帳號:guest(3.145.65.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖苡琇
作者(外文):Liao, Yi-Hsiu
論文名稱(中文):微波輔助合成鎳基材料於超級電容器之應用
論文名稱(外文):Microwave Assisted Syntheses of Nickel-Based Materials for Supercapacitor Applications
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):徐雍鎣
蔡德豪
口試委員(外文):Hsu, Yung-Jung
Tsai, De-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104030602
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:61
中文關鍵詞:超電容微波碳布
外文關鍵詞:supercapacitormicrowavecarboncloth
相關次數:
  • 推薦推薦:0
  • 點閱點閱:317
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著奈米科技的發展,許多新穎的電極材料相繼而出。同時,超級電容器的功率密度與能量密度也由於電極材料的改良而提升。然而,通過傳統的熱處理製作奈米結構的電極材料,往往必須消耗更多的能量,與超級電容器作為儲能裝置的初衷相違背。
因此,本研究設計了一個簡單的兩步法,首先在碳布上電鍍鎳,再將電鍍鎳的碳布置入甲苯溶劑中,進行微波反應,於電鍍鎳的碳布上長出碳奈米材料,形成超電容複合材料。碳布經由電鍍鎳後大幅提升其面電容值,在電流密度為5 mA cm-2下,其值達到1238 mF cm-2,為原始碳布面電容的12000倍。
最後,經過微波處理的成品,展現其優異的電容表現。檢測結果顯示,引入碳材結構後,電極可以得到兩種性質上的改善,第一點就是碳材會提升整體電極的導電性,在電流密度為5 mA cm-2下,其面電容會比電鍍鎳的碳布增加141 mF cm-2。另一方面,藉由碳材的支撐,電極的穩定性會提升,在電流密度為20 mA cm-2下,可以承受4000次的充放電,其可承受充放電次數為電鍍鎳碳布的3倍之多。
Progresses in nanoscience and nanotechnology lead to development of new electrode materials capable of delivering high power and energy densities for supercapacitors. Nevertheless, fabrication of electrode nanostructures often requires a series of heat treatments, which goes against the intention of energy storage.
Here, we develop a simple two-step fabrication process for carbon cloth based composite electrodes for supercapacitor applications. Carbon cloth is firstly electroplated by Ni deposition (Ni-P), followed by microwave treatment in toluene with which carbonaceous nanostructures is formed on carbon cloth (MWtoluene-Ni-P). With nickel deposition, the areal capacitance of the carbon cloth is raised enormously to 1238 mF cm-2 at the current density of 5 mA cm-2, which is 12,000 times of that of the plain carbon cloth. The as synthesized final product, MWtoluene-Ni-P, exhibits even superior capacitive properties to product Ni-P. The electrochemical characterization results of both products show that the influences of the carbonaceous materials are essentially two-fold. One is to increase the overall electrical conductivity of the electrode. With the presence of the carbonaceous material, the areal capacitance is 141 mF cm-2 higher than that of product Ni-P at the current density of 5 mA cm-2. The second effect is to improve the mechanical stability of the electrode. The MWtoluene-Ni-P electrode can sustain 4000 charge/dis-charge cycles at 20 mA cm-2, which is 3 times longer than the Ni-P electrode.
總目錄
摘要 I
Abstract II
總目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 微波碳布製作獨立電極 2
1-3 研究目的 3
第二章 文獻回顧 4
2-1 碳鎳複合材料之超電容 4
2-2 微波輔助合成碳奈米材料 12
2-2-1鎳金屬對碳的催化特性 12
2-2-2碳材液相微波性質 14
2-2-3 烴類液相中的微波電漿 15
第三章 實驗方法與儀器原理 18
3-1 實驗藥品 18
3-2 實驗器材 19
3-3 分析儀器 19
3-4 實驗流程 20
3-4-1 直流電鍍 20
3-4-2 液相微波合成 21
3-4-3 電化學分析實驗 21
第四章 結果與討論 22
4-1 材料製備鑑定 22
4-1-1 電鍍鎳(Nickel-electroPlating, Ni-P) 22
4-1-2 微波輔助碳熱還原(MWair-Ni-P) 28
4-1-3 液相微波分析(MWwater-Ni-P、MWtoluene-Ni-P) 33
4-2 材料電化學鑑定 41
4-2-1 循環伏安法(Cyclic Voltammetry, CV) 41
4-2-2充放電測試(Charge-Discharge, CD) 50
4-2-3 交流阻抗測試(AC impedance) 55
第五章 結論 58
第六章 參考文獻 59

1. S. Holmberg, A. Perebikovsky, L. Kulinsky, M. Madou, 3-D Micro and Nano Technologies for Improvements in Electrochemical Power Devices, Micromachines 5 (2014) 171-203.
2. E.H. Hong, K.H. Lee, S.H. Oh, C.G. Park, Synthesis of Carbon Nanotubes using Microwave Radiation, Advanced Functional Materials 13 (2003) 961-966.
3. D.M. Yoon, B.J. Yoon, K.H. Lee, H.S. Kim, C.G. Park, Synthesis of Carbon Nanotubes from Solid Carbon Sources by Direct Microwave Irradiation, Carbon 44 (2006) 1339-1343.
4. T. Druzhinina, S. Hoeppener, U.S. Schubert, On the Synthesis of Carbon Nanofibers and Nanotubes by Microwave Irradiation: Parameters, Catalysts, and Substrates, Advanced Functional Materials 19 (2009) 2819-2825.
5. A.M. Schwenke, S. Hoeppener, U.S. Schubert, Synthesis and Modification of Carbon Nanomaterials utilizing Microwave Heating, Advanced Materials 27 (2015) 4113-4141.
6. L.Y. Zhang, D.W. Shi, T. Liu, M. Jaroniec, J.G. Yu, Nickel-Based Materials for Supercapacitors, Materials Today 25 (2019) 35-65.
7. Q.X. Liu, C.X. Lu, Y. Li, Controllable Synthesis of Ultrathin Nickel Oxide Sheets on Carbon Cloth for High-Performance Supercapacitors, RSC Advances 7 (2017) 23143-23148.
8. D. Banerjee, U.K. Ghorai, N.S. Das, B. Das, S. Thakur, K.K. Chattopadhyay, Amorphous Carbon Nanotubes-Nickel Oxide Nanoflower Hybrids: A Low Cost Energy Storage Material, ACS Omega 3 (2018) 6311-6320.
9. T. Liu, L.Y. Zhang, B. Cheng, W. You, J.G. Yu, Fabrication of a Hierarchical NiO/C Hollow Sphere Composite and Its Enhanced Supercapacitor Performance, Chemical Communications 54 (2018) 3731-3734.
10. Z. Wu, L. Li, X.L. Huang, X.B. Zhang, J.M. Yan, Hybrid Film from Nickel Oxide and Oxygenated Carbon Nanotube as Flexible Electrodes for Pseudocapacitors, ChemNanoMat 2 (2016) 698-703.
11. A. Dahal, M. Batzill, Graphene-Nickel Interfaces: a Review, Nanoscale 6 (2014) 2548-2562.
12. S. Helveg, C. López-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nørskov, Atomic-Scale Imaging of Carbon Nanofibre Growth, Nature 427 (2004) 426-429.
13. S. Horikoshi, N. Serpone, Role of Microwaves in Heterogeneous Catalytic Systems, Catalysis Science & Technology 4 (2014) 1197-1210.
14. S. Nomura, H. Toyota, S. Mukasa, H. Yamashita, T. Maehara, Microwave Plasma in Hydrocarbon Liquids, Applied Physics Letters 88 (2006) 211503.
15. S. Horikoshi, N. Serpone, In-Liquid Plasma: a Novel Tool in the Fabrication of Nanomaterials and in the Treatment of Wastewaters, RSC Advances 7 (2017) 47196-47218.
16. H. Kurihara, T. Yajima, Decomposition of Toluene by Liquid-Phase Atmospheric-Pressure Microwave Plasma Generated using Carbon Felt Pieces Impregnated with NaCl, Chemistry Letters 36 (2007) 870-871.
17. T. Morishita, T. Ueno, G. Panomsuwan, J. Hieda, A. Yoshida, M.A. Bratescu, N. Saito, Fastest Formation Routes of Nanocarbons in Solution Plasma Processes, Scientific Reports 6 (2016) 36880.
18. C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, J.J. Zhang, A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors, Chemical Society Reviews 44 (2015) 7484-7539.
19. 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司2002.
20. S. Xi, Y.L. Zhu, Y.T. Yang, S.L. Jiang, Z.R. Tang, Facile Synthesis of Free-Standing NiO/MnO2 Core-Shell Nanoflakes on Carbon Cloth for Flexible Supercapacitors, Nanoscale Research Letters 12 (2017) 171.
21. L.D. Valladares, A. Ionescu, S. Holmes, C.H.W. Barnes, A.B. Dominguez, O.A. Quispe, J.C. Gonzalez, S. Milana, M. Barbone, A.C. Ferrari, H. Ramos, Y. Majima, Characterization of Ni Thin Films Following Thermal Oxidation in Air, Journal of Vacuum Science & Technology B 32 (2014) 051808.
22. N. Mironova-Ulmane, A. Kuzmin, I. Sildos, M. Pars, Polarisation Dependent Raman Study of Single-Crystal Nickel Oxide, Central European Journal of Physics 9 (2011) 1096-1099.
23. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pars, Raman Scattering in Nanosized Nickel Oxide NiO, Journal of Physics: Conference Series 93 (2007) 1-5.
24. N. Yoshikawa, E. Ishizuka, K. Mashiko, S. Taniguchi, Carbon Reduction Kinetics of NiO by Microwave Heating of the Separated Electric and Magnetic Fields, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 38 (2007) 863-868.
25. M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, X-ray Photoelectron Spectroscopic Chemical State Quantification of Mixed Nickel Metal, Oxide and Hydroxide Systems, Surface and Interface Analysis 41 (2009) 324-332.
26. P. Dubey, N. Kaurav, R.S. Devan, G.S. Okram, Y.K. Kuo, The Effect of Stoichiometry on the Structural, Thermal and Electronic Properties of Thermally Decomposed Nickel Oxide, RSC Advances 8 (2018) 5882-5890.
27. A.P. Grosvenor, M.C. Biesinger, R.S. Smart, N.S. McIntyre, New Interpretations of XPS Spectra of Nickel Metal and Oxides, Surface Science 600 (2006) 1771-1779.
28. J.F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation Physical Electronics Division, Eden Prairie, Minnesota 55344, United States of America, 1992.
29. S.J. Cochran, F.P. Larkins, Surface Reduction of Some Transition-Metal Oxides - an X-ray Photoelectron Spectroscopic Study of Iron, Cobalt, Nickel and Zinc-Oxides, Journal of the Chemical Society-Faraday Transactions I 81 (1985) 2179-2190.
30. Y.M. Ren, L. Wang, Z.J. Dai, X.K. Huang, J.J. Li, N. Chen, J. Gao, H.L. Zhao, X.M. Sun, X.M. He, Hydrothermal Synthesis of beta-Ni(OH)2 Nanoplates as Electrochemical Pseudocapacitor Materials, International Journal of Electrochemical Science 7 (2012) 12236-12243.
31. V.L. Vaks, G.A. Domrachev,Y.L. Rodygin, D.A. Selivanovskii, E.I. Spivak, Dissociation of Water by Microwave Radiation, Radiophysics and Quantum Electronics 37 (1994) 85-88.
32. X.M. Sun, H. Lu, P. Liu, T.E. Rufford, R.R. Gaddam, X. Fan, X.S. Zhao, A Reduced Graphene Oxide-NiO Composite Electrode with a High and Stable Capacitance, Sustainable Energy & Fuels 2 (2018) 673-678.
33. N. Weidler, J. Schuch, F. Knaus, P. Stenner, S. Hoch, A. Maljusch, R. Schafer, B. Kaiser, W. Jaegermann, X-ray Photoelectron Spectroscopic Investigation of Plasma Enhanced Chemical Vapor Deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction, Journal of Physical Chemistry C 121 (2017) 6455-6463.
34. M.L. Huang, C.D. Gu, X. Ge, X.L. Wang, J.P. Tu, NiO Nanoflakes Grown on Porous Graphene Frameworks as Advanced Electrochemical Pseudocapacitor Materials, Journal of Power Sources 259 (2014) 98-105.
35. C.T. Hsieh, H. Teng, Influence of Oxygen Treatment on Electric Double-Layer Capacitance of Activated Carbon Fabrics, Carbon 40 (2002) 667-674.
36. J. Jiang, Y.Y. Li, J.P. Liu, X.T. Huang, C.Z. Yuan, X.W. Lou, Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage, Advanced Materials 24 (2012) 5166-5180.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *