|
References Chapter I: [1] (a) J. E. Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326; (b) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351; (c) A. S. K. Hashmi, M. Rudolph, Chem. Soc. Rev. 2008, 37, 1766; (d) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410; (e) L. Zhang, J. Sun, S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271. [2] For Au- and Pt-catalyzed cycloisomerizations of 1,n-enynes (n = 5-7), see selected examples: (a) J. E. Nunez, K. Molawi, A. M. Echavarren, Chem. Commun. 2009, 7327; (b) A. Furstner, P. Hannen, Chem. Eur. J. 2006, 12, 3006; (c) X. Linghu, J. J. Kennedy-Smith, F. D. Toste, Angew. Chem. Int. Ed. 2007, 46, 7671; (d) A. S. K. Hashmi, L. Ding, J. W. Bats, P. Fischer, W. Frey, Chem. Eur. J. 2003, 9, 4339; (e) L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2005, 127, 6962; (f) J. M. Tang, S. Bhunia, S. M. A. Sohel, M. Y. Lin, H. Y. Liao, S. Datta, A. Das, R.-S. Liu, J. Am. Chem. Soc. 2007, 129, 15677; (g) F. Gagosz, Org. Lett. 2005, 7, 4129; (h) C. Nieto-Oberhuber, M. P. Munoz, E. Bunuel, C. Nevado, J. Cardenas, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 2402. [3] For reviews for gold and platinum catalyzed enyne cycloisomerization, see: (a) C. Aubert, O. Buisine, M. Malacria, Chem. Rev. 2002, 102, 813; (b) C. Bruneau, Angew. Chem. Int. Ed. Engl. 2005, 44, 2328; (c) S. Ma, S. Yu, Z. Gu, Angew. Chem. Int. Ed. Engl. 2006, 45, 200; (d) V. Michelet, P. Y. Toullec, J.-P. Genet, Angew. Chem.. Int. Rd. Engl. 2008, 47, 4268; (e) S. I. Lee, N. C. Chatani, Chem. Commum. 2009, 371. [4] For reviews, see: (a) B. M. Trost, F. D. Toste, A. B. Pinkerton, Chem. Rev. 2001, 101, 2067; (b) B. M. Trost, M. J. Krische, Synlett. 1998, 1; (c) G. C. Lloyd-Jones, Org. Biomol. Chem. 2003, 1, 215; (d) B. M. Trost, Chem. Eur. J. 1998, 4, 2405; (e) I. Ojima, M. Tzamarioudaki, Z. Y. Li, R. J. Donovan, Chem. Rev. 1996, 96, 635. [5] For reviews, see: (a) J. L. Templeton, Adv. Organomet. Chem. 1989, 29, 1; (b) P. B. Baker, Adv. Organomet. Chem. 1996, 40, 45; for an Os complex with an η4-alkyne ligand as an exception, see: (c) J. J. Carbo, P. Crochet, M. A. Esteruelas, Y. Jean, A. Lledos, A. M. Lopez, E. Onate, Organometallics 2002, 21, 305. [6] E. O. Greaves, J. L. Lock, P. M. Maitlis, Can. J. Chem. 1968, 46, 3879. [7] (a) P. Pyykko, J.-P. Desclaux, Acc. Chem. Res. 1979, 12, 276; (b) P. Pyykko, Science 2000, 290, 64; (c) P. Pyykko, Angew. Chem. Int. Ed. 2002, 41, 3573; (d) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395. [8] L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals; an Introduction to Modern Structural Chemistry, 3rd edn., Cornell University Press: N. Y. Ithaca, 1960. [9] (a) M. H. Chisholm, H. C. Clark. Acc. Chem. Res. 1973, 6, 202; (b) N. Mezailles, L. Ricard, F. Mathey, P. L. Floch, Eur. J. Inorg. Chem. 1999, 2233; (c) H. Willner, J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter, F. Aubke, J. Am. Chem. Soc. 1992, 114, 8972. [10] For selected examples, see: (a) B. M. Trost, M. Lautens, J. Am. Chem. Soc. 1985, 107, 1781; (b) B. M. Trost, M. Lautens, Tetrahedron Lett. 1985, 26, 4887; (c) B. M. Trost, Acc. Chem. Res. 1990, 23, 34; (d) B. M. Trost, G. J. Tanoury, J. Am. Chem. Soc. 1988, 110, 1636; (e) B. M. Trost, M. Lautens, C. Chan, D. J. Jebaratnam, T. Mueller, J. Am. Chem. Soc. 1991, 113, 636; (f) B. M. Trost, C. Pedregal, J. Am. Chem. Soc. 1992, 114, 7292; (g) B. M. Trost, G. J. Tanoury, M. Lautens, C. Chan, D. T. MacPherson, J. Am. Chem. Soc. 1994, 116, 4255; (h) B. M. Trost, D. L. Romero, F. Rise, J. Am. Chem. Soc. 1994, 116, 4268. [11] N. Chatani, T. Morimoto, T. Muto, S. Murai, J. Am. Chem. Soc. 1994, 116, 6049. [12] Reviews: (a) S. T. Diver, A. J. Giessert, Chem. Rev. 2004, 104, 1317; (b) A. M. Echavarren, C. Nevado, Chem. Soc. Rev. 2004, 33, 431. [13] (a) M. Mendez, M. P. Munoz, C. Nevado, D. J. Cardenas, A. M. Echavarren, J. Am. Chem. Soc. 2001, 123, 10511; (b) C. Nevado, J. Cardenas, A. M. Echavarren, Chem. Eur. J. 2003, 9, 2627; (c) M. P. Munoz, J. Adrio, J. C. Carretero, A. M. Echavarren, Organometallics 2005, 24, 1293. [14] S. Oi, I. Tsukamoto, S. Miyano, Y. Inoue, Organometallics 2001, 20, 3704. [15] (a) E. J. Nunez, C. K. Claverie, C. N. Oberhuber, A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5452; (b) L. E. Overman, L. D. Pennington, J. Org.Chem. 2003, 68, 7143; (c) R. Jasti, C. D. Anderson, S. D. Rychnovsky, J. Am. Chem. Soc. 2005, 127, 9939; (d) R. W. Alder, J. N. Harvey, M. T. Oakley, J. Am. Chem. Soc. 2002, 124, 4960; (e) S. D. Rychnovsky, S. Marumoto, J. J. Jaber, Org. Lett. 2001, 3, 3815. [16] M. Schelwies, A. L. Dempwolff, F. Rominger, G. Helmchen, Angew. Chem. Int. Ed. 2007, 46, 5598. [17] (a) C. H. M. Amijs, C. Ferrer, A. M. Echavarren, Chem. Commun. 2007, 698; (b) C. A. Witham, P. MauleOn, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838; (c) A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223; (d) A. Padwa, G. E. Fryxell, L. Zhi, J. Am. Chem. Soc. 1990, 112, 3100. [18] (a) A. S. K. Hashmi, M. Rudolph, J. P. Weyrauch, M. Wolfle, W. Frey, J. W. Bats, Angew. Chem. Int. Ed. 2005, 44, 2798; (b) A. S. K. Hashmi, M. C. Blanco, E. Kurpejovic, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709. [19] S. A. Gawade, S. Bhunia, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 7835. [20] P. Aschwanden, D. E. Frantz, E. M. Carreira, Org. Lett. 2000, 2, 2331. [21] H. S. Yeom, E. So, S. Shin, Chem. Eur. J. 2011, 17, 1764. [22] Q. Zeng, L. Zhang, J. Yang, B. Xu, Y. Xiao, J. Zhang, Chem. Commun. 2014, 50, 4203. [23] (a) N. Bongers, N. Krause, Angew. Chem. Int. Ed. 2008, 47, 2178; (b) N. Krause, V. Belting, C. Deutsch, J. Erdsack, H. T. Fan, B. Gockel, A. R, Hoffmann, N. Morita, F. Volz, Pure Appl. Chem. 2008, 80, 1063; (c) R. A. Widenhoefer, Chem. Eur. J. 2008, 14, 5382; (d) V. Gandon, G. Lemiere, A. Hours, L. Fensterbank, M. Malacria, Angew. Chem. Int. Ed. 2008, 47, 7534. [24] C. Winter, N. Krause, Angew. Chem. Int. Ed. 2009, 48, 6339. [25] Y. Wang, L. Ye, L. Zhang, Chem. Commun. 2011, 47, 7815. [26] Y. Wang, L. Liu, L. Zhang, Chem. Sci. 2013, 4, 739. [27] D. B. Huple, B. D. Mokar, R.-S. Liu, Angew. Chem. Int. Ed. 2015, 54, 14924. [28] M. P. Sibi, M. Liu, Org. Lett. 2001, 3, 4181. [29] D.-L. Mo, D. J. Wink, L. L. Anderson, Chem. Eur. J. 2014, 20, 13217. [30] Selected reviews: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products (Eds.: A. Padwa, W. H. Pearson,), Wiley, New York, 2002; (b) L. M. Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887; (c) K. V. Gothelf, K. A. Jøgensen, Chem. Rev. 1998, 98, 863; (d) F. Cardona, A. Goti, Angew. Chem. Int Ed. 2005, 44, 7832. [31] (a) J. Hames, A. Macaluso, Chem. Rev. 1964, 64, 473; (b) B. B. Snider, H. Lin, B. M. Foxman, J. Org. Chem. 1998, 63, 6442; (c) S. Torrente, B. Noya, V. Branchadell, R. Alonso, J. Org. Chem. 2003, 68, 4772; (d) I. A. Grigorev, Oxides, Nitrones and Nitronates in Organic Synthesis, H. Feuer, Ed. Wiley: Hoboken, 2008, 129. [32] (a) J. Y. Pfeiffer, A. M. Beauchemin, J. Org. Chem. 2009, 74, 8381; (b) T. B. Nguyen, A. Martel, R. Dhai, G. Dujardin, Org. Lett. 2008, 10, 4493; (c) E. Winterfeldt, W. Krohn, H. Stracke, Chem. Ber. 1969, 102, 2346; (d) A. Pernet-Poil-Chevrier, F. Cantagrel, K. Le Jeune, C. Philouze, P. Y. Chavant, Tetrahedron Asymmetry, 2006, 17, 1969; (e) F. Cantagrel, S. Pinet, Y. Gimbert, P. Y. Chavant, Eur. J. Org. Chem. 2005, 2694. [33] (a) A. Padwa, D. N. Kline, B. H. J. Norman, Org. Chem. 1989, 54, 810; (b) J. J. Tufarriello, S. A. Asrof Ali, H. O. Klingele, J. Org. Chem. 1979, 44, 4213. [34] (a) L. L. Anderson, M. A. Kroc, T. W. Reidl, J. Son, J. Org. Chem. 2016, 81, 9521 (review). (b) S. Blechert, Liebigs Ann. Chem. 1985, 673; (c) D.-L. Mo, D. J. Wink, L. L. Anderson, Chem. Eur. J. 2014, 20, 13217; (d) J. Wilkens, A. Kuhling, S. Blechert, Tetrahedron 1987, 43, 3237; (e) R. R. Singh, R.-S. Liu, Chem. Commun. 2014, 50, 15864. [35] Cycloadditions of electron-deficient allenes with trisubstituted nitrones bearing two electron-withdrawing groups were recently reported, see: M. Garcia-Castro, L. Kremer, C. D. Reinkemeier, C. Unkelbach, C. Strohmann, S. Ziegler, C. Ostermann, K. Kumar, Nat. Commun. 2015, 6, 6516. [36] (a) D. B. Huple, B. D. Mokar, R.-S. Liu, Angew. Chem. Int. Ed. 2015, 54, 14924; (b) B. D. Mokar, D. B. Huple, R.-S. Liu, Angew. Chem. Int. Ed. 2016, 55, 11892. [37] (a) M. H. M. Sharaf, P. L. Jr. Schiff, A. N. Tackie, C. H. Jr. Phoebe, A. O. Davis, C. W. Andrews, R. C. Crouch, G. E. Martin, J. Hetereocycl. Chem. 1995, 32, 1631; (b) F. Waetjen, B. H. Dahl, J. Drejer, L. H. Jensen, (NeuroSearch A/S, Den). Application: US, 1995, 8 pp Cont-in-part of US 5, 242, 918; (c) M. Carril, R. SanMartin, E. Dominguez, I. Tellitu, Tetrahedron 2007, 63, 690; (d) H. Ogawa, K. Kondo, H. Yamashita, K. Kan, M. Tominaga, Y. Yabuuchi, (Otsuka Pharmaceutical Co., Ltd., Japan). Application: WO, 1994, 159 pp. (e) S. Gómez-Ayala, J. A. Castrillón, A. Palma, S. M. Leal, P. Escobar A. Bahsas, Bioorganic & Medicinal Chemistry 2010, 18, 4721; (f) T. Seko, S. Katsumata, M. Kato, J.-I. Manako, K. Ohmoto, (Ono Pharmaceutical Co., Ltd., Japan). Application: WO, 2003, 222 pp. [38] Crystallographic data of compounds 1-3g, 1-3o and 1-3p were deposited at Cambridge Crystallographic Data Center: 1-3g (CCDC 1567416), 1-3o (CCDC 1567417) and 1-3p (CCDC 1568212). [39] (a) R. M. Beesley, C. K. Ingold, J. F. Thorpe, J. Chem. Soc. Trans. 1915, 107, 1080; (b) M. E. Jung, G. Piizzi, Chem. Rev. 2005, 105, 1735; (c) J. Kaneti, A. J. Kirby, A. H. Koedjikov, I. G. Pojarlieff, Org. Biomol. Chem. 2004, 2, 1098; (d) S. M. Bachrach, J. Org. Chem. 2008, 73, 2466. [40] Recent review for gold-catalyzed N,O-functionalizations of alkynes, see: D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Synth. Catal. 2016, 358, 1348. [41] For gold-catalyzed intermolecular reactions of N-hydroxyamines with alkynes or allenes, see: (a) Y. Wang, L. Ye, L. Zhang, Chem. Commun. 2011, 47, 7815; (b) Y. Wang, L. Liu, L. Zhang, Chem. Sci. 2013, 4, 739; (c) R. K. Kawade, P.-H. Huang, S. N. Karad, R.-S. Liu, Org. Biomol. Chem. 2014, 12, 737; (d) J.-M. Chen, C.-J. Chang, Y.-J. Ke, R.-S. Liu, J. Org. Chem. 2014, 79, 4306.
References Chapter II: [1] For recent reviews, see: (a) E. Jimenez-Nunez, A. M. Echavarren, Chem. Commun., 2007, 333; (b) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896; (c) A. Hoffmann-Roder, N. Krause, Org. Biomol. Chem. 2005, 3, 387. [2] For selected examples, see: (a) J. R. Manning, H. M. Davies, J. Am. Chem. Soc. 2008, 130, 8602; (b) K. C. Coffman, T. A. Palazzo, T. P. Hartley, J. C. Fettinger, D. J. Tantillo, M. J. Kurth, Org. Lett. 2013, 15, 2062; (c) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265; (d) H. Kawai, K. Tachi, E. Tokunaga, M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 2011, 50, 7803; (e) X. L. Liu, W. Y. Han, X. M. Zhang, W. C. Yuan, Org. Lett. 2013, 15, 1246; (f) H. Takikawa, A. Takada, K. Hikita, K. Suzuki, Angew. Chem. Int. Ed. 2008, 47, 7446; (g) X. Lei, M. Gao, Y. Tang, Org. Lett. 2016, 18, 4990; (h) E. E. Galenko, A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, RSC Adv. 2015, 5, 18172; (i) S. Pusch, T. Opatz, Org. Lett. 2014, 16, 5430. [3] See selected review for gold-catalyzed N-oxide reactions: (a) L. Zhang, Acc. Chem. Res. 2014, 47, 877; (b) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966; (c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev., 2016, 45, 4448; (d) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533. [4] X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J. 2015, 10, 1854. [5] Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett. 2017, 19, 1020. [6] H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794. [7] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026. [8] (a) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028; (b) F. López, J. L. Mascareñas, Beilstein J. Org. Chem. 2011, 7, 1075; (c) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (d) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066; (e) D. Qian, J. Zhang, Chem. Rec. 2014, 14, 280. [9] For bioactive molecules containing pyrrole cores, see: (a) V. Estvez, M. Villacampa, J. C. Menndez, Chem. Soc. Rev. 2014, 43, 4633; (b) M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org. Chem. 2011, 7, 442; (c) J. R. Carson, R. J. Carmosin, P. M. Pitis, J. L. Vaught, H. R. Almond, J. P. Stables, H. H. Wolf, E. A. Swinyard, H. S. White, J. Med. Chem. 1997, 40, 1578; (d) M. B. Wallace, M. E. Adams, T. Kanouni, C. D. Mol, D. R. Dougan, V. A. Feher, S. M. OQConnell, L. Shi, Q. Dong, Bioorg. Med. Chem. Lett. 2010, 20, 4156. [10] For bioactive molecules containing imidazo[1,2-a]pyridine cores, see: (a) S. Z. Langer, S. Arbilla, J. Benavides, B. Scatton, Adv. Biochem. Psychopharmacol. 1990, 46, 61; (b) R. J. Boerner, H. J. Moller, Psychopharmakother. 1997, 4, 145; (c) K. Gudmundsson, S. D. Boggs, PCT Int. Appl. WO2006026703, 2006. [11] For a 1,5-acyl shift, see: (a) W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811; (b) D. Leboeuf, A. Simonneau, C. Aubert, M. Malacria, V. Gandon, L. Fensterbank, Angew. Chem. Int. Ed. 2011, 50, 6868; (c) W. Rao, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 3183. [12] M.-H. Tsai, C.-Y. Wang, A. S. K. Raj, R.-S. Liu, Chem. Commun. 2018, 54, 10866. [13] R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806. [14] S. S. Giri and R.-S. Liu, Chem. Sci., 2018, 9, 2991. [15] (a) S. M. Wang, L. Zhang, Org. Lett. 2006, 8, 4585; (b) G. Li, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2008, 130, 3704; (c) S. B. Wagh, R. S. Liu, Chem. Commun. 2015, 51, 15462; (d) R. Chaudhuri, A. Das, H. Y. Liao, R. S. Liu, Chem. Commun. 2010, 46, 4601. [16] H.-C. Hsieh, K.-C. Tan, A. S. K. Raj, R.-S. Liu, Chem. Commun., 2019, 55, 1979. [17] For gold-catalyzed annulations or cycloaddition reactions of alkynes, see selected reviews: a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; b) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; c) S. Md. Abu Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269; d) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066. [18] For catalytic reactions of isoxazoles and anthranils with alkynes, see selected reviews: (a) L. Li, T. D. Tan, Y.-Q. Zhang, X. Liu and L.-W. Ye, Org. Biomol. Chem. 2017, 5, 8483; (b) D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Synth. Catal., 2016, 358, 1348. [19] (a) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265; (b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J. 2015, 10, 1854; (c) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605; (d) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026; (e) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 12736. [20] (a) R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806; (b) Y.-C. Hsu, S.-A. Hsieh, P.-H. Li, R.-S. Liu, Chem. Commun. 2018, 54, 2114. [21] (a) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794; (b) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 12688; (c) Z. Zeng, H. Jin, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2018, 57, 16549. [22] For the medicinal chemistry of indolizines, see a leading review: V. Sharma, V. Kumar, Med. Chem. Res. 2014, 23, 3593. [23] (a) D. Yang, Y. Yu, Y. Wu, H. Feng, X. Li, H. Cao, Org. Lett. 2018, 20, 2477; (b) G. S. Singh, E. E. Mmatli, Eur. J. Med. Chem. 2011, 46, 5237; (c) B. V. M. Teodoro, J. T. M. Correia, F. Coelho, J. Org. Chem. 2015, 80, 2529; (d) J. P. Michael, Nat. Prod. Rep. 2008, 25, 139. [24] (a) B. Shen, B. Li, B. Wang, Org. Lett. 2016, 18, 2816; (b) T. Lepitre, R. Le Biannic, M. Othman, A. M. Lawson, A. Daïch, Org. Lett. 2017, 19, 1978; (c) B. Sadowski, J. Klajin, D.T. Gryko, Org. Biomol. Chem. 2016, 14, 7804. [25] A. I. Nasir, L.-L. Gundersen, F. Rise, O. Antonsen, T. Kristensen, B. Langhelle, A. Bast, I. Custers, G. R. M. M. Haenen, H. Wikstrom, Bioorg. Med. Chem. Lett. 1998, 8, 1829. [26] H.-C. Hsieh, K.-C. Tan, A.S.K. Raj, R.-S. Liu, Chem. Commun. 2019, 55, 1979. [27] Crystallographic data of compounds 2-3c, 2-3d, 2-3l, 2-5b, 2-5j and 2-7b were deposited at Cambridge Crystallographic Data Center: 2-3c (CCDC 1894127), 2-3d (CCDC 1894128), 2-3l (CCDC 1894129), 2-5b (CCDC 1894126), 2-5j (CCDC 1894125) and 2-7b (CCDC 1913325). [28] We recently reported a nucleophilic attack of alkyne at gold--allene to yield vinyl cation that was trapped with water; the reaction scheme is shown below. Our proposed mechanism is similar to this process. See: C.-Y. Yang, G.-Y. Lin, H.-Y. Liao, S. Datta, R.-S. Liu, J. Org. Chem. 2008, 73, 4907.
[29] For the reactions of isoxazoles and gold carbenes, see a recent example: B. D. Mokar, P. D. Jadhav, Y. B. Pandit, R.-S. Liu, Chem. Sci. 2018, 9, 4488. [30] (a) D. G. Hulcoop, M. Lautens, Org. Lett. 2007, 9, 1761; (b) F.-S. Wu, H.-Y. Zhao, Y.-L. Xu, K. Hu, Y.-M. Pan, X.-L. Ma, J. Org. Chem., 2017, 82, 4289; (c) C.-L. Ma, J.-H. Zhao, Y. Yang, M.-K. Zhang, C. Shen, R. Sheng, X.-W. Dong, Y.-Z Hu, Sci. Rep. 2017, 7, 16640; (d) S. Teklu, L-L. Gundersen, T. Larsen, K. E. Malterud, F. Rise, Bioorg. Med. Chem. Lett. 2005, 13, 3127. [31] For generation of -imino gold carbenes with other nitrene sources, see selected examples: (a) R. J. Reddy, M. P. B. Jones, P. W. Davies, Angew. Chem. Int. Ed. 2017, 56, 13310; (b) P. W. Davies, A. Cremonesi and L. Dumitrescu, Angew. Chem. Int. Ed. 2011, 50, 8931; (c) E. Chatzopoulou, P. W. Davies, Chem. Commun. 2013, 49, 8617; (d) L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30; (e) S. K. Pawar, R. L. Sahani, R. S. Liu, Chem. Eur. J. 2015, 21, 10843. [32] D. Xu, Z. Li, S. Ma, Tetrahedron Asymmetry 2003, 14, 3657. [33] A. D. Becke, Phys. Rev. A 1988, 38, 3098. [34] A. D. Becke, J. Chem. Phys. 1993, 98, 5648. [35] C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. [36] D. J. Tannor, B. Marten, R. Murphy, R. A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda, W. A. Goddard, B. Honig, J. Am. Chem. Soc. 1994, 116, 11875. [37] B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff, B. Honig, J. Phys. Chem. 1996, 100, 11775.
References Chapter III: [1] (a) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; (b) A. Fürstner, P. W. Davies, Angew Chem. Int. Ed. 2007, 46, 3410; (c) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; (d) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244; (e) J.-J. Lian, P.-C. Chen, Y.-P. Lin, H.-J. Ting, R.-S. Liu, J. Am. Chem. Soc. 2006, 128, 11372; (f) G. Zhang, L. Zhang, J. Am. Chem. Soc. 2008, 130, 12598. [2] For cycloaddition reactions of alkynes see: (a) P. A. Wender, H. Takahashi, B. Witulskilb, J. Am. Chem. Soc. 1995, 117, 4720; (b) S. Kotha, E. Brahmachary, Kakali Lahiri, Eur. J. Org. Chem. 2005, 4741; (c) B. Heller, M. Hapke, Chem. Soc. Rev. 2007, 36, 1085; (d) P. A. Wender, T. M. Pedersen, M. J. C. Scanio, J. Am. Chem. Soc. 2002, 124, 15154; (e) M. Babazadeh, S. Soleimani-Amiri, E. Vessally, A. Hosseiniand, L. Edjlali, RSC Adv. 2017, 7, 43716; (f) K. Tanaka, Chem. Asian J. 2009, 4, 508; (g) G. Domínguez, J. Pérez-Castells, Chem. Soc. Rev. 2011, 40, 3430; (h) H. U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151; (i) D. I. Schuster, G. Lem, N. A. Kaprinidis, Chem. Rev. 1993, 93, 3; (j) J. D. Winkler, C. M. Bowen, F. Liotta, Chem. Rev. 1995, 95, 2003; (k) K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863; (l) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765; (m) G. Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484; (n) F. López, J. L. Mascareñas, Beilstein J. Org. Chem. 2011, 7, 1075. [3] (a) A. L. Siva-Kumari, A. S. Reddy, K. C. Kumaraswamy, Org. Biomol. Chem. 2016, 14, 6651; (b) N. Asao, Synlett 2006, 11, 1645; (c) J. Maa, L. Zhangb, S. Zhua, Curr. Org. Chem. 2016, 20, 102; (d) L. Chen, K. Chen, S. Zhu, Chem 2018, 4, 1. [4] (a) J. P. Michael, Nat. Prod. Rep. 2002, 19, 742; (b) J. P. Michael, Nat. Prod. Rep. 2003, 20, 476; (c) J. P. Michael, Nat. Prod. Rep. 2004, 21, 650; (d) J. P. Michael, Nat. Prod. Rep. 2005, 22, 627; (e) M. G. Moloney Nat Prod Rep. 2002; 19, 597; (f) Y. L. Lin, C.-C. Shen, Y.-J. Huang, Y.-Y. Chang, J Nat Prod. 2005, 68, 381; (g) Y. Wang, X. Shang, S. Wang, J Nat Prod. 2007, 70, 296; (h) K. Trisuwan, N. Khamyhong, V. Rukachaisirikul, S. Phongpaichit, S. Preedanon, J. Sakayaroj, J. Nat. Prod. 2010, 73, 1507. [5] N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 764. [6] (a) J. Barluenga, H. V. Villa, A. Ballesteros, J. M. Gonza´lez, J. Am. Chem. Soc. 2003, 125, 9028; (b) F.-H. Li, J. Li, S.-Y. Wang, S.-J. Ji, Tetrahedron 2017, 73, 5731. [7] (a) S. Mondal, T. Nogami, N. Asao, Y. Yamamoto, J. Org. Chem. 2003, 68, 9496; (b) N.T. Patil, Y. Yamamoto J. Org. Chem. 2004, 69, 5139; (c) T. Godet, C. Vaxelaire, C. Michel, A. Milet, P. Belmont, Chem. Eur. J. 2007, 13, 5632; (d) S.Handa, L. M. Slaughter, Angew. Chem. Int. Ed. 2012, 51, 2912; (e) A. Kotera, J. I. Uenishi, M. Uemura, Tetrahedron Lett. 2010, 51, 1166; (f) L. -P. Liu, G. B. Hammond, Org. Lett. 2010, 12, 4640; (g) D. Yue, N. D. Ca´, R. C. Larock, J. Org. Chem. 2006, 71, 3381. [8] (a) G. Dyker, D. Hildebrandt, J. Liu, K. Merz, Angew. Chem. Int. Ed. 2003, 42, 4399; (b) A. K. Verma, D. Choudhary, R. K. Saunthwal, V. Rustagi, M. Patel, R. K. Tiwari J. Org. Chem. 2013, 78, 6657. [9] X. Yu, Q. Ding, W. Wang, J. Wu, Tetrahedron Lett. 2008, 49, 4390. [10] X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953. [11] (a) S. Bhunia, K.-C. Wang, R.-S. Liu, Angew. Chem. Int. Ed. 2008, 47, 5063; (b) N. Asao, C. S. Chan, K. Takahashi, Y. Yamamoto, Tetrahedron 2005, 61, 11322. [12] (a) A.B. Beeler, S. Su, C. A. Singleton, J. A. Porco Jr, J. Am. Chem. Soc. 2007, 129, 1413; (b) D. Malhotra, L.-P. Liu, M. S. Mashuta, G.B. Hammond. Chem. Eur. J. 2013, 19, 4043. [13] (a) M. Terada, F. Li, Y. Toda, Angew. Chem. Int. Ed. 2014, 53, 235; (b) K. Saito, Y. Kajiwara, T. Akiyama, Angew. Chem. Int. Ed. 2013, 52, 13284. [14] (a) G. Mariaule, G. Newsome, P. Y. Toullec, P. Belmont, V. Michelet, Org. Lett. 2014, 16, 4570; (b) B. Ouyang, J. Yuan, Q. Yang, Q. Ding, Y Peng, J. Wu, Heterocycles 2011, 82, 1239; (c) R.-Y. Tang, J.-H. Li, Chem. Eur. J. 2010, 16, 4733; (d) H. Wang, X. Han, X. Lu, Chin. J. Chem. 2011, 29, 2611; (e) P.Y. Toullec, E. Genin, L. Leseurre, J.-P. Genet, V. Michelet, Angew. Chem. Int. Ed. 2006, 45, 7427; (f) G. Qiu, T. Liu, Q. Ding, Org. Chem. Front. 2016, 3, 510. [15] (a) N. Asao, K. Takahashi, S. Lee, T. Kasahara, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 12650; (b) R. Umeda, N. Ikeda, M. Ikeshita, K. Sumino, S. Nishimura, Y. Nishiyama, Bull. Chem. Soc. Jpn. 2017, 90, 213; (c) R. Umeda, H. Tabata, Y. Tobe, Y. Nishiyama, Chem. Lett. 2014, 43, 883; (d) J. Zhang, Y. Xiao, K. Chen, W. Wu, H. Jiang, S. Zhua, Adv. Synth. Catal. 2016, 358, 2684; (e) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 42, 3504; (f) S. Zhu, L. Hu, H. Jiang, Org. Biomol. Chem. 2014, 12, 4104; (g) S. Zhu, X. Huang, T.-Q. Zhao, T. Ma, H. Jiang, Org. Biomol. Chem. 2015, 13, 1225. [16] (a) H. Kusama, H. Funami, M. Shido, Y. Hara, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 2709; (b) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458. [17] N. Asao, H. Aikawa, J. Org. Chem. 2006, 71, 5249. [18] (a) N. Asao, K. Iso, S. Yudha, Org. Lett. 2006, 8, 4149; (b) P.C. Too, S. Chiba, Chem. Commun. 2012, 48, 7634; (c) V. Rustagi, T. Aggarwal, A. K. Verma, Green Chem. 2011, 13, 1640; (d) M. E. Domaradzki, Y. Long, Z. She, X. Liu, G. Zhang, Y. Chen, J. Org. Chem. 2015, 80, 11360; (e) M. Yu, Y. Wang, C.-J. Li, X. Yao, Tetrahedron Lett. 2009, 50, 6791. [19] (a) N. Asao, T. Shimada, Y. Yamamoto, J. Am. Chem. Soc. 2001, 123, 10899; (b) N. Asao, Y. Yamamoto, Bull. Chem. Soc. Jpn. 2000, 73, 1071. [20] Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090. [21] V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728. [22] E. J. Raczyńska, W. Kosińska, B. Osmialowski, R. Gawinecki, Chem. Rev. 2005, 105, 3561. [23] X. Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402. [24] A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809. [25] For reviews, see: a) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Wiley, New York, 1998; b) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981; c) Q.-Q. Cheng, M. P. Doyle, Adv. Organomet. Chem. 2016, 66, 1; d) N. J. Thumar, Q. Wei, W. Hu, Adv. Organomet. Chem. 2016, 66, 33. [26] a) Q.-Q. Cheng, Y. Yu, J. Yedoyan, M. P. Doyle, ChemCatChem 2018, 10, 488; b) Q.-Q. Cheng, Y. Deng, M. Lankelma, M. P. Doyle, Chem. Soc. Rev. 2017, 46, 5425; c) E. López, S. González-Pelayo, L. A. López, Chem. Rec. 2017, 17, 312. [27] a) V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2015, 54, 4923; b) Y. Deng, L. A. Massey, Y. A. Rodriguez Núñez, H. Arman, M. P. Doyle, Angew. Chem. Int. Ed. 2017, 56, 12292; c) Q.-Q. Cheng, M. Lankelma, D. Wherritt, H. Arman, M. P. Doyle, J. Am. Chem. Soc. 2017, 139, 9839; d) G. Xu, C. Zhu, W. Gu, J. Li, J. Sun, Angew. Chem. Int. Ed. 2015, 54, 883; e) A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809; f) X. Xu, W.-H. Hu, M. P. Doyle, Angew. Chem. Int. Ed. 2011, 50, 6392. [28] a) X. Wang, X. Xu, P. Y. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402; b) J. Barluenga, L. Riesgo, L. A. López, E. Rubio, M. Tomás, Angew. Chem. Int. Ed. 2009, 48, 7569; c) X. Xu, P. Y. Zavalij, M. P. Doyle, Chem. Commun. 2013, 49, 10287; d) Y. Lian, H. M. L. Davies, J. Am. Chem. Soc. 2010, 132, 440; e) J. Barluenga, G. Lonzi, L. Riesgo, L. A. López, M. Tomás, J. Am. Chem. Soc. 2010, 132, 13200; f) V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728; g) E. López, J. González, L. A. López, Adv. Synth. Catal. 2016, 358, 1428. [29] a) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090; b) X.-Z. Shu, S.-C. Zhao, K.-G. Ji, Z.-J. Zheng, X.-Y. Liu, Y.-M. Liang, Eur. J. Org. Chem. 2009, 117; c) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 42, 3504; d) H. Kusama, H. Funami, N. Iwasawa, Synthesis 2007, 2014; e) H. Kusama, H. Funami, J. Takaya, N. Iwasawa, Org. Lett. 2004, 6, 605; f) H. Kusama, H. Funami, M. Shido, Y. Hara, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 2709; g) N. Iwasawa, M. Shido, H. Kusama, J. Am. Chem. Soc. 2001, 123, 5814. [30] a) N. Asao, K. Sato, Org. Lett. 2006, 8, 5361; b) D. Hildebrandt, W. Hüggenberg, M. Kanthak, T. Plöger, I. M. Müller, G. Dyker, Chem. Commun. 2006, 2260; c) N. Asao, K. Sato, Menggenbateer, Y. Yamamoto, J. Org. Chem. 2005, 70, 3682; d) B. F. Straub, Chem. Commun. 2004, 1726; e) N. Asao, T. Nogami, S. Lee, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 10921; f) N. Asao, K. Takahashi, S. Lee, T. Kasahara, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 12650; g) N. Asao, H. Aikawa, J. Org. Chem. 2006, 71, 5249; h) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458. [31] a) Z.-Q. Rong, L.-C. Yang, S. Liu, Z. Yu, Y.-N. Wang, Z. Y. Tan, R.-Z. Huang, Y. Lan, Y. Zhao, J. Am. Chem. Soc. 2017, 139, 15304; b) L.-C. Yang, Z.-Q. Rong, Y.-N. Wang, Z. Y. Tan, M. Wang, Y. Zhao, Angew. Chem. Int. Ed. 2017, 56, 2927; c) P. Das, S. Gondo, P. Nagender, H. Uno, E. Tokunaga, N. Shibata, Chem. Sci. 2018, 9, 3276. [32] A. Schmidt, A. Beutler, B. Snovydovych, Eur. J. Org. Chem. 2008, 4073. [33] a) Y.Suzuki, S. Oishi, Y. Takei, M. Yasue, R. Misu, S. Naoe, Z. Hou, T. Kure, I. Nakanishi, H. Ohno, A. Hirasawa, G. Tsujimoto, N. Fujii, Org. Biomol. Chem. 2012, 10, 4907; b) H. K. Maurya, R. Verma, S. Alam, S. Pandey, V. Pathak, S. Sharma, K. K. Srivastava, A. S. Negi, A. Gupta, Bioorg. Med. Chem. Lett. 2013, 23, 5844. [34] a) G. Murineddu, S. Ruiu, J. M. Mussinu, G. Loriga, G. E. Grella, M. A. M. Carai, P. Lazzari, L. Pani, G. A. Pinna, Bioorg. Med. Chem. 2005, 13, 3309; b) S. Schenone, O. Bruno, A. Ranise, C. Brullo, F. Bondavalli, W. Filippelli, F. Mazzeo, A. Capuano, G. Falcone, Farmaco 2003, 58, 845. [35] CCDC 1910266, 1910268, and 1910267 (3-3a, 3-3d, and 3-9’) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. [36] J. A. Moore, R. W. Medeiros, J. Am. Chem. Soc. 1959, 81, 6026. [37] a) R. Huisgen, Angew. Chem. Int. Ed. Engl. 1980, 19, 947; b) H. Dürr, Angew. Chem. Int. Ed. Engl. 1989, 28, 413; c) K. Sharma, J. R. Wolstenhulme, P. P. Painter, D. Yeo, F. Grande-Carmona, C. P. Johnston, D. J. Tantillo, M. D. Smith, J. Am. Chem. Soc. 2015, 137, 13414; d) J. L. Vicario, D. Badia, ChemCatChem 2010, 2, 375; e) C. W. Shoppee, G. N. Henderson, J. Chem. Soc. Chem. Commun. 1974, 561. [38] The mechanisms of formation of compounds 3-3a’ and 3-11 were provided in Supporting Information (3.6.6 and 3.6.7). [39] a) A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M. Rudolph, F. Rominger, Adv. Synth. Catal. 2012, 354, 555; b) S. Manojveer, R. Balamurugan, Chem. Commun. 2014, 50, 9925; c) P. C. Too, S. Chiba, Chem. Commun. 2012, 48, 7634; d) D. Lehnherr, J. M. Alzola, E. B. Lobkovsky, W. R. Dichtel, Chem. Eur. J. 2015, 21, 18122; e) Z. Cao, H. Zhu, X. Meng, L. Tian, X. Sun, G. Chen, J. You, Chem. Eur. J. 2016, 22, 9125, f) T. Lauterbach, S. Gatzweiler, P. Nösel, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv. Synth. Catal. 2013, 355, 2481; g) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090; h) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458; i) M. Kitamura, Y. Moriyasu, T. Okauchi, Synlett 2011, 643. [40] a) F. J. Sarabia, Q. Li, E. M. Ferreira, Angew. Chem., Int. Ed. 2018, 57, 11015; b) A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809. [41] A. Dagar, S. Biswas, S. M. Mobin, S. Samanta, Tetrahedron Lett. 2016, 57, 3326.
References Chapter IV: [1] For reviews, see: a) Handbook of Cyclization Reactions (Ed.: S. Ma), Wiley-VCH, Weinheim, 2009; b) Science of Synthesis: Metal-Catalyzed Cyclization Reactions (Eds.: S. Ma, S. Gao), Thieme, New York, 2017. [2] For reviews, see: a) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Wiley, New York, 1998; b) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981; c) Q.-Q. Cheng, M. P. Doyle, Adv. Organomet. Chem. 2016, 66, 1; d) N. J. Thumar, Q. Wei, W. Hu, Adv. Organomet. Chem. 2016, 66, 33. [3] For reviews, see: a) Q.-Q. Cheng, Y. Deng, M. Lankelma, M. P. Doyle, Chem. Soc. Rev. 2017, 46, 5425; b) E. López, S. González-Pelayo, L. A. López, Chem. Rec. 2017, 17, 312. [4] H. M. L. Davies, L. M. Hodges J. Org. Chem. 2002, 67, 5683. [5] J. Barluenga, G. Lonzi, L. Riesgo, L. A. López, M. Tomas, J. Am. Chem. Soc. 2010, 132, 13200. [6] R. P. Reddy, H. M. L. Davies, J. Am. Chem. Soc. 2007, 129, 10312. [7] V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728. [8] X. Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402. [9] A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809. [10] M. P. Doyle, M. Yan, W. Hu, L. Gronenberg, J. Am. Chem. Soc. 2003, 125, 4692. [11] X. Xu, W.-H. Hu, P. Y. Zavalij, M. P. Doyle, Angew. Chem. Int. Ed. 2011, 50, 11152. [12] M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741. [13] J. F. Briones, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 13314. [14] Selected reviews: (a) H. M. L. Davies, D. Morton, Chem. Soc. Rev. 2011, 40, 1857; (b) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704; (c) J. R. Manning, H. M. L. Davies, Nature, 2008, 451, 417; (d) M. P. Doyle, M. A. McKervy, T. Ye, Modern Catalytic Method for Organic Synthesis with Diazo Compounds; John Wiley & Sons: Wiley; New York, 1998; (e) A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223. (f) H. M. L. Davies, J. R. Denton, Chem. Soc. Rev. 2009, 38, 3061; (g) Z. Zhang, J. Wang, Tetrahedron, 2008, 64, 6577. [15] Selected examples for carbocyclic cycloadducts, see: (a) J. F. Briones, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 13314; (b) Y. Liu, K. Bakshi, P. Zavalij, M. P. Doyle, Org. Lett. 2010, 12, 4304. (c) H. M. L. Davies, Adv. Cycloaddition 1999, 5, 119; (d) H. M. L. Davies, B. Xing, N. Kong, D. G. Stafford, J. Am. Chem. Soc. 2001, 123, 7461; (e) H. M. L. Davies, T. J. Clark, H. D. Smith, J. Org. Chem. 1991, 56, 3819; (f) J. P. Olson, H. M. L. Davies, Org. Lett. 2008, 10, 573; (g) L. Deng, A. J. Giessert, O. O. Gerlitz, X. Dai, S. T. Diver, H. M. L. Davies, J. Am. Chem. Soc. 2005, 127, 1342. [16] For oxacyclic cycloadducts, see: (a) X. Xu, W.-H. Hu, P. Y. Zavalij, M. P. Doyle, Angew. Chem. Int. Ed. 2011, 50, 11152. (b) H. M. L. Davies, G. Ahmed, M. R. Churchill, J. Am. Chem. Soc. 1996, 118, 16774. (c) M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741. [17] For azacyclic cycloadducts, see (a) M. P. Doyle, M. Yan, W. Hu, L. Gronenberg, J. Am. Chem. Soc. 2003, 125, 4692; (b) A. Padwa, Y. S. Kulkarni, Z. J. Zhang, J. Org. Chem. 1990, 55, 4144; (c) J. Barluenga, G. Lonzi, L. Riesgo, L. A. López, M. Tomas, J. Am. Chem. Soc. 2010, 132, 13200; (c) M. Yang, N. Jacobsen, W. Hu, L. S. Gronenberg, M. P. Doyle, J. T. Colyer, D. Bykowski, Angew. Chem. Int. Ed. 2004, 43, 6713; (d) X. Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402; (e) Y. Lian, H. M. L. Davies, J. Am. Chem. Soc. 2010, 132, 440; (f) X. Xu, M. O. Ratnikov, P. Y. Zavalij, M. P. Doyle, Org. Lett. 2011, 13, 6122. [18] (a) Y. Liu, Y. Zhang, N. Jee, M. P. Doyle, Org. Lett. 2008, 10, 1605; (b) M. P. Doyle, K. Kundu, A. E. Russel, Org. Lett. 2005, 7, 5171; (c) G. Deng, X. Tian, Z. Qu, J. Wang, Angew. Chem. Int. Ed. 2002, 41, 2773; (d) M. A. Calter, P. M. Sugathapala, C. Zhu, Tetrahedron Lett. 1997, 38, 3837. [19] A. S. K. Raj, R.-S. Liu, Angew. Chem. Int. Ed. 2019, 58, 10980. [20] a) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090; b) X.-Z. Shu, S.-C. Zhao, K.-G. Ji, Z.-J. Zheng, X.-Y. Liu, Y.-M. Liang, Eur. J. Org. Chem. 2009, 117; c) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 42, 3504; d) H. Kusama, H. Funami, N. Iwasawa, Synthesis 2007, 2014; e) H. Kusama, H. Funami, J. Takaya, N. Iwasawa, Org. Lett. 2004, 6, 605; f) H. Kusama, H. Funami, M. Shido, Y. Hara, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 2709; g) N. Iwasawa, M. Shido, H. Kusama, J. Am. Chem. Soc. 2001, 123, 5814. [21] a) N. Asao, K. Sato, Org. Lett. 2006, 8, 5361; b) D. Hildebrandt, W. Hüggenberg, M. Kanthak, T. Plöger, I. M. Müller, G. Dyker, Chem. Commun. 2006, 2260; c) N. Asao, K. Sato, Menggenbateer, Y. Yamamoto, J. Org. Chem. 2005, 70, 3682; d) B. F. Straub, Chem. Commun. 2004, 1726; e) N. Asao, T. Nogami, S. Lee, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 10921; f) N. Asao, K. Takahashi, S. Lee, T. Kasahara, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 12650; g) N. Asao, H. Aikawa, J. Org. Chem. 2006, 71, 5249; h) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458. [22] Crystallographic data of compounds 4-3d and 4-4d were deposited at Cambridge Crystallographic Data Center: 4-3d (CCDC 1965080) and 4-4d (CCDC 1965081). [23] a) C. Kong, T. G. Driver, Org. Lett. 2015, 17, 802; b) C. Kong, N. Su, F. Zhou, N. Jana, T. G. Driver, Tetrahedron Lett. 2015, 56, 3262; c) M. Chen, N. Su, T. Deng, D. J. Wink, Y. Zhao, T. G. Driver, Org. Lett., 2019, 21, 1555; d) S. S. Giri, R.-S. Liu, Chem. Sci. 2018, 9, 2991. [24] a) A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M. Rudolph, F. Rominger, Adv. Synth. Catal. 2012, 354, 555; b) S. Manojveer, R. Balamurugan, Chem. Commun. 2014, 50, 9925; c) P. C. Too, S. Chiba, Chem. Commun. 2012, 48, 7634; d) D. Lehnherr, J. M. Alzola, E. B. Lobkovsky, W. R. Dichtel, Chem. Eur. J. 2015, 21, 18122; e) Z. Cao, H. Zhu, X. Meng, L. Tian, X. Sun, G. Chen, J. You, Chem. Eur. J. 2016, 22, 9125, f) T. Lauterbach, S. Gatzweiler, P. Nösel, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv. Synth. Catal. 2013, 355, 2481; g) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090; h) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458; i) M. Kitamura, Y. Moriyasu, T. Okauchi, Synlett 2011, 643.
|