|
[1] Basharin, G. P. (1959). On a statistical estimate for the entropy of a sequence of independent random variables. Theory of Probability & Its Applications, 4, 333-336. [2] Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265-270. [3] Chao, A. (2005). Species estimation and applications. Encyclopedia of Statistical Sciences, 12, 7907-7916. [4] Chao, A. and Jost, L. (2012). Coverage-based rarefaction: standardizing samples by completeness rather than by size. Ecology, 93, 2533-2547. [5] Chao, A., Wang, Y. T. and Jost, L. (2013). Entropy and the species accumulation curve: a novel estimator of entropy via discovery rates of new species. Methods in Ecology and Evolution, 4, 1091-1110. [6] Chao, A., Gotelli, N. G., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K. and Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species biodiversity studies. Ecological Monographs, 84, 45-67. [7] Chao, A. and Jost, L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6, 873-882. [8] Chao, A. (2016). Quantifying sample completeness of a biological survey: a generalization of Good-Turing’s concept of sample coverage. Under review. [9] Chao. A., Chiu, C. H., Colwell, R. K., Chazdon, R. L. and Gotelli, N. J. (2017). Deciphering the enigma of undetected biodiversity: The Good-Turing frequency formula and its generalizations. Under revision. [10] Chiu, C. H., Wang, Y. T., Walther, B. A. and Chao, A. (2014). An improved non-parametric lower bound of species richness via the Good-Turing frequency formulas. Biometrics, 70, 671-682. [11] Chiu, C. H. and Chao, A. (2014). Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers. PloS one, 9, e100014. [12] Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S. Y., Mao, C. X., Chazdon, R. L. and Longino, J. T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5, 3–21. [13] Efron, B. (1979). Bootstrap Methods: Another look at the jackknife. The Annals of Statistics, 1-26. [14] Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40, 237-264. [15] Gower, J. C. (1971). A general coefficient of similarity and some of it property. Biometrika, 27, 857-74. [16] Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432. [17] Magnago, L. F. S., Edwards, D. P., Edwards, F. A., Magrach, A., Martins, S. V. and Laurance, W. F. (2014). Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. Journal of ecology, 102, 475-485. [18] Pielou, E. C. (1975). Ecology Diversity. J. Wiley and Sons, New York. [19] Rao, C. R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical population biology, 21, 24-43. [20] Shannon, C. E. (1948). The mathematical theory of communication. Bell System Technical Journal, 27, 379-423. [21] Shen, T, J., Chao, A. and Lin, J. F. (2003). Predicting the number of new species in a further taxonomic sampling. Ecology, 84, 798-804. [22] Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688-688. [23] Walker B, Kinzig A & Langridge J (1999). Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems 2: 95–113. [24] 趙蓮菊, 邱春火, 王怡婷, 謝宗震, 馬光輝 (2013). 仰觀宇宙之大, 俯察品類之盛:如何量化生物多樣性. Journal of the Chinese Statistical Association, 51, 8-53. [25] 許曉雯 (2016). 功能多樣性曲面估計與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文 [26] 王相華 (2015) 墾丁高位珊瑚礁森林之幼齡稚樹在2001至2013年間急遽減少 國家公園學報二○一五年第二十五卷第一期 [27] 墾丁高位珊瑚礁森林動態樣區樹種特徵及分布模式 林業叢刊第220號
|