帳號:guest(3.147.140.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾勝峰
作者(外文):Chung, Sheng-Feng
論文名稱(中文):超新星殘骸G16.7+0.1中脈衝星星雲G16.73+0.07的Chandra觀測
論文名稱(外文):Chandra Observation of PWN G16.73+0.08 in SNR G16.7+0.7
指導教授(中文):張祥光
指導教授(外文):Chang, Hsiang-Kuang
口試委員(中文):江瑛貴
潘國全
口試委員(外文):JIANG, ING-GUEY
Pan, Kuo-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:104025502
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:31
中文關鍵詞:超新星殘骸脈衝星星雲X射線觀測能譜
外文關鍵詞:SNRPWNX rayObservationSpectrum
相關次數:
  • 推薦推薦:0
  • 點閱點閱:307
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
當超新星殘骸裡的脈衝星星雲跟週遭的物質互相作用時,它們會表現出很多不同的形態,詳細的觀測能幫助我們了解,超新星殘骸與脈衝星星雲在形態上的表現。而藉由模擬它們的演化模型,我們能推測出該區域的當地環境與狀況。形態學上的研究能提供我們,關於脈衝星星雲在超新星殘骸裡演化與形成的資訊。

在這篇碩士論文中,我們展示G16.73+0.08與G16.7+0.1的X射線圖像,此圖像是來自錢卓拉X射線的線上數據庫。G16.73+0.08的X射線最高值位置與1.4GHz的無線電波圖像中心差了24角秒,X射線圖像裡,星雲往1.4GHz圖像中心的方向延伸,該偏差可能源於G16.73+0.08與超新星殘骸的反向衝擊波之間的作用,我們也提出一個鑑定點光源CXOJ182058.16-142001.5的建議。

此X射線星雲的能譜能夠用一個吸收幕次項來描述,而幕次的次方為$ \Gamma = 0.98^{+0.79}_{-0.71}$ ,同時,氫原子的柱密度是 $N_H = 4.99^{+2.75}_{-2.28} \times 10^{22} $cm$^{-2}$。CXO J182058.16-142001.5有可能是個脈衝星。我們估計它的降速功率為$2.6 \times 10^{36} $erg s$^{-1}$。如果假設它的年紀是三千與一萬年,那麼,它在兩個極點的的偶極磁場強度就會是$4.2 \times 10^{13} G$ 與 $1.3 \times 10^{13} G$。

在這份論文裡的大多數成果已經發表於Chang H. K., Chung S. F. , Tian W. W. and Yang C. Y.(2017)。我們在此描述詳細的分析與結果。筆者在上述的論文裡負責處理所有的數據,同時也參與相當大一部份的科學討論。
Pulsar wind nebulae (PWNe) inside supernova remnants (SNRs) can have very different morphology when they interact with surrounding material. Detailed observations can help us to understand those manifestations of SNR and PWN. With the models of PWN/SNR evolution, we can infer the local environment of SNR/PWN. Morphology study can also give us an idea about formation and evolution of PWN in supernova remnants. In this master thesis, we present X-ray images of G16.73+0.08/SNR G16.7+0.1, which are obtained from Chandra's archive data. The location of the X-ray emission peaks of the pulsar wind nebula G16.73+0.08 has an offset of 24$''$ from the center of the 1.4-GHz radio emission. The X-ray nebula is elongated in the direction from X-ray peak to 1.4-GHz emission center. It was suggest that the offset is due to G16.73+0.08 interacting with SNR's reverse shock. We also propose identification of a point source, CXO J182058.16-142001.5, near the location of the X-ray peak. The spectrum of the X-ray nebula can be described by an absorbed power law, which has a photon index $ \Gamma = 0.98^{+0.79}_{-0.71}$ and hydrogen column density $N_H = 4.99^{+2.75}_{-2.28} \times 10^{22} $cm$^{-2}$. CXO J182058.16-142001.5 is likely a pulsar. We estimate its spin-down power to be about $2.6 \times 10^{36} $erg s$^{-1}$. By assuming its age at 3000 and 10,000 years, the dipole magnetic field strength at the polar surface is estimated to be about $4.2 \times 10^{13} G$ and $1.3 \times 10^{13} G$, respectively.

Most of the work covered in this master thesis has been published in Chang H. K., Chung S. F. , Tian W. W. and Yang C. Y.(2017). We describe the detailed analysis here. The Author of this master thesis was responsible for all the data process and participated heavily in science discussion in that paper.\cite{chang2017chandra}
Introduction
1.1 Supernova Remnants . . . . . . . . . . . . . . . . . . 1
1.2 Pulsar Wind Nebulae . . . . . . . . . . . . . . . . . . 4
1.3 G16.7+0.1 and G16.73+0.08 . . . . . . . . . . . . . . . 6
1.4 Jansky Very Large Array . . . . . . . . . . . . . . . . 7
1.5 Chandra Observatory . . . . . . . . . . . . . . . . . . 8
Data Analysis
2.1 Observational Data . . . .. . . . . . .. . . . . . . . 8
2.2 Data Reduction . . . . .. . . . . . . . . . . . . . . . 9
2.3 Energy Analysis . . . . . . . . . . . . . . . . . . . . 9
2.4 Image Processing . . . . .. . . . . . . . . . . . . . . 10
Result
3.1 Comparison of X-ray and Radio data . . . . . . . . . . 12
3.2 Spectral Behavior . . . . . . . . . . . . . . . . . . . 13
3.3 Morphology . . . . . . . . . . . . . .. . . . . . . . . 22
Conclusion
4.1 The Central Pulsar Wind Nebula . . . . . . . . . . . . 23
4.2 The Offset between Radio and X-ray Centers . . .. . . . 27
Bhalerao, J., Park, S., Dewey, D., Hughes, J. P., Mori, K., and Lee, J.-J. (2015). The
Astrophysical Journal, 800(1):65.
Blondin, J. M., Chevalier, R. A., and Frierson, D. M. (2001). The Astrophysical Journal,
563(2):806.
Carter, C. et al. (2003). Adass xii, asp conf. Series, 295:477.
Chang, H. K., Chung, S. F., Yang, C. Y., and Tian, W. W. (2017). Monthly Notices of
the Royal Astronomical Society, 474(2):2607–2611.
Chevalier, R. A. (1987). Nature, 329(6140):611–612.
Davis, J. E., Bautz, M. W., Dewey, D., Heilmann, R. K., Houck, J. C., Huenemoerder,
D. P., Marshall, H. L., Nowak, M. A., Schattenburg, M. L., Schulz, N. S., et al.
(2012). In Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray,
volume 8443, page 84431A. International Society for Optics and Photonics.
Gotthelf, E. V. (2003). The Astrophysical Journal, 591(1):361.
Helfand, D. J., Agüeros, M. A., and Gotthelf, E. (2003). The Astrophysical Journal,
592(2):941.
Helfand, D. J., Velusamy, T., Becker, R., and Lockman, F. J. (1989). The Astrophysical
Journal, 341:151–162.
Hester, J. and Kulkarni, S. (1988a). In Bulletin of the American Astronomical Society,
volume 20, page 1050.
Hester, J. J. and Kulkarni, S. R. (1988b). The Astrophysical Journal, 331:L121–L125.
Kennel, C. and Coroniti, F. (1984). The Astrophysical Journal, 283:694–709.
Kolb, C., Blondin, J., Slane, P., and Temim, T. (2017). The Astrophysical Journal,
844(1):1.
LaMassa, S. M., Slane, P. O., and De Jager, O. C. (2008). The Astrophysical Journal
Letters, 689(2):L121.
30Michel, F. C. (1985). The Astrophysical Journal, 288:138–141.
Seward, F. D. and Wang, Z.-R. (1988). The Astrophysical Journal, 332:199–205.
Slane, P., Hughes, J. P., Temim, T., Rousseau, R., Castro, D., Foight, D., Gaensler, B.,
Funk, S., Lemoine-Goumard, M., Gelfand, J. D., et al. (2012). The Astrophysical
Journal, 749(2):131.
Sugizaki, M., Mitsuda, K., Kaneda, H., Matsuzaki, K., Yamauchi, S., and Koyama, K.
(2001). The Astrophysical Journal Supplement Series, 134(1):77.
Temim, T., Slane, P., Castro, D., Plucinsky, P. P., Gelfand, J., and Dickel, J. R. (2013).
The Astrophysical Journal, 768(1):61.
Temim, T., Slane, P., Gaensler, B., Hughes, J. P., and Van Der Swaluw, E. (2009). The
Astrophysical Journal, 691(2):895.
Temim, T., Slane, P., Kolb, C., Blondin, J., Hughes, J. P., and Bucciantini, N. (2015).
The Astrophysical Journal, 808(1):100.
van der Swaluw, E., Downes, T., and Keegan, R. (2004). Astronomy & Astrophysics,
420(3):937–944.
Weisskopf, M. C. and Van Speybroeck, L. (1996). Optics and Photonics News, 7(4):16.
Zhang, M. F., Tian, W. W., Zhu, H., Chang, H. K., and Wu, D. (2019). In Preparation.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *