H. G., Wang, D. F., Zhang, T., Chaker, M., Ma, D. Two-step synthesis of high-quality water- soluble near-infrared emitting quantum dots via amphiphilic polymers. Chem. Commun., 2010, 46, 5301–5303. [66] Yeh, C., Lu, Z.W., Froyen, S., Zunger, A. Phys. Rev. B 1992, 46, 10086. [67] Li, C., Chen, W., Wu, D., Quan, D., Zhou, Z., Hao, J., Qin, J., Li, Y., He, Z., Wang, K. Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots. Sci. Rep. 2015, 5, 17777.
|