帳號:guest(3.137.198.39)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴汶靖
作者(外文):Lai, Wen-Ching
論文名稱(中文):利用RankNet排序結果推論突變發生之先後關係
論文名稱(外文):Inference of Mutation Order through the RankNet Algorithm
指導教授(中文):謝文萍
指導教授(外文):Hsieh, Wen-Ping
口試委員(中文):黃冠華
鍾仁華
口試委員(外文):Huang, Guan-Hua
Chung, Ren-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:統計學研究所
學號:104024511
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:38
中文關鍵詞:演化樹建立突變發生先後順序排序演算法
外文關鍵詞:RankNetphylogenetictreereconstruction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
突變會造成等位基因頻率(allele frequency)的改變,等位基因頻率越高代表突變發生的時間越早。RankNet是利用機器學習的方式,來解決排序上的問題,將兩兩錯排的機率降到最低。我們依照等位基因頻率的高低,利用RankNet的演算法,找出突變發生的先後順序。由於單一樣本不足以支持不同基因突變之間的因果關係,我們希望藉由多個樣本來推測這些重複發生的演化關係。我們提出的方法先利用近鄰連結法(Neighbor-joining method)來建構一顆無根的樹,再從這棵樹中找出使排序錯誤最低的樹根,排序的結論是利用RankNet計算得到。這篇研究的目標是利用不同樣本之間的等位基因頻率,來推測突變發生的先後順序及突變的因果關係,藉此幫助我們探索癌細胞的進化過程。
Allele frequency is the relative frequency of a variant at a particular locus, and larger cellular occupancy of a mutation is associated with earlier mutations. RankNet is a machine learning algorithm that aim to reduce pairwise ranking errors. We use it to infer the right order of mutation occurrence. Since the evolutionary order of gene mutations by only one sample is not informative to any causal relationship, we use multiple samples to infer the causal relationship of those mutations. We proposed a procedure to solve this problem. Our first step is to use Neighbor joining method to constructed an unrooted tree according to the allele frequencies of mutations. We then find the optimal tree by choosing a root with minimum rank error rate. The aim of this thesis is to use the mutation allele frequencies from multiple samples to infer the the right order of mutation occurrence and reconstruct the most likely phylogenetic tree for the recurrent mutations of cancer cells.
1. Introduction.........................p1
2. Materials and Methods................p4
2.1 Materials .........................p4
2.2 Two-way Poisson Mixture Model......p4
2.3 RankNet............................p6
2.4 Neighbor-joining Method............p12
2.5 Allocate the Root of the Tree......p17
3. Results..............................p20
3.1 Simulation.........................p20
3.2 On real dataset....................p27
4. Conclusion and Discussion............p31
Reference..................................p34
Appendix...................................p36
Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976. 194(4260): p. 23-28.
Tai, A.-S., et al. (2017), A two-way mixture model towards the decomposition of tumor heterogeneity. Unpublished doctoral dissertation, National Tsing Hua University, Hshinchu, Taiwan.
Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. cell, 2000. 100(1): p. 57-70.
Liu, T.-Y., Learning to rank for information retrieval. Foundations and Trends® in Information Retrieval, 2009. 3(3): p. 225-331.
Li, H., A short introduction to learning to rank. IEICE TRANSACTIONS on Information and Systems, 2011. 94(10): p. 1854-1862.
Burges, C., et al. Learning to rank using gradient descent. in Proceedings of the 22nd international conference on Machine learning. 2005. ACM.
Burges, C.J., From ranknet to lambdarank to lambdamart: An overview. Learning, 2010. 11(23-581): p. 81.
Sneath, P.H. and R.R. Sokal, Numerical taxonomy. The principles and practice of numerical classification. 1973.
Saitou, N. and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 1987. 4(4): p. 406-425.
Peng, C., Distance based methods in phylogenetic tree construction. NEURAL PARALLEL AND SCIENTIFIC COMPUTATIIONS, 2007. 15(4): p. 547.
Studier, J.A. and K.J. Keppler, A note on the neighbor-joining algorithm of Saitou and Nei. Molecular biology and evolution, 1988. 5(6): p. 729-731.
Sugahara, K., et al., Combination effects of distinct cores in 11q13 amplification region on cervical lymph node metastasis of oral squamous cell carcinoma. International journal of oncology, 2011. 39(4): p. 761-769.
Muller, D., et al., Frequent amplification of 11q13 DNA markers is associated with lymph node involvement in human head and neck squamous cell carcinomas. European Journal of Cancer Part B: Oral Oncology, 1994. 30(2): p. 113-120.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *