帳號:guest(18.189.157.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):瑪妮莎
作者(外文):Skaria, Manisha
論文名稱(中文):以炔類及丙二烯衍生物金催化合成多官能基取代異原子環化合物
論文名稱(外文):Gold-catalyzed Organic Transformations of Alkynes and Allenes into Highly Functionalized Heterocycles
指導教授(中文):劉瑞雄
指導教授(外文):LIU, RAI-SHUNG
口試委員(中文):蔡易州
鄭建鴻
吳明忠
謝仁傑
口試委員(外文):TSAI, YI-CHOU
CHENG, CHIEN-HUNG
Wu, Ming-Jung
Hsieh, Jen-Chieh
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023876
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:590
中文關鍵詞:以炔類及丙二烯衍生物金催化合成多官能基取代異原子環化合物
外文關鍵詞:Gold-catalyzed Organic Transformations
相關次數:
  • 推薦推薦:0
  • 點閱點閱:258
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文描述了官能化和未官能化的炔烴和丙二烯的新轉化,來獲得含N-O的雜環系列,此系列包括了無金屬催化還有金金屬催化使得各種可用的丙二烯和炔類基質來合成有用的雜環產物進行有效的轉化。 為了有更好地理解,本論文將分為四個章節。
第一章描述了在低溫下的基態3O2 (1bar)和丙二烯及亞硝基芳烴中進行新型的[3+2]-環化反應,可以有效地產生含氧的雜環。在反應中具有中性π鍵基序的分子進行雙氧環化加成需要嚴重依賴於其單重態1O2,而另一個基態3O2在化學性質上卻沒有活性。在使用立障較小的1-芳基芳烴衍生物情況下,這些雙氧物質會透過骨架重排成3-羥基-1-酮基-2-亞胺氧化物。這些環化加成方法可以使用在一鍋化的O,N,O-三官能化。而在我們的電子順磁共振實驗中,證實了來自丙二烯/亞硝基芳烴混合物的1,4-雙自由基中間體,表現出亞硝基芳烴的隱藏的雙自由基特性。



第一章的延伸研究我們集中在一個丙二烯、兩個亞硝基芳烴和一個電子缺乏烯烴之間的無金屬環,來獲得立體選擇性地提供雙(異噁唑烷)衍生物。該方法包括一開始形成的異噁唑烷-4-亞胺氧化物,然後是和缺電子烯烴進行偶極[3+2]-環加成反應所生成雙(異噁唑烷)產物,再將此化合物使用鋅或鈀在甲醇中來進行還原以誘導還原性N-O裂解,立體選擇性地產生支化多胺。


第二章研究報導了1,5-烯炔和蒽烷之間的兩個不同的(4+3)-硝基環化,以獲得四氫-1H-苯並[b]氮雜卓衍生物,此方法進行了化學選擇性的隨著炔烴類型而變化。 末端炔烴基質通過新的骨架重排提供苯並[b]氮雜卓衍生物,而內部1,5-烯炔的部分並沒有重排過程的產物。為了闡明重排的機制,我們進行了13C和2H-標記實驗來鑑定含金的異苯並富烯中間體,但它們的形成需依賴於蒽環的存在。


第三章研究我們解釋了金金屬催化的1,3-碳酸酯官能化與乙烯基炔丙基酯可形成1,3-二氫苯並[c]-異噁唑。且我們可以獲得良好的非對稱選擇性,以產生含有三個立體碳的產物。這些新的催化反應可在較寬的範圍內與蒽烷基和乙烯基炔丙基酯一起使用,進一步顯示出合成效用。這項工作顯示突出了乙烯基炔丙酯作為逐步環化中潛在的1,5-偶極子的合成效用。



最後一章我們討論了蒽烷醇作為炔丙基醇的胺化劑以產生氨基苯甲醛骨架,其最終經歷Friedllander型的重排反應以提供3-取代的喹啉。非常理想的α-烷基金屬卡賓非常好地用於它們競爭性的1,2-烷基轉移以形成官能化烯烴,其存在於許多構象中以解釋其穩定性。使用鹼形成喹諾酮可以獲得各種生物學上重要的3-取代喹啉。

This dissertation describes new transformations of functionalized and un-functionalized alkynes and allenes to access N-O containing heterocycles. It includes metal free and gold-catalyzed efficient transformations of a variety of available allene and alkyne substrates to synthetically useful heterocyclic products. For better understanding, this thesis has been divided into four chapters.
The first chapter describes novel [3+2]-annulations among ground-state 3O2 (1 bar), allenes, and nitrosoarenes at low temperatures, yielding dioxygen-containing oxacycles efficiently. The cycloadditions of molecular dioxygen with neutral π-bond motifs rely heavily on its singlet-state 1O2 whereas its ground state 3O2 is chemically inactive. With less hindered 1-arylallene derivatives, these dioxygen species undergo skeletal rearrangement to 3-hydroxy-1-ketonyl-2-imine oxides. These cycloadditions represent valuable one-pot O,N,O-trifunctionalizations of allenes. Our EPR experiments confirm 1,4- diradical intermediates from an allene/nitrosoarene mixture, manifesting the hidden diradical properties of nitrosoarenes.



An extension of first chapter focusses on metal-free annulations between one allene, two nitrosoarenes and one electron deficient alkene to afford bis(isoxazolidine) derivatives stereoselectively. This process involves an initial formation of isoxazolidin-4-imine oxides, followed by their dipolar [3 + 2]-cycloaddition with electron deficient alkenes. The resulting bis(isoxazolidine) products produced were reduced with Zn or Pd/MeOH to induce reductive N–O cleavages, yielding branched polyaminols stereoselectively.


The second chapter reports two distinct (4+3)-nitroxy annulations between 1,5-enynes and anthranils to access tetrahydro-1H-benzo[b]azepine derivatives; the chemoselectivity varies with the types of alkynes. Terminal alkyne substrates deliver benzo[b]azepine derivatives via a novel skeletal rearrangement while internal 1,5- enynes afford products without a rearrangement process.
To elucidate the mechanism of rearrangement, 13C and 2H-labeling experiments were performed to identify the gold-containing isobenzofulvene intermediates, but their formation relied on the presence of anthranils.


The third chapter explains gold-catalyzed 1,3-carbofunctionalizations of anthranils with vinyl propargyl esters to form 1,3-dihydrobenzo[c]-isoxazoles. We could achieve excellent diastereoselectivity to yield products containing three stereogenic carbons. These new catalytic reactions are operable with anthranils and vinyl propargyl esters over a wide scope, further manifesting the synthetic utility. This work typically highlights the synthetic utility of vinyl propargyl ester as a potential 1,5-dipole in a stepwise annulation.



Last chapter discusses about anthranils as aminating agents with propargyl alchohols to yield aminobenzaldehydes framework which eventually undergoes Friedllander-type rearrangement to afford 3-substituted quinolines. Highly desirable α-alkyl metal carbenes are very well utilized for their competitive 1,2-alkyl shift to form functionalized olefins which exist in a number of conformers that accounts for its stability. The use of base to form quinolones give access to variety of biologically important 3-substituted quinolines.



Table of Contents

Abstract i
Abstract (Chinese) iv
Acknowledgements vii
Table of Contents ix
List of Schemes xiii
List of Tables xv
List of Figures xvi
List of Appendices xvii
List of Publications xviii
List of Abbreviations xix
Chapter I 1
1.1 Introduction 2
1.1.1 Generation of 1O2 2
1.1.2 Reactions of singlet oxygen 3
1.1.3 Mechanistic proposals 8
1.1.4 Nitroso compounds 8
1.1.5 Metal-catalyzed annulations of N-hydroxy allenyamines with nitrosoarenes via a single radical process. 10
1.2 Present Work 11
1.3 Results and Discussion 13
1.3.1 Optimization of reaction condition 13
1.3.2 Synthesis of substrate: 14
1.3.3 General procedure for preparation of Allene (A-40) 15
1.3.4 General procedure for the synthesis of nitrosobenzene 16
1.3.5 Scope of [3+2] Annulation of O,N,O-Trifunctionalizations of allenes with O2 and ArNO 16
1.3.6 Scope of [3+2]-Annulation reaction of O2, allenes and nitrosoarenes: 18
1.3.7 Structure determination of compound 1-4e 20
1.3.8 Cycloaddition among allene and nitrosobenzene under N2 20
1.3.9 Structure determination of compound 1-5c 23
1.3.10 Reduction to afford 1,3 diols 23
1.3.11 Mechanistic Studies 24
1.3.12 EPR spectra to characterize diradical species 25
1.3.13 Postulated Mechanisms for [3 + 2]-Annulations 25
1.3.14 Annulation between allene, nitroso and alkene 26
1.3.15 Structure determination of compound 1-6a 27
1.3.16 Reductive Cleavage of N-O bond: 29
1.3.17 Structure determination of compound 1-6a-H 30
1.4 Conclusions 30
1.5 Experimental Procedures 31
1.6 Spectral data for key compounds 33
1.7 References 52
1.8 X-Ray crystallographic data for typical compounds 58
a) X-Ray crystallographic data for compound 1-4e 58
b) X-Ray crystallographic data for compound 1-5c 68
c) X-Ray crystallographic data for compound 1-6a 82
d) X-Ray crystallographic data for compound 1-6a-H 97
Chapter II 113
2.1 Introduction 114
2.1.1 Chemistry of benzo[2.1-c]isoxazoles: 115
2.1.2 Intramolecular metal-catalyzed ring cleavage of benzisoxazoles (anthranils) 116
2.1.3 Intermolecular metal-catalyzed ring cleavage of benzisoxazoles (anthranils) 117
2.2 Present work 125
2.3 Results and Discussions 127
2.3.1 Optimization of reaction conditions 127
2.3.2 Synthesis of substrate 129
2.3.3 Synthetic procedure for preparation of 1,5-enynes (2-1 and 2-4 130
2.3.4 Synthetic procedure of benzo[c]isoxazole (2-2a) 130
2.3.5 Scope of [4+3] annulations of terminal 1,5-enynes with benzo[c]isoxazole 131
2.3.6 Structure determination of compound 2-3a 134
2.3.7 Scope of [4+3] annulations of internal 1,5-enynes with benzo[c]isoxazole 134
2.3.8 Reductive cleavage of N-O bond 137
2.3.9 Mechanistic studies 137
2.3.10 Postulated mechanism [4+3]-annulations between 1,5-enynes and anthranils 138
2.3.11 Energy Calculations 139
2.4 Conclusion 142
2.5 Experimental Procedures 142
2.6 Spectral data for key compounds 145
2.7 References 158
Chapter III 164
3.1 Introduction 165
3.1.1 Chemistry of gold-oxonium intermediates: 166
3.1.3 Metal catalyzed Intramolecular cyclizations of propargylic esters 167
3.1.4 Metal catalyzed Intermolecular cyclizations of propargylic esters 172
3.2 Present Work 175
3.3 Results and Discussions 176
3.3.1 Optimization of reaction conditions 176
3.3.2 Synthesis of substrate 177
3.3.3 Synthetic procedure for preparation of propargyl esters (3-1a to 3-1k) 178
3.3.4 Scope of [4+3] annulations of various propargyl esters with benzo[c]isoxazole 179
3.3.5 Scope of [4+3] annulations of propargyl esters with various benzo[c]isoxazoles 182
3.3.6 Structure determination of compound 3-4j 184
3.3.7 Functionalization 184
3.3.8 Structure determination of compound 3-5a 185
3.3.9 Mechanistic studies 185
3.3.10 Postulated Mechanism 187
3.3.11 An Alternate Mechanism compatible with control experiments 188
3.4 Conclusion 188
3.5 Experimental Procedures 189
3.6 Spectral Data of key Compounds 194
3.7 NOE of key compounds 211
3.8 References 211
3.9 X-Ray crystallographic data for typical compounds 215
a) X-ray crystallographic structure and data for compound (3-4j) 215
b) X-ray crystallographic structure and data for compound (3-5a) 225
Chapter IV 236
4.1 Introduction 237
4.1.1 Carbenes, types of carbenes and metal carbenes 237
4.1.2 Gold carbenes and their reactivity 238
4.1.3 Metal-catalyzed functionalization 239
4.2 Present Work 254
4.3 Result and discussion 255
4.3.1 Optimization of reaction condition 255
4.3.2 List of substrates employed in this transformation 257
4.3.3 General synthetic procedures 258
4.3.4 Exploration of substrate scope 259
4.3.5 Mechanistic studies 268
4.3.6 Mechanism 269
4.4 Conclusion 270
4.5 Experimental Procedures 271
4.6 Spectral Data of key Compounds 273
4.7 References 293
4.8 X-ray crystallographic structure and data for compound 4-3a 300
Appendix A 306
Spectral Data of Chapter I 306
Appendix B 391
Spectral Data of Chapter II 391
Appendix C 442
Spectral Data of Chapter III 442
Appendix D 514
Spectral Data of Chapter IV 514

Chapter-1
[1] a) B. Ranby, J. F. Rabek, Photodegradation, Photooxidation and Photostabilization of Polymers, Wiley: London, 1975; b) M. S. Abdou, S. Holdcroft, Macromolecules 1993, 26, 2954–2962; c) R. D. Scurlock, B. Wang, P. R. Ogilby, J. R. Sheats, R. L. Clough, J. Am. Chem. Soc. 1995, 117, 10194–10202.

[2] a) K. C. Smith, The Science of Photobiology, Plenum Rosetta: New York, 1977; b) C. S. Foote, In Free Radicals in Biology, Pryor, W. A., Ed.; Academic Press: New York, 1976; Vol. 2, pp 85–133; c) K. Gollnick, H. Hartmann, Oxygen and Oxy Radicals in Biology; Eds. E. L. Powers, M. A. Rodgers, Academic Press: New York, 1981, pp 379–395.
[3] For reviews see: a) P. R. Ogilby, Chem. Soc. Rev., 2010, 39, 3181; b) J. Sivaguru, M. R. Solomon, T. Poon, S. Jockusch, S. G. Bosio, W. Adam, N. Turro, Acc. Chem. Res., 2008, 41, 387; c) A. Greer, Acc. Chem. Res., 2006, 39, 797; (d) A. G. Leach, K. N. Houk, Chem. Commun., 2002, 1243.

[4] K. Kondo, M. Matsumoto. Tetrahedron Lett., 1976, 5, pp 391 - 394.

[5] a) A. Eske, B. Goldfuss, A. G. Griesbeck, A. Kiff, M. Kleczka, M. Leven, J.-M. Neudorfl and M. Vollmer, J. Org. Chem., 2014, 79, 1818; b) W. Adam and M. J. Richter, J. Org. Chem. 1994, 59, 3335; c) L. M. Stephenson, Acc. Chem. Res., 1980, 13, 419.

[6] W. Adam and H. Rebollo, Tetrahedron Lett., 1981, 22, 3049.

[7] F. Wilkinson, W. P. Helman, A. B. Ross, J. Phys. Chem., 1995, 24, 663–677.

[8] a) K. Gollnick, Ade. Photochein. 1968, 6, 1-123; b) W. Adam, A. Griesbeck. Methoden der Organischen Chemie (Houben-Weyl) 4th ed.

[9] a) J. A. Celaje, D. Zhang, A. M. Guerrero, M. Selke, Org. Lett., 2011, 13, 4846; b) E. Salamci, H. Seçen, Y. Sütbeyaz, M. Balci, J. Org. Chem., 1997, 62, 2453; c) K. M. Davis, B. K. Carpenter, J. Org. Chem., 1996, 61, 4617.

[10] a) T. Montagnon, M. Tofi, G. Vassilikogiannakis, Acc. Chem Res. 2008, 1001; b) T. Montagnon, D. Kalaitzakis, M. Triantafyllakis, M. Stratakis, G. Vassilikogiannakis, Chem. Commun. 2014, 50, 15480.

[11] a) K. Ohkubo, T. Nanjo, S. Fukuzumi, Org. Lett. 2005, 7, 4265; b) W. Adam, C. R. Saha-Moeller, S. B. Schambony, J. Am. Chem. Soc. 1999, 121, 1834; c) K. A. Zaklika, B. Kaskar and A. P. Schaap, J. Am. Chem. Soc. 1980, 102, 386.
[12] a) M. Klaper, T. Linker, Chem. Eur. J. 2015, 21, 8569; (b) W. Fudickar, T. Linker, J. Am. Chem. Soc. 2012, 134, 15071; c) H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2004, 126, 15999.

[13] N. Hoffmann, Chem. Rev. 2008, 108, 1052−1103.

[14] D. Weldor, T. D. Poulsen,K. V. Mikkelsen, P. R. Ogilby, Photochemistry and Photobiology 1999, 70, 369–379.

[15] G. O. Schenck, Patent DE-B 933925, 1943.

[16] G. O. Schenck, Naturwissenschaf ten 1948, 22, 28-29.

[17] M. Prein; W. Adam. Angew. Chem. Int. Ed. Engl. 1996, 35, 477-94.

[18] a) K. Gollnick, A. Schnatterer, Tetrahedron Lett., 1985, 26, 5029; b) I. Erden, T. R. Martinez, Tetrahedron Lett. 1991, 32, 1859; c) R. K. Howe, J. Org. Chem., 1968, 33, 2848; d) Singlet Oxygen (Ed: A. A. Frimer). CRC, Boca Raton. FL. 1985. b) F. Ohloff. Pure Appl. Chem. 1975, 43, 481 -502; e) H. H. Wasserman, J. L. Ives, Tetrahedron 1981, 37, 1825-1852. f) N. A. Porter in Organic Perorides (Ed.: W. Ando), Wiley. Chichester. 1992, p. 157.

[19] a) W. Adam, M. Brdun, A. Griesbeck. V. Lucchini, E Staab. B. Will, J. Am. Chem Soc. 1989, 111, 203-212; b) W. Adam, M. J. Richter, Acc. Chem. Rev. 1994, 27, 57-62.

[20] E. D. Mihelich. D. J. Eickhoff. J Org. Chem 1983, 48. 4135-4137.

[21] a) K. Yamaguchl, S. Ydbushita. T. Fueno, K. N. Houk. J. Am. Chem. Soc. 1981, 103, 5043-5046; b) A G. Davies, C. H. Schiesser Tetrahedron 1991, 47, 1707-1726; c) L. B. Harding, W. A. Goddard, J. Am. Chem. Soc. 1980, 102, 439–449.

[22] C. W. Jefford, Tetrahedron Lett. 1979, 20, 985–988.
[23] L. M. Stephenson, M. B. Grdina, M. Orfanopoulos, Acc. Chem. Res. 1980, 13, 419–425.

[24] a) J. H. Boyer, In The Chemistry of the Nitro and Nitroso Groups, Part 1; S. Patai, Ed.; Interscience Publishers: New York, 1969; Chapter 5; b) B. P. Zuman, Shah, Chem. Rev. 1994, 94, 1621.

[25] A. G. Leach, K. N. Houk, J. Chem. Soc., Chem. Commun., 2002, 1243.

[26] A. Baeyer, Ber. Dtsch. Chem. Ges. 1874, 7, 1638.

[27] a) P. F. Vogt, M. J. Miller, Tetrahedron 1998, 54, 1317-1348; b) P. Quadrelli, A. G. Invernizzi, P. Caramella, Tetrahedron Lett. 1996, 37, 1909; c) S. K. Quek, I. M. Lyapkalo, H. V. Huynh, Synthesis, 2006, 9, 1423; d) R. E. Banks, M. G. Barlow, R. N. Haszeldine, J. Chem. Soc., 1965, 4714.

[28] a) W. Oppolzer, O. Tamura, Tetrahedron Lett. 1990, 31, 991; b) W. Oppolzer, O. Tamura, G. Sundarababu, M. Signer, J. Am.Chem. Soc. 1992, 114, 5900; c) N. Momiyama, H. Yamamoto, Org. Lett. 2002, 4, 3579.

[29] P. Goelitz, A. Meijere, Angew. Chem. 1977, 89, 892.

[30] a) A. Aston, M. Menard, J. Am. Chem. Soc. 1935, 57, 1922; b) A. R. Forrester, S. P. Hepburn, J. Chem. Soc. C 1971, 3322; c) J. Goldman, Tetrahedron 1973, 29, 3833.

[31] M. L. Druellinger, J. Heterocycl. Chem. 1976, 13, 1001.

[32] a) W. Adam, S. E. Bottle, K. Peters, Tetrahedron Lett. 1991, 32, 4283; b) K. Torssell, Tetrahedron 1970, 26, 2759; c) A. R. Forrester, J. Henderson, K. Reid, Tetrahedron Lett. 1983, 24, 5547.

[33] a) V. A. Ginsburg, J. Org. Chem. 1974, 10, 1427; b) A. Barr, R. N. Hazeldine, J. Chem. Soc. 1955, 1881; c) C.-T. Lin, W.-J. Hsu, Can. J. Chem. 1989, 67, 2153; d) H. G. Viehe, R. Merenyi, E. Francotte, M. Van Meerssche, G. Germain, J. P. Declercq, Bodart-Gilmont, J. J. Am. Chem.Soc. 1977, 99, 2340; e) V. Gouverneur, G. Dive, L. Ghosez, Tetrahedron Asymmetry 1991, 12, 1173; f) C. C. Christie, G. W. Kirby, H. McGuian, J. W. M. Mackinnon, J. Chem. Soc., Perkin. Trans. 1 1985, 11, 1972.

[34] W. Adam, O. Krebs, Chem. Rev. 2003, 103, 4131.

[35] a) For example: The Role of Oxygen in Chemistry and Biochemistry; Proceedings of an International Symposium on Activation of Dioxygen and Homogeneous Catalytic Oxidations; W. Ando, Y. Moro-oka, Eds.; Elsevier: Amsterdam, 1988; b) P. Sharma, R.-S. Liu, Chem. - Eur. J. 2015, 21, 4590.

[36] S. Ghorpade, R.-S. Liu, Angew. Chem. Int. Ed. 2014, 53, 12885.

[37] For reviews, see: a) R. A. Sheldon, I. W. C. E. Arends, Adv. Synth. Catal. 2004, 346, 1051; b) Q. Cao, L. M. Dornan, L. Rogan, N. L. Hughes, M. L. Muldoon, Chem. Commun. 2014, 50, 4524; c) B. L. Ryland, S. S. Stahl, Angew. Chem., Int. Ed. 2014, 53, 8824; d) L. Tebben, A. Studer, Angew. Chem. Int. Ed. 2011, 50, 5034.

[38] a) B. L. Ryland, S. D. McCann, T. C. Brunold, S. S. Stahl, J. Am. Chem. Soc. 2014, 136, 12166; b) J. E. Steves, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 15742; c) M. Rafiee, K. C. Miles, S. S. Stahl, J. Am. Chem. Soc. 2015, 137, 14751; d) J. Kim, S. S. Stahl, ACS Catal. 2013, 3, 1652; e) S. Hamada, T. Furuta, Y. Wada, T. Kawabata, Angew. Chem., Int. Ed. 2013, 52, 8093; f) A. D. Allen, J. Porter, D. Tahmassebi, T. T. Tidwell, J. Org. Chem. 2001, 66, 7420; g) J. E. Babiarz, G. T. Cunkle, A. D. DeBellis, D. Eveland, S. D. Pastor, S. P. Shum, J. Org. Chem. 2002, 67, 6831; h) Q. Lu, Z. Liu, Y. Luo, G. Zhang, Z. Huang, H. Wang, C. Liu, J. T. Miller, A. Lei, Org. Lett. 2015, 17, 3402; i) V. A. Schmidt, E. J. Alexanian, J. Am. Chem. Soc. 2011, 133, 11402; j) A. Studer, Angew. Chem. Int. Ed. 2000, 39, 1108; k) V. A. Schmidt, E. J. Alexanian, Angew. Chem., Int. Ed. 2010, 49, 4491; l) V. A. Schmidt, E. J. Alexanian, Chem. Sci. 2012, 3, 1672.
[39] P. Sharma and R. S. Liu, Org. Lett., 2016, 18, 412.

[40] a) H. Yamamoto and N. Momiyama, Chem. Commun., 2005, 3514; b) W. Adam and O. Krebs, Chem. Rev., 2003, 103, 4131; c) P. Zuman and B. Shah, Chem. Rev., 1994, 94, 1621; d) K. Mikami and M. Shimizu, Chem. Rev., 1992, 92, 1021; e) A. G. Leach and K. N. Houk, Org. Biomol. Chem., 2003, 1, 1389; f) A. G. Leach and K. N. Houk, J. Am. Chem. Soc., 2002, 124, 14820; g) D. J. Fisher, G. L. Burnett, R. Velasco and J. R. de Alaniz, J. Am. Chem. Soc., 2015, 137, 11614.
[41] a) M. Kurano, K. Tsukamoto, M. Hara, R. Ohkawa, H. Ikeda, Y. Yatomi, J. Biol. Chem., 2015, 290, 2477; b) E. Ogier-Denis, A. Blais, J. J. Houri, T. Voisin, G. Trugnan, P. Codogno, J. Biol. Chem., 1994, 269, 4285; c) O. N. Kostopoulou, E. C. Kouvela, G. E. Magoulas, T. Garnelis, I. Panagoulias, M. Rodi, G. Papadopoulos, A. Mouzaki, G. P. Dinos, D. Papaioanmou, D. L. Kalpaxis, Nucl. Acids Res., 2014, 42, 8621; d) E. N. Glaros, W. S. Kim, B. J. Wu, C. Suarna, C. M. Quinn, K.-A. Rye, R. Stocker, W. Jessup, B. Garner, Biochem. Pharmacol., 2007, 73, 1340.

[42] a) C. S. Adams, R. D. Grigg, J. M. Schomaker, Chem. Sci., 2014, 5, 3046;

[43] R. K. Howe, J. Org. Chem., 1968, 33, 2848.

[44] T. V. Robinson, D. S. Pedersen, D. K. Taylor, R. T. Tiekink, J. Org. Chem., 2009, 74, 5093.

[45] Crystallographic data of 1-4e, 1-5c, 1-6e and 1-6e-H were deposited at Cambridge Crystallographic Data Center 1-4e CCDC 1507477, 1-5c CCDC 1540299, 1-6a CCDC 1540300 and 1-6e-H CCDC 1540301.

[46] (a) J. Drujon, R. Rahmani, V. Heran, R. Blanc, Y. Carissan, B. Tuccio, L. Commeiras and J. Parrain, Phys. Chem. Chem. Phys., 2014, 16, 7513; (b) W. R. Roth, T. Ebbrecht and A. Beitat, Chem. Berr., 1988, 121, 1357. [47] For metal-catalyzed oxidations of 5-hydroxy-1-enes with O2 to yield tetrahedronfuran products, see a) S. Inoki, T. Mukayama, Chem. Lett. 1990, 67-70; b) C. Palmer, N. M. Morra, A. C. Stevens, B. Bajtos, B. P. Machin, B. L. Pagenkopf, Org. Lett. 2009, 11, 5614-5617; c) R. M. Trend, Y. K. Ramtohul, E. M. Ferreira and B. M. Stoltz, Angew. Chem. Int. Ed., 2003, 42, 2892; (d) X. Xie, S. S. Stahl, J. Am. Chem. Soc., 2015, 137, 3767; (e) S. L. Zultanski, J. Zhao, S. S. Stahl, J. Am. Chem. Soc., 2016, 138, 6416.

Chapter 2

[1] General reviews on preparation of nitrogen-heterocycles: (a) “Amino-Based Building Blocks for the Construction of Biomolecules”: A. Mann in Amino Group Chemistry: From Synthesis to the Life Sciences (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007, pp. 207-256-592; (b) M. Balasubramanian, J. G. Keay in Comprehensive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W. Rees), Pergamon, Oxford, 1984, pp. 245-300; (c) Z. Jin, Nat. Prod. Rep. 2011, 28, 1143-1191; (d) Amines: Synthesis Properties and Applications (Ed.: S. A. Lawrence), Cambridge University Press, Cambridge, 2004; (e) Modern Amination Methods (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007.

[2] π-Acid catalysis reviews: (a) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (c) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403.

[3] General and recent reviews of gold catalysis and its applications (a) C. Obradors, A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912; (b) L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953-965; (c) D. Garayalde, C. Nevado, ACS Catal. 2012, 2, 1462-1479; (d) M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448-2462; (e) F. Lopez, J. L. Mascarenas, Beilstein J. Org. Chem. 2011, 7, 1075-1094; (f) A. Furstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350.

[4] (a) G. Dequirez, V. Pons, P. Dauban, Angew. Chem. Int. Ed. 2012, 51, 7384-7395; (b) F. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926-1936; (c) “Synthetic Carbene and Nitrene Chemistry”: M. P. Doyle in Reactive Intermediate Chemistry (Eds.: R. A. Moss, M. S. Platz, M. Jones, Jr.), Wiley Interscience, New York, 2004, pp. 561-592.

[5] P. W. Davies, M. Garzon, Asian J. Org. Chem. 2015, 4, 694-708.

[6] (a) J. S. Baum, M. E. Condon, D. A. Shook, J. Org. Chem. 1987, 52, 2983-2988; (b) F . Heaney, T. McCarthy, M. Mahon, V. McKee, Org. Biomol. Chem. 2005, 3, 4351-4361; (c) N. Haider, G. Heinisch, J. Moshuber, Arch Pharm 1992, 325, 119-122; (d) D. G. Hawkins, O. Meth-Cohn, J. Chem. Soc., Perkin Trans. 1983, 1, 2077-2087.

[7] (a) V. F. Sedova, O. P. Shkurko, Chem. Heterocyclic Compd. 1995, 31, 481-484; (b) V. M. Pechenina, N. A. Mukhina, V. G. Klimenko, V. G. Granik, Chem. Heterocyclic Compd. 1986,22, 876-879.

[8] (a) P. Angibaud, L. Mevellec, C. Meyer, X. Bourdrez, P. Lezouret, I. Pilatte, V. Poncelet, B. Roux, S. Merillon, D. W. End, J. Van Dun, W. Wouters, M. Venet, Eur. J. Med. Chem. 2007, 42, 702-714; (b) R. Kalish, E. Broger, G. F. Field, T. Anton, T. V. Steppe, L. H. Sternbach, J. Heterocycl Chem. 1975, 12, 49-57; (c) J. B. Hester, J. H. Ludens, D. E. Emmert, B. E. West, J Med Chem. 1989, 32, 1157-1163.

[9] L. H. Sternbach, J. Med. Chem. 1979, 22, 1-7.

[10] (a) S. Yu, G. Tang, Y. Li, X. Zhou, Y. Lan and X. Li, Angew. Chem. Int. Ed., 2016, 55, 8696-8700; (b) C. Tang, M. Zou, J. Liu, X. Wen, X. Sun, Y. Zhang, N. Jiao, Chem. Eur. J. 2016, 22, 11165-11169; (c) M. Zou, J. Liu, C. Tang and N. Jiao, Org. Lett., 2016, 18, 3030-3033; (d) S. Yu, Y. Li, X. Zhou, H. Wang, L. Kong and X. Li, Org. Lett., 2016, 18, 2812-2815; (e) L. Shi and B. Wang, Org. Lett., 2016, 18, 2820-2823.

[11] H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int.Ed., 2016, 55, 794-797.

[12] H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 12688-12692.

[13] R. L. Sahani and R.-S. Liu, Angew. Chem., Int. Ed., 2017, 56, 12736–12740;

[14] B. D. Mokar, P. D. Jadhav, Y. B. Pandit and R.-S. Liu, Chem. Sci., 2018, 9, 4488–4492.

[15] W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew.
Chem. Int. Ed. 2017, 56, 605-609.

[16] For selected examples, see: (a) C. F. Martinez-Farina, D. L. Jakeman, Chem. Commun. 2015, 51, 14617-14619; (b)W. R. Martinez, G. C. G. Militao, T. G. da Silva, R. O. Silva, P. H. Menezes, RSC Adv. 2014, 4, 14715-14718; (c) F. Shah, P. Mukherjee, J. Gut, J. Legac, P. J. Rosenthal, B. L. Tekwani, M. A. Avery, J. Chem. Inf. Model. 2011, 51, 852-864; (d) R. Mueller, A. L. Rodriguez, E. S. Dawson, M. Butkiewicz, T. T. Nguyen, S. Oleszkiewicz, A. Bleckmann, C. D. Weaver, C.W. Lindsley, P. J. Conn, J. Meiler, ACS Chem. Neurosci. 2010, 388 1, 288-305; (e) A. A. Abdel-Hafez, B. A. Abdel- Wahab, Bioorg. Med. Chem. 2008, 16, 7983-7991; (f) L. Galam, M. K. Hadden, Z. Ma, Q. Z. Ye, B. G. Yun, B. S. Blagg, R. L. Matts, Bioorg. Med. Chem. 2007, 15, 1939-1946; (g) A. Cul, A. Chihab- Eddine, A. Pesquet, S. Marchalin, A. Daich, J. Heterocycl. Chem. 2003, 40, 499-505.

[17] Z.-H. Wang, H.-H. Zhang, D.-M. Wang, P.-F. Xu and Y.-C. Luo, Chem. Commun., 2017, 53, 8521–8524.

[18] Selected recent examples: (a) Y. Aramaki, M. Seto, T. Okawa, T. Oda, N. Kanzaki and M. Shiraishi, Chem. Pharm. Bull., 2004, 52, 254–258; (b) C. B. Breitenlechner, T. Wegge, L. Berillon, K. Graul, K. Marzenell, W.-G. Friebe, U. Thomas, R. Schumacher, R. Huber, R. A. Engh and B. Masjost, J. Med. Chem., 2004, 47, 1375–1390; (c) M. Seto,N.Miyamoto, K. Aikawa, Y. Aramaki, N. Kanzaki, Y. Iizawa, M. Baba and M. Shiraishi, Bioorg. Med. Chem., 2005, 13, 363–386; (d) M. Seto, K. Aikawa, N. Miyamoto, Y. Aramaki, N. Kanzaki, K. Takashima,Y. Kuze, Y. Iizawa, M. Baba and M. Shiraishi, J. Med. Chem., 2006, 49, 2037–2048; (e) S. Go´mez-Ayala, J. A. Castrillo´n, A. Palma, S. M. Leal, P. Escobar and A. Bahsas, Bioorg. Med. Chem., 2010, 18, 4721–4739.

[19] R. J. Madhushaw, C.-Y. Lo, C.-W. Hwang, M.-D. Su, H.-C. Shen, S. Pal, I. R. Shaikh and R.-S. Liu, J. Am. Chem.Soc., 2004, 126, 15560–15565.

[20] See selected reviews: (a) F. Hu and M. Szostak, Adv. Synth. Catal., 2015, 357, 2583–2614; (b) P. Vitale and A. Scilimati, Curr. Org. Chem., 2013, 17, 1986–2000; (c) A. L. Sukhorukov and S. L. Lorfe, Chem. Rev., 2011, 111, 5004–5041; (d) P. Grunanger, P. Vita-Finzi and J. E. Dowling, in Chemistry of Heterocyclic Compounds, Part 2, ed. E. C. Taylor and P. Wipf, Wiley, New York, 1999, vol. 49, pp. 1–888; (e)P. Pevarello, R. Amici, M. G. Brasca, M. Villa and M. Virasi, Targets Heterocycl. Syst., 1999, 3, 301–339.

[21] (a) S. G´omez-Ayala, J. A. Castrill´on, A. Palma, S. M. Leal, P. Escobar and A. Bahsas, Bioorg. Med. Chem., 2010, 18, 4721–4739; (b) W. L. Wan, J. B. Wu, F. Lei, X. L. Li, L. Hai and Y. Wu, Chin. Chem. Lett., 2012, 23, 1343–1346; (c) O. Krebs, P. Kuenti, C. Michlig, K. Reuter, US Pat. No.8,343,956 B2, 2013.

[22] For biological activity, see selected papers:(a) M. B. Dixon and Y. H. Lien, Ther. Clin. Risk Manage., 2008, 4, 1149–1155; (b) E. K. Miller, K. Y. Chung, J. P. Hutcheson, D. A. Yates, S. B. Smith and B. J. Johnson, J. Anim. Sci., 2012, 90, 1317–1327; (c) G. Aperis and P. Alivanis, Rev. Recent Clin. Trials, 2011, 6, 177–188; (d) M. Gheorghiade, M. A. Konstam and J. C. Burnett, JAMA, J. Am. Med. Assoc., 2007, 297, 1332–1343; (e) R. W. Schrier, P. Gross and M. Gheorghiade, N. Engl. J. Med., 2006, 355, 2099–2112.

[23] 23 (a) O. A. Ivanova, E. M. Budynina, Y. K. Grishin, I. V. Trushkov and P. V. Verteletskii, Angew. Chem., Int. Ed., 2008, 47, 1107–1110; (b) O. A. Ivanova, E. M. Budynina, Y. K. Grishin, I. V. Trushkov and P. V. Verteletskii, Eur. J. Org. Chem., 2008, 5329–5335; (c) L. K. B. Garve, M. Pawliczek, J. Wallbaum, P. G. Jones and D. B. Werz, Chem.–Eur. J., 2016, 22, 521–525; (d) Z.-H. Wang, H.-H. Zhang, D.-M. Wang, P.-F. Xu and Y.-C. Luo, Chem. Commun., 2017, 53, 8521–8524.

[24] See selected reviews:(a) N. De and E. J. Yoo, ACS Catal., 2018, 8, 48–58; (b) D. Garayalde and C. Nevado, ACS Catal., 2012, 2, 1462–1479; (c) D. B. Huple, S. Ghorpade and R.-S. Liu, Adv.Synth. Catal., 2016, 358, 1348–1367.

[25] (a) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L.-W. Ye, Chem. Sci., 2015, 6, 1265–1271; (b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li and L.-W. Ye, Chem.–Asian J., 2015, 10, 1854–1858; (c) R. L. Sahani and R.-S. Liu, Angew. Chem., Int. Ed., 2017, 56, 1026–1030; (d) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu and L.-W. Ye, Angew. Chem., Int. Ed., 2017, 56, 605–609; (e) S. S. Giri and R.-S. Liu, Chem. Sci., 2018, 9, 2991–2995; (f) L. Li, T.-D. Tan, Y.-Q. Zhang, X. Liu and L.-W. Ye, Org. Biomol. Chem., 2017, 15, 8483–8492.

[26] For gold-catalyzed enyne cycloisomerizations, see:(a)R. Dorel and A. M. Echavarren, Chem. Rev., 2015, 115, 9028–9072; (b) E. J. N´u˜nez and A. M. Echavarren, Chem. Rev., 2008, 108, 3326–3350; (c) A. S. K. Hashmi and M. Rudolph, Chem. Soc. Rev., 2008, 37, 1766–1775; (d) A. F¨urstner and P. W. Davies, Angew. Chem., Int. Ed., 2007, 46, 3410–3449; (e) L. Zhang, j. Sun and S. A. Kozmin, Adv. Synth. Catal., 2006, 348, 2271–2296.

[27] Crystallographic data of compounds 2-3a was deposited at the Cambridge Crystallographic Center; CCDC 1853703 by Dr. Singh.
[28] (a) R. K. Kawade and R.-S. Liu, Angew. Chem., Int. Ed., 2017, 56, 2035–2039; (b) P. Sharma, P. D. Jadhav, M. Skaria and R.-S. Liu, Org. Biomol. Chem., 2017, 15, 9389–9397.

[29] Isobenzofulvene In was the intermediate in the cycloisomerization of terminal 1,5-enyne 1a involving ruthenium vinylidene as the initial species. See [19]

[30] For 1,n-enynes as 1,n-dipoles, see:(a) C.-H. Chen, Y.-C. Tsai and R.-S. Liu, Angew. Chem., Int. Ed., 2013, 52, 4599–4603; (b) S. A. Gawade, S. Bhunia and R.-S. Liu, Angew. Chem., Int. Ed., 2012, 51, 7835–7838; (c) A. Escribano-Cuesta, V. Lopez-Carrillo, D. Janssen and A. M. Echavarren, Chem.– Eur. J., 2009, 15, 5646–5650; (d) D. B. Huple and R.-S. Liu, Chem. Commun., 2012, 48, 10975–10977.

[31] (a) M. Rule, R. F. Salinaro, D. R. Pratt and J. A. Berson, J. Am. Chem. Soc., 1982, 104, 2223–2228; (b) R. F. Salinaro and J. A. Berson, J. Am. Chem. Soc., 1982, 104, 2228–2232.

[32] J. Chauhana; S. Fletcher. Tetrahedron Lett. 2012, 53, 4951.


Chapter 3

[1] Liming Zhang, Acc. Chem. Res., 2014, 47, 877-888.
[2] For most recent reviews, see: a) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. 2005, 118, 8064 – 8105; Angew. Chem. Int. Ed. 2005, 45, 7896 – 7936; b) S. Ma, S. Yu, Z. Gu, Angew. Chem. 2006, 118, 206 – 209; Angew. Chem. Int. Ed. 2006, 45, 200 – 203.
[3] a) C. Aubert, O. Buisine, M. Malacria, Chem. Rev. 2002, 102, 813 – 834; b) G. C. Lloyd-Jones, Org. Biomol. Chem. 2003, 1, 215 – 236; c) Z. Zhang, G. Zhu, X. Tong, F.Wang, X. Xie, J.Wang, L. Jiang, Curr. Org. Chem. 2006, 10, 1457 – 1478.
[4] V. Rautenstrauch. J. Org. Chem. 1984, 49, 950.
[5] X. Shi; D. J. Gorin; F. D. Toste; J. Am. Chem. Soc. 2005, 127, 5802.
[6] C. Bürki; A. Whyte; S. Arndt; A. S. K. Hashmi; M. Lautens; Org. Lett. 2016, 18, 5058.
[7] A. Correa; N. Marion; L. Fensterbank; M. Malacria; S. P. Nolan; L. Cavallo; Angew. Chem., Int. Ed. 2008, 47, 718.
[8] O. N. Faza; C. S. López; R. Álvarez; A. R. de Lera; J. Am. Chem. Soc. 2006, 128, 2434.
[9] J. Zhao; S. Yang; X. Xie; X. Li; Y. Liu; J. Org. Chem. 2018, 83, 1287−1297.
[10] (a) N. Sun; X. Xie; H. Chen; Y. Liu; Chem. Eur. J. 2016, 22, 14175. (b) Y. Chen; L. Wang; N. Sun; X. Xie; X. Zhou; H. Chen; Y. Li; Y. Liu. Chem. Eur. J. 2014, 20, 12015. (c) Y. Chen; M. Chen; Y. Liu. Angew. Chem., Int. Ed. 2012, 51, 6181.
[11] B. W. Gung; L. N. Bailey; J. Wonser. Tetrahedron Lett. 2010, 51, 2251.
[12] T. Fukuyama; Y. Ohta; C. lia Brancour; K. Miyagawa; I. Ryu; A. L. Dhimane; L. Fensterbank; M. Malacria Chem. Eur. J. 2012, 18, 7243 – 7247.
[13] For recent examples of transition-metal-catalyzed carbonylative [5+1] cycloadditions of cyclopropane derivatives, see: a) M. Murakami, K, Itami, M. Ubukata, I. Tsuji, Y. Ito, J. Org. Chem. 1998, 63, 4 –5; b) A. Kamitani, N. Chatani, T. Morimoto, S. Murai, J. Org.Chem. 2000, 65, 9230 –9233; c) T. Kurahashi, A. de Meijere, Synlett 2005, 2619 – 2622.
[14] In the case of tertiary carbon at C-3 of propargyl esters, a π-coordinated intermediate might have difficulty in being formed because the phenyl group blocks the rhodium catalyst approach to the alkyne moiety. Probably for this reason, Z-isomer was not reactive towards the present carbonylative cyclization.
[15] Carbonyl insertion into Rh–C(sp3) is also possible.
[16] Examples of stoichiometric reactions of metal carbenoids with CO leading to ketenes, see: (a) W. A. Herrmann; J. Plank, Angew. Chem., Int. Ed. Engl., 1978, 17, 525; (b) T. W. Bodnar;
A. R. Cutler. J. Am. Chem. Soc., 1983, 105, 5926; (c) P. Schwab; N. Mahr; J. Wolf; H. Werner. Angew. Chem., Int. Ed. Engl., 1993, 32, 1480; (d) D. B. Grotjahn; G. A. Bikzhanova; L. S.
B. Collins; T. Concolino; K.-C. Lam; A. L. Rheingold. J. Am. Chem. Soc., 2000, 122, 5222; (e) H. Urtel; G. A. Bikzhanova; D. B. Grotjahn; P. Hofmann. Organometallics, 2001, 20, 3938.
[17] This mechanism is similar to the one proposed in the Dötz reaction. For reviews, see: (a) K. H. Dötz; P. Tomuschat. Chem. Soc. Rev., 1999, 28, 187; (b) A. Minatti; K. H. Dötz. Top. Organomet. Chem., 2004, 13, 123.
[18] X. Li; S. Huang; C. M. Schienebeck; D. Shu; W. Tang; Org. Lett. 2012, 14, 1584 – 1587.
[19] W. Ye; J. Xu; C.T. Tan; C. H. Tan. Tetrahedron Lett. 2005, 46, 6875.
[20] (a) L. Li; T. D. Tan; Y. Q. Zhang; X. Liu; L. W. Ye. Org. Biomol. Chem. 2017, 5, 8483. (b) D. B. Huple; S. Ghorpade; R. S. Liu. Adv. Synth. Catal. 2016, 358, 1348.
[21] For catalytic reactions of isoxazoles with alkynes, see selected reviews: (a) A. –H. Zhou; Q. He; C. Shu; Y.-F. Yu; S. Liu; T. Zhao; W. Zhang; X. Lu; L. –W. Ye. Chem. Sci. 2015, 6, 1265. (b) X. –Y. Xiao; A. –H. Zhou; C. Shu; F. Pan; T. Li; L. –W. Ye. Chem. Asian J. 2015, 10, 1854. (c) W. –B. Shen; X. –Y. Xiao; Q. Sun; B. Zhou; X. –Q. Zhu; J. –Z. Yan; X. Lu; L. –W. Ye. Angew. Chem. Int. Ed. 2017, 56, 605. (d) R. L. Sahani; R. –S. Liu. Angew. Chem. Int. Ed. 2017, 56, 1026.
[22] For gold-catalyzed reactions of anthranils with alkynes, see selected examples: (a) R. D. Kardile; B. S. Kale; P. Sharma, P; R. –S. Liu. Org. Lett. 2018, 20, 3806-3809. (b) Y. –C. Hsu; S. –A. Hsieh; P.-H. Li; R.-S. Liu. Chem. Commun. 2018, 54, 2114. (c) M. H. Tsai; C. Y. Wang; A. S. K. Raj; R.-S. Liu. Chem. Commun. 2018, 54, 10866-10869. (d) R. L. Sahani; R.-S. Liu. Angew. Chem. Int. Ed. 2017, 56, 12736-12740. (e) Z. Zeng; H. Jin; M. Rudolph; F. Rominger; A. S. K. Hashmi. Angew. Chem. Int. Ed. 2018, 57, 16549-16553. (f) H. Jin; B. Tian; X. Song; J. Xie; M. Rudolph; F. Rominger; A. S. K. Hashmi. Angew. Chem. Int. Ed. 2016, 55, 12688-12692. (g) H. Jin; L. Huang; J. Xie; M. Rudolph; F. Rominger; A. S. K. Hashmi. Angew. Chem. Int. Ed. 2016, 55, 794-797.
[23] See selected reviews: (a) F. Hu; M. Szostak. Adv. Synth. Catal. 2015, 357, 2583–2614. (b) P. Vitale; A. Scilimati. Curr. Org. Chem. 2013, 17, 1986–2000. (c) A. L. Sukhorukov; S. L. Lorfe; Chem. Rev. 2011, 111, 5004–5041. (d) P. Grunanger; P. Vita-Finzi; J. E. Dowling in Chemistry of Heterocyclic Compounds, Part 2, ed. E. C. Taylor and P. Wipf, Wiley, New York, 1999, vol. 49, pp. 1–888. (e) P. Pevarello; R. Amici; M. G. Brasca; M. Villa; M. Virasi, M. Targets Heterocycl. Syst. 1999, 3, 301–339.
[24] ] (a) O. A. Ivanova; E. M. Budynina; Y. K. Grishin; I. V. Trushkov; P. V. Verteletskii. Angew. Chem., Int. Ed. 2008, 47, 1107–1110. (b) ) O. A. Ivanova; E. M. Budynina; Y. K. Grishin; I. V. Trushkov; P. V. Verteletskii. Eur. J. Org. Chem. 2008, 5329–5335. (c) L. K. B. Garve; M. Pawliczek; J. Wallbaum; P. G. Jones; D. B. Werz. Chem. Eur. J. 2016, 22, 521–525. (d) Z. –H. Wang; H.-H. Zhang; D. –M. Wang; P. –F. Xu; Y. –C. Luo. Chem. Commun. 2017, 53, 8521–8524.
[25] R. R. Singh; M. Skaria; L. Y. Chen; M. J. Cheng; R.-S. Liu. Chem. Sci. 2019, 10, 1201–1206.
[26] (a) Y. Wie; M. Shi ACS Catal. 2016, 6, 2515; (b) D. P. Day; P. W. H. Chan Adv. Synth. Catal. 2016, 358, 1368; (e) R. Dorel; A. M. Echavarren. Chem. Rev. 2015, 115, 9028.
[27] J. Zhao; S. Yang; X. Xie; X. Li; Y. Liu J. Org. Chem. 2018, 83, 1287−1297.
[28] For gold-catalyzed annulations or cycloadditions of alkynes, see selected reviews: a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180. b) N. T. Patil; Y. Yamamoto Chem. Rev. 2008, 108, 3395. c) S.A. Sohel; R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269; d) M. E. Muratore; A. Homs; C. Obradors; A. M. Echavarren. Chem. Asian J. 2014, 9, 3066.
[29] Crystallographic data of compounds 4c and 5a were deposited at Cambridge Crystallographic Data Center: compound 4c: CCDC 1901753; 5a: 1901854.
[30] M. J. Mulvihill; J. L. Gage; M. J. Miller J. Org. Chem. 1998, 63, 3357-3363.
[31] (a) N. Marion; S. P. Nolan. Angew. Chem. Int. Ed. 2007, 46, 2750–2752. (b) L. Jun; M. Chen; L. Zhang; Y. Liu. Chem. Eur. J. 2015, 21, 1009 – 1013. (c) W. Rao; P. W. H. Chan; Chem. Eur. J. 2014, 20, 713. (d) W. Rao; M. J. Koh; D. Li; H. Hirao; P. W. H. Chan; J. Am. Chem. Soc. 2013, 135, 7926.
[32] (a) J. P. Freeman; Chem. Rev. 1983, 83, 241-261. (b) M. Berthet; T. Cheviet; G. Dujardin; I. Parrot; J. Martinez. Chem. Rev. 2016, 116, 15235-15283.
[33] Compound (3-s1), (3-s4): X. Fan; H. Lv; Y. –H. Guan; H. –B. Zhu; X. –M. Cuia; K. Guo. Chem. Commun. 2014, 50, 4119.
[34 Compound (1a-d): H. Dai; S. Yu; W. Cheng; Z. –F. Xu; C. –Y. Li. Chem. Commun. 2017, 53, 6417.
[35] Compound (3-1e, 3-1f): D. Garayalde; E. Go´mez-Bengoa; X. Huang; A. Goeke; C. Nevado. J. Am. Chem. Soc. 2010, 132, 4720–4730.
[36] Compound (5b): J. Yang; A. Rerat; Y. J. Lim; C. Gosmini; N. Yoshikai. Angew. Chem. Int. Ed. 2017, 56, 2449 –2453.

Chapter 4

[1] (a) M. L. H. Green; S. G. Davies. Philos. Trans. R. Soc. London A 1988, 326, 501. (b) J. P. Collman; L. S. Hegedus; J. R. Norton; R. G. Finke. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, California, 1987. (c) J. Tsuji. Transition Metal Reagents and Catalysts; John Wiley & Sons Ltd.: New York, 2000. (d) D. Seebach. Angew. Chem. Int. Ed. Engl. 1990, 29, 1320. (e) L. Yet. Chem. Rev. 2000, 100, 2963.

[2] (a) B. M. Trost. Acc. Chem. Res. 2002, 35, 695. (b) B. M. Trost. Angew. Chem. Int. Ed. Engl. 1995, 34, 259. (c) I. Nakamura; Y. Yamamoto. Chem. Rev. 2004, 104, 2127.

[3] (a) P. T. Anastas; J. C. Warner in Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998. (b) P. T. Anastas; M. M. Kirchhoff. Acc. Chem. Res. 2002, 35, 686. (c) P. T. Anastas; J. B. Zimmerman. Environ. Sci. Technol. 2003, 37, 94. (d) M. Poliakoff; J. M. Fitzpatrick; T. R. Farren; P. T. Anastas. Science 2002, 297, 807. (e) B. M. Trost; D. F. Toste; A. B. Pinkerton. Chem. Rev. 2001, 101, 2067.

[4] a) K. Miki; K. Ohe; S. J. Uemura Org. Chem. 2003, 68, 8505. b) M. J. Johansson; D. J. Gorin; S. T. Staben; D. F. Toste. J. Am. Chem. Soc. 2005, 127, 18002. c) D. J. Gorin; P. Dube; D. F. Toste. J. Am. Chem. Soc. 2006, 128, 14480. d) S. López; E. Herrero-Gómez; P. Pérez-Galán; C. Nieto-Oberhuber; A. M. Echavarren. Angew. Chem. Int. Ed. 2006, 45, 6029. e) A. S. K. Hashmi. Angew. Chem. Int. Ed. 2005, 44, 6990. f) For cyclization of allenynes with nucleophiles, see: G. Lemie´re; V. Gandon; N. Agenet; J. Goddard; A. de.Kozak; C. Aubert; L. Fensterbank; M. Malacria. Angew. Chem. Int. Ed. 2006, 45, 7596. g) D. J. Gorin; P. Dube; F. D. Toste. J. Am.Chem. Soc. 2006, 128, 14480.

[5] a) J. Smidt; W. Hafner; R. Jira; R. Sieber; J. Sedlmeier; J. Sabel. Angew. Chem. 1962, 74, 93; Angew. Chem. Int. Ed. 1962, 1, 80. b) Y. Fukuda; K. Utimoto. Bull. Chem. Soc. Jpn. 1991, 64, 2013. c) A. S. K. Hashmi; L. Schward; J. –H. Choi; T. M. Frost. Angew. Chem. Int. Ed. 2000, 39, 2285.

[6] a) Y. Fukuda; K. Utimoto; H. Nozaki. Heterocycles, 1987, 25, 297. b) Y. Fukuda; K. Utimoto. Synthesis, 1991, 975. c) R. Lok; R. E. Leone; A. J. Williams. J. Org. Chem. 1996, 61, 3289. d) A. Arcadi; S. D. Giuseppe; F. Marinelli; E. Rossi. Adv. Synth. Catal. 2001, 343, 443.
[7] G. J. Hutchings. Gold Bull. 1996, 29, 123. b) G. J. Hutchings. Catal. Today, 2002, 72, 11.

[8] (a) Organic Chemistry R. T. Morrison; R. N. Boyd. pp. 473. (b) E. O. Fischer; A. Maasböl. Angew. Chem. Int. Ed. 1964, 3, 580. (c) A. S. K. Hashmi. Angew. Chem. Int. Ed. 2008, 47, 6754. (d) U. Schubert; K. Ackermann; R. Aumann. Cryst. Struct. Comm. 1982, 11, 591. (e) A. J. Arduengo; R. L. Harlow; M. J. Kline. J. Am. Chem. Soc. 1991, 113, 361.

[9] For a Review on gold N-heterocyclic carbenes, see: (a) S. P. Nolan. Acc. Chem. Res. 2011, 44, 91. For selected examples on Fischer-type carbene complexes of gold, see: (b) H. G. Raubenheimer; M. W. Esterhuysen; A. Timoshkin; Y. Chen; G. Frenking. Organometallics 2002, 21, 3173. (c) M. Fañanás-Mastral; F. Aznar. Organometallics 2009, 28, 666.

[10] (a) A. S. K. Hashmi. Gold Bull. 2003, 36, 3. (b) A. S. K. Hashmi. Gold Bull. 2004, 37, 51. (c) A. Hoffmann-Roder; N. Krause. Org. Biomol. Chem. 2005, 3,387. [PubMed: 15678171] (d) S. Ma; S. Yu; Z. Gu. Angew. Chem., Int. Ed. 2005, 44, 200. (e) A. S. K. Hashmi. Angew. Chem., Int. Ed. 2005, 44, 6990. (f) A. Furstner; P. W. Davies. Angew. Chem., Int. Ed. 2007, 46, 3410. (g) Z. Li; C. Brouwer; C. He. Chem. Rev. 2008, 108, 3239. [PubMed: 18613729] (h) D. J. Gorin; B. D. Sjerry; F. D. Toste. Chem. Rev. 2008, 108, 3351. [PubMed: 18652511] (i) A. S. K. Hashmi; M. Rudolph. Chem. Soc. Rev. 2008, 37, 1766. [PubMed: 18762826] (j) A. B. Cuenca; S. Montserrat; K. M. Hossain; G. Mancha; A. Lledos; M. Medio- Simon; G. Ujaque; G. Asensio. Org. Lett. 2009, 11, 4906. [PubMed: 19785397] (k) M. Bandini, M. Chem. Soc. Rev. 2011, 40, 1358. [PubMed: 21103507] (l) S. Wang; G. Zhang; L. Zhang. Synlett. 2010, 692.

[11] For recent examples see: a) K. J. Ando. Org. Chem. 2010, 75, 8516. b) A. S. Dudnik; Y. Xia; Y. Li; V. Gevorgyan. J. Am. Chem. Soc. 2010, 132, 7645. c) Y. Liu; D. Zhang; S. Bi. J. Phys. Chem. A. 2010, 114, 12893. d) D. Garayalde; E. Gómez-Bengoa; X. Huang; A. Goeke; C. Nevado. J. Am. Chem. Soc. 2010, 132, 4720. e) D. Benitez; N. D. Shapiro; E. Tkatchouk; Y. Wang; W. A. Goddard III; F. D. Toste. Nat. Chem. 2009, 1, 482.

[12] Reviews on gold catalyzed reactions; (a) A. Das, S. M. A. Sohel, R.-S. Liu, Org. Biomol. Chem., 2010, 8, 960-979; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (c) N. T. Patil, Y. Yamamoto, Chem, Rev. 2008, 108, 3395-3442;(d) G. Abbiati, E. Rossi, Beilstein J. Org. Chem. 2014, 10, 481-513; (e) J. S. Alford, H. M. L. Davies, Chem. Soc. Rev., 2014, 43, 5151-5162; (f) A. S. K. Hashmi, Gold Bulletin 2003, 36, 3-9; (g) E. Jimenez-Nunez, A. M. Echavarren, Chem. Commun., 2007, 333-346; (h) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (i) A. Acardi, Chem. Rev. 2008, 108, 3266-3325; (j) A. Furstner, Chem. Soc. Rev. 2009, 38, 3208-3221.

[13] For gold-catalyzed reactions of anthranils with alkynes, see selected examples: (a) R. D. Kardile; B. S. Kale; P. Sharma, P; R. –S. Liu. Org. Lett. 2018, 20, 3806-3809. (b) Y. –C. Hsu; S. –A. Hsieh; P.-H. Li; R.-S. Liu. Chem. Commun. 2018, 54, 2114. (c) M. H. Tsai; C. Y. Wang; A. S. K. Raj; R.-S. Liu. Chem. Commun. 2018, 54, 10866-10869. (d) R. L. Sahani; R.-S. Liu. Angew. Chem. Int. Ed. 2017, 56, 12736-12740. (e) Z. Zeng; H. Jin; M. Rudolph; F. Rominger; A. S. K. Hashmi. Angew. Chem. Int. Ed. 2018, 57, 16549-16553. (f) H. Jin; B. Tian; X. Song; J. Xie; M. Rudolph; F. Rominger; A. S. K. Hashmi. Angew. Chem. Int. Ed. 2016, 55, 12688-12692. (g) H. Jin; L. Huang; J. Xie; M. Rudolph; F. Rominger; A. S. K. Hashmi. Angew. Chem. Int. Ed. 2016, 55, 794-797.

[14] C. Shu, Y.-H. Wang, B. Zhou, X.-L. Li, Y.-F. Ping, X. Lu, L.-W. Ye, J. Am. Chem. Soc. 2015, 137, 9567-9570; (b) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244-9245; (c) M. Gaydou, A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 13468-13471; (d) G. H. Lonca, C. Tejo, H. L. Chan, S. Chiba, F. Gagosz, Chem. Commun., 2017, 53, 736-739.

[15] a) N. D. Shapiro, Y. Shi, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 11654-11655; (b) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244-9245; (c) H. Kusama, Y. Miyashita, J. Takaya, N. Iwasawa, Org. Lett., 2006, 8, 289-292.

[16] (a) N. Martin, P. W. Davies, Org. Lett., 2009, 11, 2293-296; (b) X. Zhao, E. Zhang, Y.-Q. Tu, Y.Q. Zhang, D.-Y. Yuan, K. Cao, C.-A. Fan, F.-M. Zhang, Org. Lett., 2009, 11, 4002-4004; (c) S. Zhang, C. Shan, S. Zhang, L. Yuan, J. Wang, C.-H. Tung, L.-B. Xing, Z. Xu, Org. Biomol. Chem., 2016, 14, 10973-10980.

[17] (a) S. N. Karad, R.-S. Liu, Angew. Chem. Int. Ed. 2014, 53, 5444-5448; (b) S. N, Karad, R.-S. Liu, Angew. Chem. Int. Ed. 2014, 53, 9072-9076; (c) Y.-L. Chen, P. Sharma, R.-S. Liu, Chem. Commun., 2016, 52, 3187-3190.

[18] a) J. R. Manning, H. M. L. Davies, Tetrahedron, 2008, 64, 6901-6908, b) J. R. Manning, H. M. Davies, J. Am. Chem. Soc. 2008, 130, 8602-8603

[19] L. Shi and B. Wang, Org. Lett., 2016, 18, 2820-2823.
[20] X. Lei, L. Li, Y.-P. He, Y. Tang, Org. Lett. 2015, 17, 5224-5227.
[21] a) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265-1271. b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J. 2015, 10, 1854-1858.
[22] R. L. Sahani; R. –S. Liu. Angew. Chem. Int. Ed. 2017, 56, 1026.
[23] For 1,5-acyl shift, see: a) W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811-10814; b) D. Leboeuf, A. Simonneau, C. Aubert, M. Malacria, V. Gandon, L. Fensterbank, Angew. Chem. Int. Ed. 2011, 50, 6868-6871; c) W. Rao, Sally, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 3183-3195.
[24] R. D. Kardile; B. S. Kale; P. Sharma, P; R. –S. Liu. Org. Lett. 2018, 20, 3806-3809.
[25] Y.-P. Han; X.-S. Li; Z. Sun; X.-Y. Zhu; M. Li; X.-R. Song; Y.-M. Liang. Adv. Synth. Catal. 2017, 359, 2735 – 2740.
[26] Z. Zeng; H. Jin; J. Xie; B. Tian; M. Rudolph; F. Rominger; A. S. K. Hashmi Org. Lett. 2017, 19, 1020−1023.
[27] L. Ye; W. He; L. Zhang. J. Am. Chem. Soc. 2010, 132, 8550.
[28] For most recent reviews, see: a) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. 2005, 118, 8064 – 8105; Angew. Chem. Int. Ed. 2005, 45, 7896 – 7936; b) S. Ma, S. Yu, Z. Gu, Angew. Chem. 2006, 118, 206 – 209; Angew. Chem. Int. Ed. 2006, 45, 200 – 203.
[29] For selected reviews for gold carbenes, see: (a) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677; (b) L. Liu and J. Zhang, Chem. Soc. Rev., 2016, 45, 506; (c) E. L´opez, S. G. –Pelayo; L. A. L´opez, Chem. Rec., 2017, 17, 312; (d) C. Obradors; A. M. Echavarren. Chem. Commun., 2014, 50, 16; (e) L. Zhang, Acc. Chem. Res., 2014, 47, 877; (f) D. P. Day; P. W. H. Chan, Adv. Synth. Catal., 2016, 358, 1368.
[30] (a) H. M. L. Davies; E. G. Antoulinakis, Intermolecular Metal-Catalyzed Carbenoid Cyclopropanations in Organic Reactions, ed. L. E. Overman, John Wiley & Sons, Inc., New York, NY, 2001, vol. 57, pp. 1–326; (b) H. M. L. Davies; R. E. J. Beckwith, Chem. Rev., 2003, 103, 2861; (c) M. P. Doyle, R. Duffy, M. Ratnikov; L. Zhou, Chem. Rev., 2010, 110, 704; (d) Q.-Q. Cheng, Y. Yu, J. Yedoyan; M. P. Doyle, ChemCatChem, 2018, 10, 488.
[31] a) M. P. Doyle; R. Duffy; M. Ratnikov; L. Zhou. Chem. Rev., 2010, 110, 704–724 b) H. M. L. Davies; Ø. Loe Synthesis, 2004, 16, 2595–2608 c) K. Liao; S. Negretti; D. G. Musaev; J. Bacsa; H. M. L. Davies. Nature, 2016, 533, 230–234.
[32] a) K. Ohe; T. Yokoi; K. Miki; F. Nishino; S. Uemura J. Am. Chem. Soc. 2002, 124, 526–527.b) K. Ohe; T. Yokoi; K. Miki; F. Nishino; S. Uemura J. Am. Chem. Soc. 2002, 124, 5260–5261. c) Y. Kato; K. Miki; F. Nishino; K. Ohe; S. Uemura. Org. Lett. 2003, 5, 2619–2621.
[33] B. D. Mokar; P. D. Jadhav; Y. B. Pandit; R. –S. Liu Chem. Sci., 2018, 9, 4488–4492
[34] A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L.-W. Ye, Chem. Sci., 2015, 6, 1265; (b)X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li and L.-W. Ye, Chem.–Asian J., 2015, 10, 1854; (c) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 794; (d) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 12688.
[35] a) D. J. Gorin, N. R. Davis, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 11260; b) Z.-Y. Yan, Y. Xiao, L. Zhang, Angew. Chem. Int. Ed. 2012, 51, 8624; Angew. Chem. 2012, 124, 8752; c) A. Wetzel, F. Gagosz, Angew. Chem. Int. Ed. 2011, 50, 7354; Angew. Chem. 2011, 123, 7492; d) B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang, L. Zhang, Angew. Chem. Int. Ed. 2011, 50, 8358; Angew. Chem. 2011, 123, 8508; e) N. Li, T.-Y. Wang, L.-Z. Gong, L. Zhang, Chem. Eur. J. 2015, 21, 3585; f) C.-H. Shen, Y. Pan, Y.-F. Yu, Z.-S. Wang, W. He, T. Li, L.-W. Ye, J. Organomet. Chem. 2015, 795, 63; g) C. Gronnier, G. Boissonnat, F. Gagosz, Org. Lett. 2013, 15, 4234; h) Y. Xiao, L. Zhang, Org. Lett. 2012, 14, 4662; i) A. Prechter, G. Henrion, P. Faudot dit Bel, F. Gagosz, Angew. Chem. Int. Ed. 2014, 53, 4959; j) Z. Huo, Y. Yamamoto, Tetrahedron Lett. 2009, 50, 3651; k) Y. Pan, G.-W. Chen, C.-H. Shen, W. He, L.-W. Ye, Org. Chem. Front. 2016, 3, 491; l) S. Zhu, L. Wu, X. Huang, J. Org. Chem. 2013, 78, 9120.

[36] (a) T. L. Gildchrist. Heterocyclic Chemistry, 1st ed.; Pitman Publishing LTD: London, 1985; b) D. Dube; M. Blouin; C. Brideau; C. Chan; S. Desmarais; D. Ethier; J. P. Falgueyret; R. W. Friesen; M. Girard; Y. Girard; J. Guay; P. Tagari; R. N. Young. Biorg. Med. Chem. Lett. 1998, 8, 1255-1260. c) B. Kalluraya; S. Sreevinasa. Farmaco 1998, 53, 399-404. d) L. Strekowski; J. L. Mokrosz; V. A. Honkan; A. Czarny; M. T. Cegla; R. L. Wydra; S. E. Patterson; R. F. Schinazig. J. Med. Chem. 1991, 34, 1739-1746. e). M. P. Maguire; K. R. Sheets; K. McVety; A. P. Spada; A. Zilberstein J. Med. Chem. 1994, 37, 2129-2137.

[37] Crystallographic data of compounds 4-3a was deposited at Cambridge Crystallographic Data Center: compound 4-3a: CCDC 1911477.
[38] a) Compound (4-5a)-(4-5b): A. G. Griesbeck, M. Franke, J. Neudorfl, H. Kotaka, Beilstein J. Org. Chem. 2011, 7, 127–134; b) Compound (4-5c): T. V. Hansen, P. Wu, V. V. Fokin, J. Org. Chem., 2005, 70, 7761-7764.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *