帳號:guest(18.188.202.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝安棟
作者(外文):Antony Sekar, Kulandai Raj
論文名稱(中文):金催化炔類轉化成高度官能化之碳環與雜環分子
論文名稱(外文):Gold-Catalyzed Transformations of Alkynes into Highly Functionalized Carbo and Heterocycles
指導教授(中文):劉瑞雄
指導教授(外文):Liu, Rai-Shung
口試委員(中文):蔡易州
彭之皓
謝仁傑
侯敦仁
口試委員(外文):Tsai, Yi-Chou
Peng, Chi-How
Hsieh, Jen-Chieh
Hou, Duen-Ren
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023873
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:603
中文關鍵詞:重烯化合物環加成增環反應苯甲醛乙烯 重氮 羰基
外文關鍵詞:AllenesCycloadditionAnnulationsBenzaldehydeVinyl diazo carbonyl
相關次數:
  • 推薦推薦:0
  • 點閱點閱:674
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Abstract (Chinese)

本論文描述了使用金和銀催化劑來開發新合成方法來進行有機物轉化。 使用這些金屬可以進行溫和、選擇性及有效的轉化,從而可以從容易取得的底物中得到一系列雜環,碳環和苯甲環化的產物。 為了便於理解,此論文分為四個章節詳細介紹。
第一章節中利用6-連烯烴-1-炔與N-羥基苯胺的金催化反應產生熱穩定的的反選擇性苯庚-4-酮。 這些反組態的產物很容易在矽膠柱上異構化為它們的同向異構物。 反應機構可能涉及最初的硝酮/丙二烯環化加成反應,接著是所得中間體的骨架重排。
第二章節由4-甲氧基-1,2-二烯基-5-炔與異噁唑的金催化雙環環化反應產生了具有結構重排的吲哚嗪衍生物。 這些新環化反應的機構並不涉及由金的p-炔烴中間體產生的α-亞氨基金卡賓。 我們推測炔烴會攻擊金的p-烯鍵,生成乙烯基金卡賓。 這些新生成的卡賓與異噁唑衍生物反應生成Z-3-亞氨基-2-烯基-1-醛,進一步實現了連續環化,從而可以產生兩種不同的吲哚嗪衍生物。
第三章節講述金催化的2-炔基-1-羰基苯與乙烯基重氮酮的雙環環化反應,其中乙烯基重氮酮可作為五個原子的構建單位。 這些反應的重要性是可以得到形成各種生物活性分子結構核心的4,5-二氫-苯並[g]吲唑。 根據我們的機構分析,我們假定苯並吡咯中間體與乙烯基重氮酮之間先發生[5 + 4]-環加成反應,接著進行6-p-電子環化反應已達成高度的立體選擇性。
第四章節中包括2-炔基苯甲醛與乙烯基重氮羰基的金催化的[4 + 2]苯環烷基化反應,可有效產生苯並[7]環戊烯衍生物。 對於此苯環合成過程,可能的反應機構為苯並吡喃鎓與2-甲基乙烯基羰基所生成的[4 + 2]加成物種發生環加成反應,失去質子而生成1,2-二氫萘物種,之後發生擴環,接著產生1,7-苯甲酰基遷移,進一步實現了連續的1,7-氫移位,從而產生7元的碳環。


Abstract

This dissertation describes development of new synthetic organic transformations using gold and silver catalysts. The use of these metals enables mild, selective and efficient transformation to give a range of heterocyclic, carbocyclic and benzannulated products from readily available substrates. This thesis is divided into four chapters for ease of understanding.
Chapter I is comprised of Gold-catalyzed reactions of 6-allen-1-ynes with N-hydroxyanilines afford thermally stable benzoazepin-4-ones in anti-selectivity; these anti-configured products are easily isomerized to their syn-isomers on a silica column. The mechanism of reactions likely involve initial nitrone/allene cycloadditions, followed by skeletal rearrangement of resulting intermediates.

Chapter II is comprised of Gold-catalyzed bicyclic annulations of 4-methoxy-1,2-dienyl-5-ynes with isoxazoles afford indolizine derivatives with a structural rearrangement. The mechanism of these new annulations does not involve -imino gold carbenes generated from gold -alkyne intermediates. We postulate an alkyne attack on gold -allenes, yielding vinylgold carbenes. These newly generated carbenes react with isoxazole derivatives to yield Z-3-imino-2-en-1-als, further enabling sequential cyclizations to deliver Indolizine derivatives in two distinct classes.

Chapter III is comprised of gold-catalyzed bicyclic annulations of 2-alkynyl-1-carbonylbenzenes with vinyldiazo ketones that serve as five-atom building units. The importance of these reactions is to access 4,5-dihydro-benzo[g]indazoles, which form the structural cores of various bioactive molecules. According to our mechanistic analysis, we postulate initial [5+4]-cycloadditions between benzopyrilium intermediates and vinyldiazo ketones, followed by 6-π-electrocyclizations to achieve the excellent stereoselectivity.

Chapter IV is comprised gold-catalyzed [4+2] benzannulation of 2-alkynyl benzaldehyde with vinyldiazo Carbonyls which affords benzo[7]annulene derivatives efficiently. A plausible reaction mechanism for the present benzannulation process shows cycloaddition between benzopyriliums and 2-methyl vinyl carbonyl yielded [4+2]-addition species that lost a proton to yield 1,2-dihydronaphthalene species, which then undergoes ring expansion followed by 1,7- benzoyl group migration, further enabling sequential 1,7-hydride shift to deliver seven membered carbocycle.

Table of Contents


Abstract
II
Acknowledgement V
List of Chapters VIII
List of Schemes
X
List of Tables
XIII
List of Figures XIV
List of Publications XV
Abbreviations XVI











List of Chapters
Chapter I: Gold-Catalyzed N,O-Functionalizations of 6-Allenyl-1-ynes with N-Hdroxyanilines To Construct Benzo[b]-azepin-4-one Cores
Introduction 2
Result and Discussion 18
Conclusion 32
Experimental Procedure 32
Spectral Data 39
Reference 58
X-ray Crystallographic Data 64
1H and 13C NMR Spectra 70

Chapter II: Gold-Catalyzed Bicyclic Annulations of 4-Methoxy-1,2-dienyl-5-ynes with Isoxazoles to Form Indolizine Derivatives via Au--Allene Intermediate
Introduction 159
Result and Discussion 174
Conclusion 190
Experimental Procedure 191
Spectral Data 198
Reference 213
X-ray Crystallographic Data 217
1H and 13C NMR Spectra 227

Chapter III: Gold-Catalyzed Bicyclic Annulations of 2-Alkynyl benzaldehydes with Vinyldiazo Carbonyls that Serve as Five-atom Building Units
Introduction 316
Result and Discussion 324
Conclusion 340
Experimental Procedure 340
Spectral Data 348
Reference 371
X-ray Crystallographic Data 377
1H and 13C NMR Spectra 382

Chapter IV: Gold-Catalyzed [4+2] Cycloadditions of 2-Alkynyl benzaldehydes with Vinyldiazo Carbonyls to Form Benzo[7]annulene Derivatives
Introduction 476
Result and Discussion 485
Conclusion 500
Experimental Procedure 500
Spectral Data 504
Reference 520
X-ray Crystallographic Data 523
1H and 13C NMR Spectra 527















List of Schemes
Chapter-I
Scheme 1: Alder-ene cycloisomerization of enynes 4
Scheme 2: Different types of cycloisomerization of 1,6-enynes 5
Scheme 3: Intramolecular stereoselective gold-catalyzed [2+2+2] cycloaddition of ketoenyne 6
Scheme 4: Gold-catalyzed intermolecular addition of carbonyl compounds to 1,6-enynes 7
Scheme 5: Gold-catalyzed diastereoselective [2+2+3] cycloaddition 8
Scheme 6: Cyclization of the propargylic N-hydroxylamines to 2,3-dihydroisoxazoles 9
Scheme 7: 1,3-Pyrrolidinones and nitrones from N-sulfonylhydroxylamines 9
Scheme 8: Catalyst-controlled synthesis of pyrroles and nitrones 10
Scheme 9: Stereoselective synthesis of N-hydroxypyrrolines, dihydroisoxazoles, and dihydro-1,2-oxazines and catalytic cycle for the formation of cis-substituted dihydroisoxazoles 11
Scheme 10: Gold-catalyzed formation of indoles via O-alkenyl-N-arylhydroxylamines 12
Scheme 11: Gold-catalyzed formation of N-protected 2-alkenylindoles 13
Scheme 12: Gold-catalyzed [2+2+1] annulations of 1,6-enynes 14
Scheme 13: Solvent-Controlled Bifurcated Cascade Process for the Selective Preparation of Dihydrocarbazoles or Dihydropyridoindoles 16
Scheme 14: Chemoselectivities between allenes and nitrones 17
Scheme 15: Synthetic procedure for 4-(prop-2-yn-1-yloxy)buta-1,2-diene(1-1a) 21
Scheme 16: Synthetic procedure for 4-(prop-2-yn-1-yloxy)buta-1,2-dien-1yl) benzene (1-1e) 21
Scheme 17: Synthetic procedure for 2,6-dimethyl-5-(prop-2-yn-1-yloxy)hepta-2,3-diene (1-1o) 22
Scheme 18: Synthetic procedure for 4-(buta-2,3-dien-1-yloxy)-1-phenylbut-2-yn-1-one (1-1r) 22
Scheme 19: Synthetic procedure for ethyl 4-((4-methylpenta-2,3-dien-1-yl)oxy) but-2-ynoate (1- 1t) 23
Scheme 20: N-(4-cyclopropylbuta-2,3-dien-1-yl)-4-methyl-N-(prop-2-yn-1-yl) benzenesulfonamide (1-1d) 23
Scheme 21: Synthetic procedure for N-phenylhydroxylamine (1-2a) 24
Scheme 22: Data to confirm the anti-selectivity 29
Scheme 23: Postulated mechanisms for Gold-catalyzed N,O-Functionalizations of 6-Allenyl-1-nes with N-Hydroxyanilines 30

Chapter-II
Scheme 1: Gold-catalyzed [3+2], [3+3] and [4+1] annulations 159
Scheme 2: Formalization of difference in N-oxide attack and O- and N-attack of isoxazoles on gold activated alkyne 160
Scheme 3: Gold-catalyzed [3+2] cycloaddition of ynamides with isoxazoles 161
Scheme 4: Gold-catalyzed [3+2] cycloaddition of oxazolidinone ynamides with isoxazoles 162
Scheme 5: Gold catalyzed synthesis of substituted 4-aminoimidazoles 163
Scheme 6: Gold-catalyzed C-H annuluation of anthranils with alkynes 164
Scheme 7: Annulations between propiolate derivatives and isoxazoles 166
Scheme 8: Gold-catalyzed annuluation of N-aryl ynamides with benzisoxazole 168
Scheme 9: Gold-catalyzed [4+1]-Annulation Reactions between 1,4-Diyn-3-ols and Isoxazoles to Construct a Pyrrole Core 169
Scheme 10: Gold-catalyzed [4+3]- and [4+2]-annulations of 3-en-1-ynamides with isoxazoles 170
Scheme 11: Gold-catalyzed [4+1]-Annulation Reactions between Anthranils and 4-Methoxy-1,2-dienyl-5-ynes Involving a 1,2-Allene Shift 172
Scheme 12: Synthetic procedure for (3-methoxyhexa-4,5-dien-1-yn-1-yl) benzene (2-1a) 177
Scheme 13: Synthetic procedure for (3-methoxy-4-methylhexa-4,5-dien-1-yn-1-yl)benzene (2-4e) 177
Scheme 14: Synthetic procedure of 3-methyl isoxazole (2-2c) 178
Scheme 15: The electronic effect of allenyl substituents 184
Scheme 16: A Postulated mechanism 186

Chapter-III
Scheme 1: Synthetic transformations of benzopyrilium cation C-2 316
Scheme 2: AuCl3-Catalyzed reaction of o-alkynylbenzaldehydes C-8 with alkynes 318
Scheme 3: Platinum-catalyzed annulation of enynals with allylic alcohols 319
Scheme 4: Zinc-catalyzed tandem Diels-Alder reactions 319
Scheme 5: Proposed mechanisms for the formal [3+3] cyloaddition 320
Scheme 6: Formal [3 + 3]-Cycloaddition Reactions of Nitrones with Electrophilic Vinylcarbene Intermediates 321
Scheme 7: Formal [4+2]-cycloaddition routes for alkenyldiazo species 322
Scheme 8: Previous catalytic cycloadditions and this work. 323
Scheme 9 Synthesis of enynal substrates 327
Scheme 10: Synthesis of 2-alkynyl-1-ketonylbenzenes (3-1q) 327
Scheme 11: Synthesis of vinyldiazo ketones (3-2a) 328
Scheme 12: Synthesis of 2-diazo-3-methyl-1-phenylbut-3-en-1-one (3-10) 328
Scheme 13: Chemical functionalizations of 3-3a 336
Scheme 14: Mechanistic investigation 337
Scheme 15: Plausible reaction mechanism 338

Chapter-IV
Scheme 1: One-Pot Synthesis of Highly Functionalized Pyridines via a Rhodium Carbenoid Induced Ring Expansion of Isoxazoles. 477
Scheme 2: Pyridine Activation via Copper(I)-Catalyzed [3+2] Annulation toward Indolizines 478
Scheme 3: Synthesis of Tropans by Rhodium-Catalyzed [4 + 3] Cycloaddition 478
Scheme 4: Proposed mechanisms for the formal [3+3] cyloaddition 479
Scheme 5: Formal [3 + 3]-Cycloaddition Reactions of Nitrones with Electrophilic Vinylcarbene Intermediates 480
Scheme 6: Formal [4+2]-cycloaddition routes for alkenyldiazo species 481
Scheme 7: Catalyst-Directed Pathways to Dihydropyrroles from Vinyldiazoacetates and Imines Metal carbene routes 481
Scheme 8: Divergent catalyst-dependent pathways from cinnamaldehydes and methyl siloxyvinyldiazoacetate 482
Scheme 9: Synthesis of dihydropyrrole and dihydroazepine 482
Scheme 10: Gold(I)-catalyzed vinylogous [3 + 2] cycloaddition between Vinyldiazoacetates and Enol ethers 483
Scheme 11: Gold-catalyzed reactions of alkenyldiazocarbonyl species 484
Scheme 12: Synthesis of enynal substrates 487
Scheme 13: Synthesis of 2-diazo-3-methyl-1-phenylbut-3-en-1-one (4-2a) 487
Scheme 14: Synthesis of ethyl 2-diazo-3-methylbut-3-enoate (4-2l) 488
Scheme 15: Plausible reaction mechanism 498




List of Tables
Chapter-I
Table 1: Synthesis of benzoazepin-4-ones with various catalysts 19
Table 2: Reactions with various 6-Allenyl-1-ynes 25

Chapter-II
Table 1: Bicyclic annulations with various gold catalysts 175
Table 2: Bicyclic annulations with various 4-methoxy-1,2-dienyl-5-ynes and substituted isoxazoles 179
Table 3: Scope of 3-disubstituted allenes with isoxazole 182

Chapter-III
Table 1: Optimization of the reaction conditions 325
Table 2: Scope with various 2-alkynyl-1-carbonylbenzenes 330
Table 3: Scope with alkenyldiazo ketones 334

Chapter-IV
Table 1: Optimization of the reaction conditions 485
Table 2: Scope with various 2-alkynyl-1-carbonylbenzenes 489
Table 3: Scope with 2-alkylvinyldiazo carbonyls 493
Table 4: Scope with various nonaromatic enynals 496













List of Figures
Chapter-I
Figure 1: Bonding in Au(I/II)Pt(II) alkyne complexes 3
Figure 2: Representative bioactive molecules 18
Figure 3: List of substrate 20
Figure 4: ORTEP diagram of compounds (1-3g), (1-3o) and (1-3p) 31

Chapter-II
Figure 1: Representative bioactive molecules 174
Figure 2: List of substrate 176
Figure 3: The enthalpic energy profile calculated using density functional theory 187
Figure 4: ORTEP diagram of compounds (2-3c), (2-3d), (2-3l), (2-5b), (2-5j) and (2-7b) 188

Chapter-III
Figure 1: Representative bioactive molecules 324
Figure 2: List of 2-alkynyl-1-carbonylbenzenes 326
Figure 3: List of vinyldiazo ketones 326
Figure 4: ORTEP diagrams of (3-3a), (3-3d) and (3-9’) 339

Chapter-IV
Figure 1: List of 2-alkynyl-1-carbonylbenzenes 486
Figure 2: List of 2-alkylvinyldiazo carbonyls 486
Figure 3: ORTEP diagram of compounds (4-3d) and (4-4d) 499


References Chapter I:
[1] (a) J. E. Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326; (b) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351; (c) A. S. K. Hashmi, M. Rudolph, Chem. Soc. Rev. 2008, 37, 1766; (d) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410; (e) L. Zhang, J. Sun, S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271.
[2] For Au- and Pt-catalyzed cycloisomerizations of 1,n-enynes (n = 5-7), see selected examples: (a) J. E. Nunez, K. Molawi, A. M. Echavarren, Chem. Commun. 2009, 7327; (b) A. Furstner, P. Hannen, Chem. Eur. J. 2006, 12, 3006; (c) X. Linghu, J. J. Kennedy-Smith, F. D. Toste, Angew. Chem. Int. Ed. 2007, 46, 7671; (d) A. S. K. Hashmi, L. Ding, J. W. Bats, P. Fischer, W. Frey, Chem. Eur. J. 2003, 9, 4339; (e) L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2005, 127, 6962; (f) J. M. Tang, S. Bhunia, S. M. A. Sohel, M. Y. Lin, H. Y. Liao, S. Datta, A. Das, R.-S. Liu, J. Am. Chem. Soc. 2007, 129, 15677; (g) F. Gagosz, Org. Lett. 2005, 7, 4129; (h) C. Nieto-Oberhuber, M. P. Munoz, E. Bunuel, C. Nevado, J. Cardenas, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 2402.
[3] For reviews for gold and platinum catalyzed enyne cycloisomerization, see: (a) C. Aubert, O. Buisine, M. Malacria, Chem. Rev. 2002, 102, 813; (b) C. Bruneau, Angew. Chem. Int. Ed. Engl. 2005, 44, 2328; (c) S. Ma, S. Yu, Z. Gu, Angew. Chem. Int. Ed. Engl. 2006, 45, 200; (d) V. Michelet, P. Y. Toullec, J.-P. Genet, Angew. Chem.. Int. Rd. Engl. 2008, 47, 4268; (e) S. I. Lee, N. C. Chatani, Chem. Commum. 2009, 371.
[4] For reviews, see: (a) B. M. Trost, F. D. Toste, A. B. Pinkerton, Chem. Rev. 2001, 101, 2067; (b) B. M. Trost, M. J. Krische, Synlett. 1998, 1; (c) G. C. Lloyd-Jones, Org. Biomol. Chem. 2003, 1, 215; (d) B. M. Trost, Chem. Eur. J. 1998, 4, 2405; (e) I. Ojima, M. Tzamarioudaki, Z. Y. Li, R. J. Donovan, Chem. Rev. 1996, 96, 635.
[5] For reviews, see: (a) J. L. Templeton, Adv. Organomet. Chem. 1989, 29, 1; (b) P. B. Baker, Adv. Organomet. Chem. 1996, 40, 45; for an Os complex with an η4-alkyne ligand as an exception, see: (c) J. J. Carbo, P. Crochet, M. A. Esteruelas, Y. Jean, A. Lledos, A. M. Lopez, E. Onate, Organometallics 2002, 21, 305.
[6] E. O. Greaves, J. L. Lock, P. M. Maitlis, Can. J. Chem. 1968, 46, 3879.
[7] (a) P. Pyykko, J.-P. Desclaux, Acc. Chem. Res. 1979, 12, 276; (b) P. Pyykko, Science 2000, 290, 64; (c) P. Pyykko, Angew. Chem. Int. Ed. 2002, 41, 3573; (d) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395.
[8] L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals; an Introduction to Modern Structural Chemistry, 3rd edn., Cornell University Press: N. Y. Ithaca, 1960.
[9] (a) M. H. Chisholm, H. C. Clark. Acc. Chem. Res. 1973, 6, 202; (b) N. Mezailles, L. Ricard, F. Mathey, P. L. Floch, Eur. J. Inorg. Chem. 1999, 2233; (c) H. Willner, J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter, F. Aubke, J. Am. Chem. Soc. 1992, 114, 8972.
[10] For selected examples, see: (a) B. M. Trost, M. Lautens, J. Am. Chem. Soc. 1985, 107, 1781; (b) B. M. Trost, M. Lautens, Tetrahedron Lett. 1985, 26, 4887; (c) B. M. Trost, Acc. Chem. Res. 1990, 23, 34; (d) B. M. Trost, G. J. Tanoury, J. Am. Chem. Soc. 1988, 110, 1636; (e) B. M. Trost, M. Lautens, C. Chan, D. J. Jebaratnam, T. Mueller, J. Am. Chem. Soc. 1991, 113, 636; (f) B. M. Trost, C. Pedregal, J. Am. Chem. Soc. 1992, 114, 7292; (g) B. M. Trost, G. J. Tanoury, M. Lautens, C. Chan, D. T. MacPherson, J. Am. Chem. Soc. 1994, 116, 4255; (h) B. M. Trost, D. L. Romero, F. Rise, J. Am. Chem. Soc. 1994, 116, 4268.
[11] N. Chatani, T. Morimoto, T. Muto, S. Murai, J. Am. Chem. Soc. 1994, 116, 6049.
[12] Reviews: (a) S. T. Diver, A. J. Giessert, Chem. Rev. 2004, 104, 1317; (b) A. M. Echavarren, C. Nevado, Chem. Soc. Rev. 2004, 33, 431.
[13] (a) M. Mendez, M. P. Munoz, C. Nevado, D. J. Cardenas, A. M. Echavarren, J. Am. Chem. Soc. 2001, 123, 10511; (b) C. Nevado, J. Cardenas, A. M. Echavarren, Chem. Eur. J. 2003, 9, 2627; (c) M. P. Munoz, J. Adrio, J. C. Carretero, A. M. Echavarren, Organometallics 2005, 24, 1293.
[14] S. Oi, I. Tsukamoto, S. Miyano, Y. Inoue, Organometallics 2001, 20, 3704.
[15] (a) E. J. Nunez, C. K. Claverie, C. N. Oberhuber, A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 5452; (b) L. E. Overman, L. D. Pennington, J. Org.Chem. 2003, 68, 7143; (c) R. Jasti, C. D. Anderson, S. D. Rychnovsky, J. Am. Chem. Soc. 2005, 127, 9939; (d) R. W. Alder, J. N. Harvey, M. T. Oakley, J. Am. Chem. Soc. 2002, 124, 4960; (e) S. D. Rychnovsky, S. Marumoto, J. J. Jaber, Org. Lett. 2001, 3, 3815.
[16] M. Schelwies, A. L. Dempwolff, F. Rominger, G. Helmchen, Angew. Chem. Int. Ed. 2007, 46, 5598.
[17] (a) C. H. M. Amijs, C. Ferrer, A. M. Echavarren, Chem. Commun. 2007, 698; (b) C. A. Witham, P. MauleOn, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838; (c) A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223; (d) A. Padwa, G. E. Fryxell, L. Zhi, J. Am. Chem. Soc. 1990, 112, 3100.
[18] (a) A. S. K. Hashmi, M. Rudolph, J. P. Weyrauch, M. Wolfle, W. Frey, J. W. Bats, Angew. Chem. Int. Ed. 2005, 44, 2798; (b) A. S. K. Hashmi, M. C. Blanco, E. Kurpejovic, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709.
[19] S. A. Gawade, S. Bhunia, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 7835.
[20] P. Aschwanden, D. E. Frantz, E. M. Carreira, Org. Lett. 2000, 2, 2331.
[21] H. S. Yeom, E. So, S. Shin, Chem. Eur. J. 2011, 17, 1764.
[22] Q. Zeng, L. Zhang, J. Yang, B. Xu, Y. Xiao, J. Zhang, Chem. Commun. 2014, 50, 4203.
[23] (a) N. Bongers, N. Krause, Angew. Chem. Int. Ed. 2008, 47, 2178; (b) N. Krause, V. Belting, C. Deutsch, J. Erdsack, H. T. Fan, B. Gockel, A. R, Hoffmann, N. Morita, F. Volz, Pure Appl. Chem. 2008, 80, 1063; (c) R. A. Widenhoefer, Chem. Eur. J. 2008, 14, 5382; (d) V. Gandon, G. Lemiere, A. Hours, L. Fensterbank, M. Malacria, Angew. Chem. Int. Ed. 2008, 47, 7534.
[24] C. Winter, N. Krause, Angew. Chem. Int. Ed. 2009, 48, 6339.
[25] Y. Wang, L. Ye, L. Zhang, Chem. Commun. 2011, 47, 7815.
[26] Y. Wang, L. Liu, L. Zhang, Chem. Sci. 2013, 4, 739.
[27] D. B. Huple, B. D. Mokar, R.-S. Liu, Angew. Chem. Int. Ed. 2015, 54, 14924.
[28] M. P. Sibi, M. Liu, Org. Lett. 2001, 3, 4181.
[29] D.-L. Mo, D. J. Wink, L. L. Anderson, Chem. Eur. J. 2014, 20, 13217.
[30] Selected reviews: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products (Eds.: A. Padwa, W. H. Pearson,), Wiley, New York, 2002; (b) L. M. Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887; (c) K. V. Gothelf, K. A. Jøgensen, Chem. Rev. 1998, 98, 863; (d) F. Cardona, A. Goti, Angew. Chem. Int Ed. 2005, 44, 7832.
[31] (a) J. Hames, A. Macaluso, Chem. Rev. 1964, 64, 473; (b) B. B. Snider, H. Lin, B. M. Foxman, J. Org. Chem. 1998, 63, 6442; (c) S. Torrente, B. Noya, V. Branchadell, R. Alonso, J. Org. Chem. 2003, 68, 4772; (d) I. A. Grigorev, Oxides, Nitrones and Nitronates in Organic Synthesis, H. Feuer, Ed. Wiley: Hoboken, 2008, 129.
[32] (a) J. Y. Pfeiffer, A. M. Beauchemin, J. Org. Chem. 2009, 74, 8381; (b) T. B. Nguyen, A. Martel, R. Dhai, G. Dujardin, Org. Lett. 2008, 10, 4493; (c) E. Winterfeldt, W. Krohn, H. Stracke, Chem. Ber. 1969, 102, 2346; (d) A. Pernet-Poil-Chevrier, F. Cantagrel, K. Le Jeune, C. Philouze, P. Y. Chavant, Tetrahedron Asymmetry, 2006, 17, 1969; (e) F. Cantagrel, S. Pinet, Y. Gimbert, P. Y. Chavant, Eur. J. Org. Chem. 2005, 2694.
[33] (a) A. Padwa, D. N. Kline, B. H. J. Norman, Org. Chem. 1989, 54, 810; (b) J. J. Tufarriello, S. A. Asrof Ali, H. O. Klingele, J. Org. Chem. 1979, 44, 4213.
[34] (a) L. L. Anderson, M. A. Kroc, T. W. Reidl, J. Son, J. Org. Chem. 2016, 81, 9521 (review). (b) S. Blechert, Liebigs Ann. Chem. 1985, 673; (c) D.-L. Mo, D. J. Wink, L. L. Anderson, Chem. Eur. J. 2014, 20, 13217; (d) J. Wilkens, A. Kuhling, S. Blechert, Tetrahedron 1987, 43, 3237; (e) R. R. Singh, R.-S. Liu, Chem. Commun. 2014, 50, 15864.
[35] Cycloadditions of electron-deficient allenes with trisubstituted nitrones bearing two electron-withdrawing groups were recently reported, see: M. Garcia-Castro, L. Kremer, C. D. Reinkemeier, C. Unkelbach, C. Strohmann, S. Ziegler, C. Ostermann, K. Kumar, Nat. Commun. 2015, 6, 6516.
[36] (a) D. B. Huple, B. D. Mokar, R.-S. Liu, Angew. Chem. Int. Ed. 2015, 54, 14924; (b) B. D. Mokar, D. B. Huple, R.-S. Liu, Angew. Chem. Int. Ed. 2016, 55, 11892.
[37] (a) M. H. M. Sharaf, P. L. Jr. Schiff, A. N. Tackie, C. H. Jr. Phoebe, A. O. Davis, C. W. Andrews, R. C. Crouch, G. E. Martin, J. Hetereocycl. Chem. 1995, 32, 1631; (b) F. Waetjen, B. H. Dahl, J. Drejer, L. H. Jensen, (NeuroSearch A/S, Den). Application: US, 1995, 8 pp Cont-in-part of US 5, 242, 918; (c) M. Carril, R. SanMartin, E. Dominguez, I. Tellitu, Tetrahedron 2007, 63, 690; (d) H. Ogawa, K. Kondo, H. Yamashita, K. Kan, M. Tominaga, Y. Yabuuchi, (Otsuka Pharmaceutical Co., Ltd., Japan). Application: WO, 1994, 159 pp. (e) S. Gómez-Ayala, J. A. Castrillón, A. Palma, S. M. Leal, P. Escobar A. Bahsas, Bioorganic & Medicinal Chemistry 2010, 18, 4721; (f) T. Seko, S. Katsumata, M. Kato, J.-I. Manako, K. Ohmoto, (Ono Pharmaceutical Co., Ltd., Japan). Application: WO, 2003, 222 pp.
[38] Crystallographic data of compounds 1-3g, 1-3o and 1-3p were deposited at Cambridge Crystallographic Data Center: 1-3g (CCDC 1567416), 1-3o (CCDC 1567417) and 1-3p (CCDC 1568212).
[39] (a) R. M. Beesley, C. K. Ingold, J. F. Thorpe, J. Chem. Soc. Trans. 1915, 107, 1080; (b) M. E. Jung, G. Piizzi, Chem. Rev. 2005, 105, 1735; (c) J. Kaneti, A. J. Kirby, A. H. Koedjikov, I. G. Pojarlieff, Org. Biomol. Chem. 2004, 2, 1098; (d) S. M. Bachrach, J. Org. Chem. 2008, 73, 2466.
[40] Recent review for gold-catalyzed N,O-functionalizations of alkynes, see: D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Synth. Catal. 2016, 358, 1348.
[41] For gold-catalyzed intermolecular reactions of N-hydroxyamines with alkynes or allenes, see: (a) Y. Wang, L. Ye, L. Zhang, Chem. Commun. 2011, 47, 7815; (b) Y. Wang, L. Liu, L. Zhang, Chem. Sci. 2013, 4, 739; (c) R. K. Kawade, P.-H. Huang, S. N. Karad, R.-S. Liu, Org. Biomol. Chem. 2014, 12, 737; (d) J.-M. Chen, C.-J. Chang, Y.-J. Ke, R.-S. Liu, J. Org. Chem. 2014, 79, 4306.


References Chapter II:
[1] For recent reviews, see: (a) E. Jimenez-Nunez, A. M. Echavarren, Chem. Commun., 2007, 333; (b) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896; (c) A. Hoffmann-Roder, N. Krause, Org. Biomol. Chem. 2005, 3, 387.
[2] For selected examples, see: (a) J. R. Manning, H. M. Davies, J. Am. Chem. Soc. 2008, 130, 8602; (b) K. C. Coffman, T. A. Palazzo, T. P. Hartley, J. C. Fettinger, D. J. Tantillo, M. J. Kurth, Org. Lett. 2013, 15, 2062; (c) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265; (d) H. Kawai, K. Tachi, E. Tokunaga, M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 2011, 50, 7803; (e) X. L. Liu, W. Y. Han, X. M. Zhang, W. C. Yuan, Org. Lett. 2013, 15, 1246; (f) H. Takikawa, A. Takada, K. Hikita, K. Suzuki, Angew. Chem. Int. Ed. 2008, 47, 7446; (g) X. Lei, M. Gao, Y. Tang, Org. Lett. 2016, 18, 4990; (h) E. E. Galenko, A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, RSC Adv. 2015, 5, 18172; (i) S. Pusch, T. Opatz, Org. Lett. 2014, 16, 5430.
[3] See selected review for gold-catalyzed N-oxide reactions: (a) L. Zhang, Acc. Chem. Res. 2014, 47, 877; (b) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966; (c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev., 2016, 45, 4448; (d) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533.
[4] X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J. 2015, 10, 1854.
[5] Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett. 2017, 19, 1020.
[6] H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794.
[7] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026.
[8] (a) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028; (b) F. López, J. L. Mascareñas, Beilstein J. Org. Chem. 2011, 7, 1075; (c) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (d) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066; (e) D. Qian, J. Zhang, Chem. Rec. 2014, 14, 280.
[9] For bioactive molecules containing pyrrole cores, see: (a) V. Estvez, M. Villacampa, J. C. Menndez, Chem. Soc. Rev. 2014, 43, 4633; (b) M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org. Chem. 2011, 7, 442; (c) J. R. Carson, R. J. Carmosin, P. M. Pitis, J. L. Vaught, H. R. Almond, J. P. Stables, H. H. Wolf, E. A. Swinyard, H. S. White, J. Med. Chem. 1997, 40, 1578; (d) M. B. Wallace, M. E. Adams, T. Kanouni, C. D. Mol, D. R. Dougan, V. A. Feher, S. M. OQConnell, L. Shi, Q. Dong, Bioorg. Med. Chem. Lett. 2010, 20, 4156.
[10] For bioactive molecules containing imidazo[1,2-a]pyridine cores, see: (a) S. Z. Langer, S. Arbilla, J. Benavides, B. Scatton, Adv. Biochem. Psychopharmacol. 1990, 46, 61; (b) R. J. Boerner, H. J. Moller, Psychopharmakother. 1997, 4, 145; (c) K. Gudmundsson, S. D. Boggs, PCT Int. Appl. WO2006026703, 2006.
[11] For a 1,5-acyl shift, see: (a) W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811; (b) D. Leboeuf, A. Simonneau, C. Aubert, M. Malacria, V. Gandon, L. Fensterbank, Angew. Chem. Int. Ed. 2011, 50, 6868; (c) W. Rao, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 3183.
[12] M.-H. Tsai, C.-Y. Wang, A. S. K. Raj, R.-S. Liu, Chem. Commun. 2018, 54, 10866.
[13] R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806.
[14] S. S. Giri and R.-S. Liu, Chem. Sci., 2018, 9, 2991.
[15] (a) S. M. Wang, L. Zhang, Org. Lett. 2006, 8, 4585; (b) G. Li, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2008, 130, 3704; (c) S. B. Wagh, R. S. Liu, Chem. Commun. 2015, 51, 15462; (d) R. Chaudhuri, A. Das, H. Y. Liao, R. S. Liu, Chem. Commun. 2010, 46, 4601.
[16] H.-C. Hsieh, K.-C. Tan, A. S. K. Raj, R.-S. Liu, Chem. Commun., 2019, 55, 1979.
[17] For gold-catalyzed annulations or cycloaddition reactions of alkynes, see selected reviews: a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; b) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; c) S. Md. Abu Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269; d) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066.
[18] For catalytic reactions of isoxazoles and anthranils with alkynes, see selected reviews: (a) L. Li, T. D. Tan, Y.-Q. Zhang, X. Liu and L.-W. Ye, Org. Biomol. Chem. 2017, 5, 8483; (b) D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Synth. Catal., 2016, 358, 1348.
[19] (a) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265; (b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J. 2015, 10, 1854; (c) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605; (d) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026; (e) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 12736.
[20] (a) R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806; (b) Y.-C. Hsu, S.-A. Hsieh, P.-H. Li, R.-S. Liu, Chem. Commun. 2018, 54, 2114.
[21] (a) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794; (b) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 12688; (c) Z. Zeng, H. Jin, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2018, 57, 16549.
[22] For the medicinal chemistry of indolizines, see a leading review: V. Sharma, V. Kumar, Med. Chem. Res. 2014, 23, 3593.
[23] (a) D. Yang, Y. Yu, Y. Wu, H. Feng, X. Li, H. Cao, Org. Lett. 2018, 20, 2477; (b) G. S. Singh, E. E. Mmatli, Eur. J. Med. Chem. 2011, 46, 5237; (c) B. V. M. Teodoro, J. T. M. Correia, F. Coelho, J. Org. Chem. 2015, 80, 2529; (d) J. P. Michael, Nat. Prod. Rep. 2008, 25, 139.
[24] (a) B. Shen, B. Li, B. Wang, Org. Lett. 2016, 18, 2816; (b) T. Lepitre, R. Le Biannic, M. Othman, A. M. Lawson, A. Daïch, Org. Lett. 2017, 19, 1978; (c) B. Sadowski, J. Klajin, D.T. Gryko, Org. Biomol. Chem. 2016, 14, 7804.
[25] A. I. Nasir, L.-L. Gundersen, F. Rise, O. Antonsen, T. Kristensen, B. Langhelle, A. Bast, I. Custers, G. R. M. M. Haenen, H. Wikstrom, Bioorg. Med. Chem. Lett. 1998, 8, 1829.
[26] H.-C. Hsieh, K.-C. Tan, A.S.K. Raj, R.-S. Liu, Chem. Commun. 2019, 55, 1979.
[27] Crystallographic data of compounds 2-3c, 2-3d, 2-3l, 2-5b, 2-5j and 2-7b were deposited at Cambridge Crystallographic Data Center: 2-3c (CCDC 1894127), 2-3d (CCDC 1894128), 2-3l (CCDC 1894129), 2-5b (CCDC 1894126), 2-5j (CCDC 1894125) and 2-7b (CCDC 1913325).
[28] We recently reported a nucleophilic attack of alkyne at gold--allene to yield vinyl cation that was trapped with water; the reaction scheme is shown below. Our proposed mechanism is similar to this process. See: C.-Y. Yang, G.-Y. Lin, H.-Y. Liao, S. Datta, R.-S. Liu, J. Org. Chem. 2008, 73, 4907.


[29] For the reactions of isoxazoles and gold carbenes, see a recent example: B. D. Mokar, P. D. Jadhav, Y. B. Pandit, R.-S. Liu, Chem. Sci. 2018, 9, 4488.
[30] (a) D. G. Hulcoop, M. Lautens, Org. Lett. 2007, 9, 1761; (b) F.-S. Wu, H.-Y. Zhao, Y.-L. Xu, K. Hu, Y.-M. Pan, X.-L. Ma, J. Org. Chem., 2017, 82, 4289; (c) C.-L. Ma, J.-H. Zhao, Y. Yang, M.-K. Zhang, C. Shen, R. Sheng, X.-W. Dong, Y.-Z Hu, Sci. Rep. 2017, 7, 16640; (d) S. Teklu, L-L. Gundersen, T. Larsen, K. E. Malterud, F. Rise, Bioorg. Med. Chem. Lett. 2005, 13, 3127.
[31] For generation of -imino gold carbenes with other nitrene sources, see selected examples: (a) R. J. Reddy, M. P. B. Jones, P. W. Davies, Angew. Chem. Int. Ed. 2017, 56, 13310; (b) P. W. Davies, A. Cremonesi and L. Dumitrescu, Angew. Chem. Int. Ed. 2011, 50, 8931; (c) E. Chatzopoulou, P. W. Davies, Chem. Commun. 2013, 49, 8617; (d) L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30; (e) S. K. Pawar, R. L. Sahani, R. S. Liu, Chem. Eur. J. 2015, 21, 10843.
[32] D. Xu, Z. Li, S. Ma, Tetrahedron Asymmetry 2003, 14, 3657.
[33] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
[34] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
[35] C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
[36] D. J. Tannor, B. Marten, R. Murphy, R. A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda,
W. A. Goddard, B. Honig, J. Am. Chem. Soc. 1994, 116, 11875.
[37] B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff,
B. Honig, J. Phys. Chem. 1996, 100, 11775.

References Chapter III:
[1] (a) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; (b) A. Fürstner, P. W. Davies, Angew Chem. Int. Ed. 2007, 46, 3410; (c) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; (d) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244; (e) J.-J. Lian, P.-C. Chen, Y.-P. Lin, H.-J. Ting, R.-S. Liu, J. Am. Chem. Soc. 2006, 128, 11372; (f) G. Zhang, L. Zhang, J. Am. Chem. Soc. 2008, 130, 12598.
[2] For cycloaddition reactions of alkynes see: (a) P. A. Wender, H. Takahashi, B. Witulskilb, J. Am. Chem. Soc. 1995, 117, 4720; (b) S. Kotha, E. Brahmachary, Kakali Lahiri, Eur. J. Org. Chem. 2005, 4741; (c) B. Heller, M. Hapke, Chem. Soc. Rev. 2007, 36, 1085; (d) P. A. Wender, T. M. Pedersen, M. J. C. Scanio, J. Am. Chem. Soc. 2002, 124, 15154; (e) M. Babazadeh, S. Soleimani-Amiri, E. Vessally, A. Hosseiniand, L. Edjlali, RSC Adv. 2017, 7, 43716; (f) K. Tanaka, Chem. Asian J. 2009, 4, 508; (g) G. Domínguez, J. Pérez-Castells, Chem. Soc. Rev. 2011, 40, 3430; (h) H. U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151; (i) D. I. Schuster, G. Lem, N. A. Kaprinidis, Chem. Rev. 1993, 93, 3; (j) J. D. Winkler, C. M. Bowen, F. Liotta, Chem. Rev. 1995, 95, 2003; (k) K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863; (l) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765; (m) G. Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484; (n) F. López, J. L. Mascareñas, Beilstein J. Org. Chem. 2011, 7, 1075.
[3] (a) A. L. Siva-Kumari, A. S. Reddy, K. C. Kumaraswamy, Org. Biomol. Chem. 2016, 14, 6651; (b) N. Asao, Synlett 2006, 11, 1645; (c) J. Maa, L. Zhangb, S. Zhua, Curr. Org. Chem. 2016, 20, 102; (d) L. Chen, K. Chen, S. Zhu, Chem 2018, 4, 1.
[4] (a) J. P. Michael, Nat. Prod. Rep. 2002, 19, 742; (b) J. P. Michael, Nat. Prod. Rep. 2003, 20, 476; (c) J. P. Michael, Nat. Prod. Rep. 2004, 21, 650; (d) J. P. Michael, Nat. Prod. Rep. 2005, 22, 627; (e) M. G. Moloney Nat Prod Rep. 2002; 19, 597; (f) Y. L. Lin, C.-C. Shen, Y.-J. Huang, Y.-Y. Chang, J Nat Prod. 2005, 68, 381; (g) Y. Wang, X. Shang, S. Wang, J Nat Prod. 2007, 70, 296; (h) K. Trisuwan, N. Khamyhong, V. Rukachaisirikul, S. Phongpaichit, S. Preedanon, J. Sakayaroj, J. Nat. Prod. 2010, 73, 1507.
[5] N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 764.
[6] (a) J. Barluenga, H. V. Villa, A. Ballesteros, J. M. Gonza´lez, J. Am. Chem. Soc. 2003, 125, 9028; (b) F.-H. Li, J. Li, S.-Y. Wang, S.-J. Ji, Tetrahedron 2017, 73, 5731.
[7] (a) S. Mondal, T. Nogami, N. Asao, Y. Yamamoto, J. Org. Chem. 2003, 68, 9496; (b) N.T. Patil, Y. Yamamoto J. Org. Chem. 2004, 69, 5139; (c) T. Godet, C. Vaxelaire, C. Michel, A. Milet, P. Belmont, Chem. Eur. J. 2007, 13, 5632; (d) S.Handa, L. M. Slaughter, Angew. Chem. Int. Ed. 2012, 51, 2912; (e) A. Kotera, J. I. Uenishi, M. Uemura, Tetrahedron Lett. 2010, 51, 1166; (f) L. -P. Liu, G. B. Hammond, Org. Lett. 2010, 12, 4640; (g) D. Yue, N. D. Ca´, R. C. Larock, J. Org. Chem. 2006, 71, 3381.
[8] (a) G. Dyker, D. Hildebrandt, J. Liu, K. Merz, Angew. Chem. Int. Ed. 2003, 42, 4399; (b) A. K. Verma, D. Choudhary, R. K. Saunthwal, V. Rustagi, M. Patel, R. K. Tiwari J. Org. Chem. 2013, 78, 6657.
[9] X. Yu, Q. Ding, W. Wang, J. Wu, Tetrahedron Lett. 2008, 49, 4390.
[10] X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953.
[11] (a) S. Bhunia, K.-C. Wang, R.-S. Liu, Angew. Chem. Int. Ed. 2008, 47, 5063; (b) N. Asao, C. S. Chan, K. Takahashi, Y. Yamamoto, Tetrahedron 2005, 61, 11322.
[12] (a) A.B. Beeler, S. Su, C. A. Singleton, J. A. Porco Jr, J. Am. Chem. Soc. 2007, 129, 1413; (b) D. Malhotra, L.-P. Liu, M. S. Mashuta, G.B. Hammond. Chem. Eur. J. 2013, 19, 4043.
[13] (a) M. Terada, F. Li, Y. Toda, Angew. Chem. Int. Ed. 2014, 53, 235; (b) K. Saito, Y. Kajiwara, T. Akiyama, Angew. Chem. Int. Ed. 2013, 52, 13284.
[14] (a) G. Mariaule, G. Newsome, P. Y. Toullec, P. Belmont, V. Michelet, Org. Lett. 2014, 16, 4570; (b) B. Ouyang, J. Yuan, Q. Yang, Q. Ding, Y Peng, J. Wu, Heterocycles 2011, 82, 1239; (c) R.-Y. Tang, J.-H. Li, Chem. Eur. J. 2010, 16, 4733; (d) H. Wang, X. Han, X. Lu, Chin. J. Chem. 2011, 29, 2611; (e) P.Y. Toullec, E. Genin, L. Leseurre, J.-P. Genet, V. Michelet, Angew. Chem. Int. Ed. 2006, 45, 7427; (f) G. Qiu, T. Liu, Q. Ding, Org. Chem. Front. 2016, 3, 510.
[15] (a) N. Asao, K. Takahashi, S. Lee, T. Kasahara, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 12650; (b) R. Umeda, N. Ikeda, M. Ikeshita, K. Sumino, S. Nishimura, Y. Nishiyama, Bull. Chem. Soc. Jpn. 2017, 90, 213; (c) R. Umeda, H. Tabata, Y. Tobe, Y. Nishiyama, Chem. Lett. 2014, 43, 883; (d) J. Zhang, Y. Xiao, K. Chen, W. Wu, H. Jiang, S. Zhua, Adv. Synth. Catal. 2016, 358, 2684; (e) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 42, 3504; (f) S. Zhu, L. Hu, H. Jiang, Org. Biomol. Chem. 2014, 12, 4104; (g) S. Zhu, X. Huang, T.-Q. Zhao, T. Ma, H. Jiang, Org. Biomol. Chem. 2015, 13, 1225.
[16] (a) H. Kusama, H. Funami, M. Shido, Y. Hara, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 2709; (b) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458.
[17] N. Asao, H. Aikawa, J. Org. Chem. 2006, 71, 5249.
[18] (a) N. Asao, K. Iso, S. Yudha, Org. Lett. 2006, 8, 4149; (b) P.C. Too, S. Chiba, Chem. Commun. 2012, 48, 7634; (c) V. Rustagi, T. Aggarwal, A. K. Verma, Green Chem. 2011, 13, 1640; (d) M. E. Domaradzki, Y. Long, Z. She, X. Liu, G. Zhang, Y. Chen, J. Org. Chem. 2015, 80, 11360; (e) M. Yu, Y. Wang, C.-J. Li, X. Yao, Tetrahedron Lett. 2009, 50, 6791.
[19] (a) N. Asao, T. Shimada, Y. Yamamoto, J. Am. Chem. Soc. 2001, 123, 10899; (b) N. Asao, Y. Yamamoto, Bull. Chem. Soc. Jpn. 2000, 73, 1071.
[20] Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090.
[21] V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728.
[22] E. J. Raczyńska, W. Kosińska, B. Osmialowski, R. Gawinecki, Chem. Rev. 2005, 105, 3561.
[23] X. Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402.
[24] A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809.
[25] For reviews, see: a) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Wiley, New York, 1998; b) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981; c) Q.-Q. Cheng, M. P. Doyle, Adv. Organomet. Chem. 2016, 66, 1; d) N. J. Thumar, Q. Wei, W. Hu, Adv. Organomet. Chem. 2016, 66, 33.
[26] a) Q.-Q. Cheng, Y. Yu, J. Yedoyan, M. P. Doyle, ChemCatChem 2018, 10, 488; b) Q.-Q. Cheng, Y. Deng, M. Lankelma, M. P. Doyle, Chem. Soc. Rev. 2017, 46, 5425; c) E. López, S. González-Pelayo, L. A. López, Chem. Rec. 2017, 17, 312.
[27] a) V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2015, 54, 4923; b) Y. Deng, L. A. Massey, Y. A. Rodriguez Núñez, H. Arman, M. P. Doyle, Angew. Chem. Int. Ed. 2017, 56, 12292; c) Q.-Q. Cheng, M. Lankelma, D. Wherritt, H. Arman, M. P. Doyle, J. Am. Chem. Soc. 2017, 139, 9839; d) G. Xu, C. Zhu, W. Gu, J. Li, J. Sun, Angew. Chem. Int. Ed. 2015, 54, 883; e) A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809; f) X. Xu, W.-H. Hu, M. P. Doyle, Angew. Chem. Int. Ed. 2011, 50, 6392.
[28] a) X. Wang, X. Xu, P. Y. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402; b) J. Barluenga, L. Riesgo, L. A. López, E. Rubio, M. Tomás, Angew. Chem. Int. Ed. 2009, 48, 7569; c) X. Xu, P. Y. Zavalij, M. P. Doyle, Chem. Commun. 2013, 49, 10287; d) Y. Lian, H. M. L. Davies, J. Am. Chem. Soc. 2010, 132, 440; e) J. Barluenga, G. Lonzi, L. Riesgo, L. A. López, M. Tomás, J. Am. Chem. Soc. 2010, 132, 13200; f) V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728; g) E. López, J. González, L. A. López, Adv. Synth. Catal. 2016, 358, 1428.
[29] a) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090; b) X.-Z. Shu, S.-C. Zhao, K.-G. Ji, Z.-J. Zheng, X.-Y. Liu, Y.-M. Liang, Eur. J. Org. Chem. 2009, 117; c) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 42, 3504; d) H. Kusama, H. Funami, N. Iwasawa, Synthesis 2007, 2014; e) H. Kusama, H. Funami, J. Takaya, N. Iwasawa, Org. Lett. 2004, 6, 605; f) H. Kusama, H. Funami, M. Shido, Y. Hara, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 2709; g) N. Iwasawa, M. Shido, H. Kusama, J. Am. Chem. Soc. 2001, 123, 5814.
[30] a) N. Asao, K. Sato, Org. Lett. 2006, 8, 5361; b) D. Hildebrandt, W. Hüggenberg, M. Kanthak, T. Plöger, I. M. Müller, G. Dyker, Chem. Commun. 2006, 2260; c) N. Asao, K. Sato, Menggenbateer, Y. Yamamoto, J. Org. Chem. 2005, 70, 3682; d) B. F. Straub, Chem. Commun. 2004, 1726; e) N. Asao, T. Nogami, S. Lee, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 10921; f) N. Asao, K. Takahashi, S. Lee, T. Kasahara, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 12650; g) N. Asao, H. Aikawa, J. Org. Chem. 2006, 71, 5249; h) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458.
[31] a) Z.-Q. Rong, L.-C. Yang, S. Liu, Z. Yu, Y.-N. Wang, Z. Y. Tan, R.-Z. Huang, Y. Lan, Y. Zhao, J. Am. Chem. Soc. 2017, 139, 15304; b) L.-C. Yang, Z.-Q. Rong, Y.-N. Wang, Z. Y. Tan, M. Wang, Y. Zhao, Angew. Chem. Int. Ed. 2017, 56, 2927; c) P. Das, S. Gondo, P. Nagender, H. Uno, E. Tokunaga, N. Shibata, Chem. Sci. 2018, 9, 3276.
[32] A. Schmidt, A. Beutler, B. Snovydovych, Eur. J. Org. Chem. 2008, 4073.
[33] a) Y.Suzuki, S. Oishi, Y. Takei, M. Yasue, R. Misu, S. Naoe, Z. Hou, T. Kure, I. Nakanishi, H. Ohno, A. Hirasawa, G. Tsujimoto, N. Fujii, Org. Biomol. Chem. 2012, 10, 4907; b) H. K. Maurya, R. Verma, S. Alam, S. Pandey, V. Pathak, S. Sharma, K. K. Srivastava, A. S. Negi, A. Gupta, Bioorg. Med. Chem. Lett. 2013, 23, 5844.
[34] a) G. Murineddu, S. Ruiu, J. M. Mussinu, G. Loriga, G. E. Grella, M. A. M. Carai, P. Lazzari, L. Pani, G. A. Pinna, Bioorg. Med. Chem. 2005, 13, 3309; b) S. Schenone, O. Bruno, A. Ranise, C. Brullo, F. Bondavalli, W. Filippelli, F. Mazzeo, A. Capuano, G. Falcone, Farmaco 2003, 58, 845.
[35] CCDC 1910266, 1910268, and 1910267 (3-3a, 3-3d, and 3-9’) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
[36] J. A. Moore, R. W. Medeiros, J. Am. Chem. Soc. 1959, 81, 6026.
[37] a) R. Huisgen, Angew. Chem. Int. Ed. Engl. 1980, 19, 947; b) H. Dürr, Angew. Chem. Int. Ed. Engl. 1989, 28, 413; c) K. Sharma, J. R. Wolstenhulme, P. P. Painter, D. Yeo, F. Grande-Carmona, C. P. Johnston, D. J. Tantillo, M. D. Smith, J. Am. Chem. Soc. 2015, 137, 13414; d) J. L. Vicario, D. Badia, ChemCatChem 2010, 2, 375; e) C. W. Shoppee, G. N. Henderson, J. Chem. Soc. Chem. Commun. 1974, 561.
[38] The mechanisms of formation of compounds 3-3a’ and 3-11 were provided in Supporting Information (3.6.6 and 3.6.7).
[39] a) A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M. Rudolph, F. Rominger, Adv. Synth. Catal. 2012, 354, 555; b) S. Manojveer, R. Balamurugan, Chem. Commun. 2014, 50, 9925; c) P. C. Too, S. Chiba, Chem. Commun. 2012, 48, 7634; d) D. Lehnherr, J. M. Alzola, E. B. Lobkovsky, W. R. Dichtel, Chem. Eur. J. 2015, 21, 18122; e) Z. Cao, H. Zhu, X. Meng, L. Tian, X. Sun, G. Chen, J. You, Chem. Eur. J. 2016, 22, 9125, f) T. Lauterbach, S. Gatzweiler, P. Nösel, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv. Synth. Catal. 2013, 355, 2481; g) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090; h) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458; i) M. Kitamura, Y. Moriyasu, T. Okauchi, Synlett 2011, 643.
[40] a) F. J. Sarabia, Q. Li, E. M. Ferreira, Angew. Chem., Int. Ed. 2018, 57, 11015; b) A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809.
[41] A. Dagar, S. Biswas, S. M. Mobin, S. Samanta, Tetrahedron Lett. 2016, 57, 3326.

References Chapter IV:
[1] For reviews, see: a) Handbook of Cyclization Reactions (Ed.: S. Ma), Wiley-VCH, Weinheim, 2009; b) Science of Synthesis: Metal-Catalyzed Cyclization Reactions (Eds.: S. Ma, S. Gao), Thieme, New York, 2017.
[2] For reviews, see: a) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Wiley, New York, 1998; b) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981; c) Q.-Q. Cheng, M. P. Doyle, Adv. Organomet. Chem. 2016, 66, 1; d) N. J. Thumar, Q. Wei, W. Hu, Adv. Organomet. Chem. 2016, 66, 33.
[3] For reviews, see: a) Q.-Q. Cheng, Y. Deng, M. Lankelma, M. P. Doyle, Chem. Soc. Rev. 2017, 46, 5425; b) E. López, S. González-Pelayo, L. A. López, Chem. Rec. 2017, 17, 312.
[4] H. M. L. Davies, L. M. Hodges J. Org. Chem. 2002, 67, 5683.
[5] J. Barluenga, G. Lonzi, L. Riesgo, L. A. López, M. Tomas, J. Am. Chem. Soc. 2010, 132, 13200.
[6] R. P. Reddy, H. M. L. Davies, J. Am. Chem. Soc. 2007, 129, 10312.
[7] V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728.
[8] X. Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402.
[9] A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809.
[10] M. P. Doyle, M. Yan, W. Hu, L. Gronenberg, J. Am. Chem. Soc. 2003, 125, 4692.
[11] X. Xu, W.-H. Hu, P. Y. Zavalij, M. P. Doyle, Angew. Chem. Int. Ed. 2011, 50, 11152.
[12] M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741.
[13] J. F. Briones, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 13314.
[14] Selected reviews: (a) H. M. L. Davies, D. Morton, Chem. Soc. Rev. 2011, 40, 1857; (b) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704; (c) J. R. Manning, H. M. L. Davies, Nature, 2008, 451, 417; (d) M. P. Doyle, M. A. McKervy, T. Ye, Modern Catalytic Method for Organic Synthesis with Diazo Compounds; John Wiley & Sons: Wiley; New York, 1998; (e) A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223. (f) H. M. L. Davies, J. R. Denton, Chem. Soc. Rev. 2009, 38, 3061; (g) Z. Zhang, J. Wang, Tetrahedron, 2008, 64, 6577.
[15] Selected examples for carbocyclic cycloadducts, see: (a) J. F. Briones, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 13314; (b) Y. Liu, K. Bakshi, P. Zavalij, M. P. Doyle, Org. Lett. 2010, 12, 4304. (c) H. M. L. Davies, Adv. Cycloaddition 1999, 5, 119; (d) H. M. L. Davies, B. Xing, N. Kong, D. G. Stafford, J. Am. Chem. Soc. 2001, 123, 7461; (e) H. M. L. Davies, T. J. Clark, H. D. Smith, J. Org. Chem. 1991, 56, 3819; (f) J. P. Olson, H. M. L. Davies, Org. Lett. 2008, 10, 573; (g) L. Deng, A. J. Giessert, O. O. Gerlitz, X. Dai, S. T. Diver, H. M. L. Davies, J. Am. Chem. Soc. 2005, 127, 1342.
[16] For oxacyclic cycloadducts, see: (a) X. Xu, W.-H. Hu, P. Y. Zavalij, M. P. Doyle, Angew. Chem. Int. Ed. 2011, 50, 11152. (b) H. M. L. Davies, G. Ahmed, M. R. Churchill, J. Am. Chem. Soc. 1996, 118, 16774. (c) M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741.
[17] For azacyclic cycloadducts, see (a) M. P. Doyle, M. Yan, W. Hu, L. Gronenberg, J. Am. Chem. Soc. 2003, 125, 4692; (b) A. Padwa, Y. S. Kulkarni, Z. J. Zhang, J. Org. Chem. 1990, 55, 4144; (c) J. Barluenga, G. Lonzi, L. Riesgo, L. A. López, M. Tomas, J. Am. Chem. Soc. 2010, 132, 13200; (c) M. Yang, N. Jacobsen, W. Hu, L. S. Gronenberg, M. P. Doyle, J. T. Colyer, D. Bykowski, Angew. Chem. Int. Ed. 2004, 43, 6713; (d) X. Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402; (e) Y. Lian, H. M. L. Davies, J. Am. Chem. Soc. 2010, 132, 440; (f) X. Xu, M. O. Ratnikov, P. Y. Zavalij, M. P. Doyle, Org. Lett. 2011, 13, 6122.
[18] (a) Y. Liu, Y. Zhang, N. Jee, M. P. Doyle, Org. Lett. 2008, 10, 1605; (b) M. P. Doyle, K. Kundu, A. E. Russel, Org. Lett. 2005, 7, 5171; (c) G. Deng, X. Tian, Z. Qu, J. Wang, Angew. Chem. Int. Ed. 2002, 41, 2773; (d) M. A. Calter, P. M. Sugathapala, C. Zhu, Tetrahedron Lett. 1997, 38, 3837.
[19] A. S. K. Raj, R.-S. Liu, Angew. Chem. Int. Ed. 2019, 58, 10980.
[20] a) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090; b) X.-Z. Shu, S.-C. Zhao, K.-G. Ji, Z.-J. Zheng, X.-Y. Liu, Y.-M. Liang, Eur. J. Org. Chem. 2009, 117; c) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 42, 3504; d) H. Kusama, H. Funami, N. Iwasawa, Synthesis 2007, 2014; e) H. Kusama, H. Funami, J. Takaya, N. Iwasawa, Org. Lett. 2004, 6, 605; f) H. Kusama, H. Funami, M. Shido, Y. Hara, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 2709; g) N. Iwasawa, M. Shido, H. Kusama, J. Am. Chem. Soc. 2001, 123, 5814.
[21] a) N. Asao, K. Sato, Org. Lett. 2006, 8, 5361; b) D. Hildebrandt, W. Hüggenberg, M. Kanthak, T. Plöger, I. M. Müller, G. Dyker, Chem. Commun. 2006, 2260; c) N. Asao, K. Sato, Menggenbateer, Y. Yamamoto, J. Org. Chem. 2005, 70, 3682; d) B. F. Straub, Chem. Commun. 2004, 1726; e) N. Asao, T. Nogami, S. Lee, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 10921; f) N. Asao, K. Takahashi, S. Lee, T. Kasahara, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 12650; g) N. Asao, H. Aikawa, J. Org. Chem. 2006, 71, 5249; h) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458.
[22] Crystallographic data of compounds 4-3d and 4-4d were deposited at Cambridge Crystallographic Data Center: 4-3d (CCDC 1965080) and 4-4d (CCDC 1965081).
[23] a) C. Kong, T. G. Driver, Org. Lett. 2015, 17, 802; b) C. Kong, N. Su, F. Zhou, N. Jana, T. G. Driver, Tetrahedron Lett. 2015, 56, 3262; c) M. Chen, N. Su, T. Deng, D. J. Wink, Y. Zhao, T. G. Driver, Org. Lett., 2019, 21, 1555; d) S. S. Giri, R.-S. Liu, Chem. Sci. 2018, 9, 2991.
[24] a) A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M. Rudolph, F. Rominger, Adv. Synth. Catal. 2012, 354, 555; b) S. Manojveer, R. Balamurugan, Chem. Commun. 2014, 50, 9925; c) P. C. Too, S. Chiba, Chem. Commun. 2012, 48, 7634; d) D. Lehnherr, J. M. Alzola, E. B. Lobkovsky, W. R. Dichtel, Chem. Eur. J. 2015, 21, 18122; e) Z. Cao, H. Zhu, X. Meng, L. Tian, X. Sun, G. Chen, J. You, Chem. Eur. J. 2016, 22, 9125, f) T. Lauterbach, S. Gatzweiler, P. Nösel, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv. Synth. Catal. 2013, 355, 2481; g) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090; h) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458; i) M. Kitamura, Y. Moriyasu, T. Okauchi, Synlett 2011, 643.




 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *