帳號:guest(3.133.137.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱詩婷
作者(外文):Chiu, Shih-Ting
論文名稱(中文):環狀共軛高分子排列與開環聚合反應之觀察
論文名稱(外文):Self-assembly and ring-opening metathesis polymerization of cyclic conjugated molecules on HOPG
指導教授(中文):堀江正樹
指導教授(外文):Horie, Masaki
口試委員(中文):蘇安仲
游進陽
口試委員(外文):Su, An-Chung
Yu, Chin-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104030606
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:81
中文關鍵詞:開環聚合共軛高分子掃描穿隧顯微镜原子力顯微鏡
外文關鍵詞:STMAFMROMPconjugated polymerring opening metathesis polymerizationin situobservationex situ
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
此研究透過掃描穿隧顯微镜(STM)及原子力顯微鏡(AFM)觀察環狀共軛單體及其高分子於高定向熱解石墨(HOPG)自主排列之現象。藉由McMurry反應合成帶有6碳、12碳、18碳與6碳支鏈的環狀單體,STM圖顯示單體在1-苯基辛烷溶液中可自主於石墨表面上形成排列。由於支鏈會影響環狀主分子排列,支鏈較短的單體排列較穩定而延展,而支鏈較長的單體較易捲曲不易排列。
除此之外,我們也藉由STM觀察到開環聚合後的產物(順式與反式高分子)會沉積於由單體排列而成的平面上方(非連續觀察狀態)以及透過AFM觀察其反應過程(連續觀察狀態),並可藉由催化劑含量濃度控制其高分子的覆蓋面積。
此研究可貢獻於有機光電元件之表面製成優化,並顯示順式與反式高分子型態的直接觀察,更提供了開環聚合反應之現象觀察
This study presents direct observation of self-assembled cyclic conjugated monomers and polymers on a highly ordered pyrolytic graphite (HOPG) surface using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The cyclic monomers comprising of trimer of cyclopentadithiophene-vinylene (CPDTV) with various side chains of -C6H13, -C12H25, -C18H37, and 2-ethylhexyl are synthesized by McMurry coupling using TiCl4/Zn. STM images of the monomers indicate that the molecules spontaneously form a “face on” ordered monolayer at an interface between 1-phenyloctane and HOPG. The molecular alignment is varied by the side chains, indicating that the cyclic molecules with shorter alkyl chains have stretched planar structures on HOPG, whereas the molecules with -C18H37 chain has a shrunk structure. In addition, ring-opening metathesis polymerization (ROMP) of the monomers is performed in solution or on HOPG to observe a single molecular chain of the resulting conjugated polymers by STM or polymerization process by AFM. After the ROMP of the monomer, the polymer is spontaneously deposited on the top of unreacted monomers on HOPG (i.e. ex situ polymerization). STM images of the deposited surface show the presence of a mixture of cis- and trans- vinylene microstructures of the polymer single chains. Furthermore, ROMP of the cyclic conjugated molecules on the HOPG (in situ polymerization) as well as in solution (ex situ polymerization) are carried out and their surface morphology is observed by AFM. The AFM images show a partially covered surface with polymer fibers at lower catalyst concentration and a fully covered surface with polymer clusters at higher catalyst concentration. Consequently, drastic manipulation of the surface coverage and morphology of the polymer is achieved by varying the concentration of the ROMP catalyst.
The self-assembly of the unique cyclic conjugated molecules is potentially useful for surface modification using such conjugated monolayers for use in organic opto-electronic devices. Furthermore, direct molecular structural analysis for the conjugated polymers using STM provides important information of cis-trans microstructural configurations of poly(arylene-vinylene)s and intermolecular interaction between the unique cyclic conjugated molecules and polymers. In situ AFM observation of ROMP also affords information for the unique reaction mechanism of ROMP.
Abstract-----II
Chapter 1 Introduction-----1
1-1 Introduction of Conjugated polymers-----1
1-1-1 Conjugated polymers-----1
1-1-2 Organic photovoltaics based on conjugated polymers-----1
1-2 Introduction to synthesis method-----5
1-2-1 McMurry reaction-----5
1-2-2 Ring-opening metathesis polymerization (ROMP)-----6
1-3 Introduction of STM-----9
1-3-1 Introduction of STM-----9
1-3-2 Introduction of Moiré Pattern-----12
1-3-3 STM application on organic electronics-----13
1-4 AFM observation-----19
1-5 Aim of the project-----22
Chapter 2 STM observation of cyclic conjugated monomers and their ROMP products-----24
2-1 synthesis of cyclic conjugated monomers-----24
2-2 STM observation of monomers-----29
2-2-1 STM observation of CPDT-C6-----29
2-2-2 STM observation of CPDTV-C12-----31
2-2-3 STM observation of CPDTV-C18-----33
2-2-4 STM observation of CPDTV-EH-----35
2-3 Comparison of packing structures-----37
2-4 STM observation of ROMP-----40
2-4-1 STM observation of ROMP-C12-----41
2-4-2 STM observation of ROMP-C6-----45
2-4-3 STM observation of ROMP-C18-----47
2-5 STS spectra-----49
Chapter 3 In situ/ex situ observation of ROMP using AFM-----51
Chapter 4 Conclusions and suggestions for future works-----60
Chapter 5 Experimental section-----63
5-1 General methods-----63
5-2 STM sample preparation and measurement-----63
5-3AFM sample preparation and measurement-----65
5-4 Synthesis of monomers-----67
5-4-1 Synthesis of 4,4-didodecyl-4H-cyclopenta[2,1-b;3,4-b’]dithiophene-----67
5-4-2 Synthesis of 4,4-dioctadeyl-4H-cyclopenta[2,1-b;3,4-b’]dithiophene-----67
5-4-3 Synthesis of 4,4-didodecyl-4H-cyclopenta[2,1-b;3,4-b’]dithiophene -2,6-dicarbaldehyde-----68
5-4-4 Synthesis of 4,4-dioctadecyl-4H-cyclopenta[2,1-b;3,4-b’]dithiophene -2,6-dicarbaldehyde-----69
5-4-5 Synthesis of 4,4-didodeyl-4H-cyclopenta[2,1-b;3,4-b’]dithiophene-cyclic trimer (CPDT-C12)-----70
5-4-6 Synthesis of 4,4-dioctadeyl-4H-cyclopenta[2,1-b;3,4-b’]dithiophene-cyclic trimer (CPDT-C18)-----71
References-----77

References
1. Facchetti, A., Chem. Mater., 2011, 23, 733-758.
2. Li, G., Zhu, R., and Yang, Y., Nat. Photon., 2012, 6, 153-161.
3. Spanggaard, H. and Krebs, F. C., Sol. Energy Mater. Sol. Cells, 2004, 83, 125-146.
4. Tang, C. W., Appl. Phys. Lett., 1986, 48, 183.
5. Winder, C. and Sariciftci, N. S., J. Mater. Chem., 2004, 14, 1077-1086.
6. Qi, B. and Wang, J., Phys. Chem. Chem. Phys., 2013, 15, 8972-8982.
7. Cheng, Y. J., Yang, S. H., and Hsu, C. S., Chem Rev, 2009, 109, 5868-5923.
8. Okada, K., Yagi, A., et al., Chem. Sci., 2016.
9. Zhenyu Li, B. L., Jinlong Yang, and Jian guo Hou, Acc. Chem. Res., 2010, 43, 954-962.
10. Bielawski, C. W. and Grubbs, R. H., Prog. Polym. Sci., 2007, 32, 1-29.
11. Bunz, U. H., Maker, D., and Porz, M., Macromol. Rapid Commun., 2012, 33, 886-910.
12. Yamamoto, T., Hayashi, Y., and Yamamoto, A., Bull. Chem. Soc. Jpn., 1978, 51, 2091-2097.
13. Liu, Q., Tang, Z., et al., Polym. Int., 2014, 63, 381-392.
14. Georges H, George G. M., Edited, Semiconducting Polymers : Chemistry, Physics and Engineering, Wiley-VCH, 2006, 1, 1-67.
15. Binnig, G. and Rohrer, H., Rev. Mod. Phys., 1987, 59, 615-625.
16. Chen, C. J., OXFORD Univ. press, 2007.
17. Oura, K., Katayama, M., et al., Surf. Sci., 2003, 145-169.
18. Nysten, B., Roux, J. C., et al., Phys. Rev. B, 1993, 48, 12527-12538.
19. Rong, Z. Y. and Kuiper, P., Phys. Rev. B, 1993, 48, 17427-17431.
20. Müller, U., Carnal, D., et al., Phys. Rev. B, 1992, 46, 12899-12901.
21. Kobayashi, K., Phys. Rev. B, 1994, 50, 4749-4755.
22. Kobayashi, K., Phys. Rev. B, 1996, 53, 11091-11099.
23. Kowalczyk, P. J., Mahapatra, O., et al., Phys. Rev. B, 2015, 91, 045434.
24. Sun, Z., Hämäläinen, S. K., et al., Phys. Rev. B, 2011, 83, 081415.
25. Xu, L., Yang, L., and Lei, S., Nanoscale, 2012, 4, 4399-4415.
26. Chilukuri, B., McDougald, R. N., et al., J. Phys. Chem. C, 2015, 119, 24844-24858.
27. Elemans, J. A., Lei, S., and De Feyter, S., Angew. Chem. Int. Ed., 2009, 48, 7298-7332.
28. Iyoda, M., Tanaka, K., et al., J. Am. Chem. Soc., 2014, 136, 2389-2396. 81
29. Iyoda, M. and Shimizu, H., Chem. Soc. Rev., 2015, 44, 6411-6424.
30. Iyoda, M., Tanaka, K., et al., J Am Chem Soc, 2014, 136, 2389-2396.
31. Ephritikhine, M., Chem. Commun., 1998, 2549–2554.
32. Iyoda, M., Yamakawa, J., and Rahman, M. J., Angew. Chem. Int. Ed., 2011, 50, 10522-10553.
33. Kennedy, R. D., Lloyd, D., and McNab, H., J. Chem. Soc., 2002, 1601-1621.
34. Simon, S. C., Schmaltz, B., et al., Advanced Materials, 2009, 21, 83-85.
35. Jung, S. H., Pisula, W., et al., Angew. Chem. Int. Ed., 2006, 45, 4685-4690.
36. Schmaltz, B., Rouhanipour, A., et al., Angew. Chem. Int. Ed., 2009, 48, 720-724.
37. Olivier, A., Meyer, F., et al., Prog. Polym. Sci., 2012, 37, 157-181.
38. Pavliček, N. and Gross, L., Nat. Rev. Chem., 2017, 1, 0005.
39. Gross, L., Mohn, F., et al., Science, 2009, 325, 1110-1114.
40. Gross, L., Mohn, F., et al., Nat. Chem., 2010, 2, 821-825.
41. Lee, I.-H. and Choi, T.-L., Polym. Chem., 2016, 7, 7135-7141.
42. Park, H., Kang, E.-H., et al., J. Am. Chem. Soc., 2016, 138, 2244-2251.
43. Yoon, K.-Y., Shin, S., et al., Macromol. Rapid Commun., 2015, 36, 1069-1074.
44. Jiang, G., Ponnapati, R., et al., Macromolecules, 2010, 43, 10262-10274.
45. Liu, X., Guo, S., and Mirkin, C. A., Angew. Chem. Int. Ed., 2003, 42, 4785-4789.
46. Weck, M., Jackiw, J. J., et al., J. Am. Chem. Soc., 1999, 121, 4088-4089.
47. Olivier, A., Raquez, J.-M., et al., Eur. Polym. J., 2011, 47, 31-39.
48. Miyake, Y., Nagata, T., et al., ACS NANO., 2012, 6, 3876-3887.
49. Swart, I., Gross, L., and Liljeroth, P., Chem. Commun., 2011, 47, 9011-9023.
50. Chang, S. W. and Horie, M., Chem Commun 2015, 51, 9113-9116.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *