帳號:guest(18.226.163.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):凱 莫
作者(外文):kamal, Saqib
論文名稱(中文):金屬有機骨架材料於光學、介電質及半導體領域之應用
論文名稱(外文):Optical, Dielectric and Semiconducting Applications of Metal–Organic Frameworks
指導教授(中文):呂光烈
洪政雄
廖文峯
指導教授(外文):Lu, Kuang-Lieh
Hung, Chen-Hsiung
Liaw, Wen-Feng
口試委員(中文):林倫年
孫世勝
江明錫
陳瑞山
口試委員(外文):Hayashi, Michitoshi
Sun, Shih-Sheng
Chiang, Ming-Hsi
Chen, Ruei-San
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023868
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:214
中文關鍵詞:金屬有機骨架材料
外文關鍵詞:Metal–Organic Frameworks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:182
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
經二十餘年的發展,多孔性金屬有機骨架化合物(MOF)或配位聚合物,已成為化學等領域的重要研究平台與工業的潛在應用材料。由於其高孔隙率、較大表面積和可調節的結構等特性,這些具有新穎拓撲結構且性能卓越的MOF逐漸顯現在光電、微電子的應用價值。本論文研究中,我們選取含羧酸基團或含氮配體,合成了鋇、銦、鋅和銅基等新型金屬有機骨架聚合物,並研究了它們的光學、介電和半導體特性。自發光MOF可應用於光學領域,我們合成了一種新型發光的二維鋇基金屬有機骨架{[Ba(2,6-ndc)(H2O)2]•H2O} (1),該晶體為單斜晶系,空間群為P21/n。化合物1表現出顯著的寬帶白光光譜,於374 nm處激發時,其國際照明(CIE)坐標為(0.32,0.33),低色溫為6113 K,其相應的高顯色指數(CRI)為84。這種白光發射可歸因於化合物1晶體結構內的π–π*堆疊和金屬到配體的電荷轉移機制引起的。此外,我們設計了一種發光二極體,使用Ba-MOF(1)作為活性材料,表現出白色電致激發光譜。這種出色的單成份MOF的白光LED發光材料較為環保、具高熱穩定性與低成本,和使用鑭系元素、過渡金屬的雙成分LED產品相比較,具有顯著優勢。另外,本研究也探討介電MOF的合成與特性,於水熱條件下合成了兩個銦基MOF: Na[In3(odpt)2(OH)2(H2O)2](H2O)4(2)和{[In(btc)(H2O)2]•2H2O}n(3),並研究了它們的高介電性質。化合物2晶體為三斜晶系,空間群為P1 ̅,其中包含三個In3+為中心,四個客體和兩個配位水分子;而化合物3晶體為單斜晶系,空間群為C2/c,具有一個In3+中心與兩個配位水分子,並含有兩個客體水分子。 2的介電研究證實,它具有很高的介電常數(在1 kHz時κ = 40.5),而化合物3表現出更高的介電性質(在1 kHz時κ = 56.3),從而驗證了這兩種化合物都有望使用於新興柵極電介質中。化合物3除去溶劑,當客體和配位的水分子被排除後(化合物3ꞌ),測量觀察到介電值發生了實質變化(45.2),表明水分子對化合物介電性質有很大影響。密度泛函理論(DFT)計算也支持了實驗結果,並且顯示這兩種化合物的介電行為與水分子多寡相關,並具有特異寬能隙。此外,本論文研究還探討了鋅基MOF化合物[Zn(Aip)(Pbim)]n (4)與 [Zn(Nip)(Pbim)]n (5)的合成及其介電性質。化合物4和化合物5的晶體均為單斜晶系,空間群分別為P21/n 和C2/c。介電研究的結果表明,4的介電常數非常高(在1 kHz時κ = 65.5),而化合物5的介電常數更高(在1 kHz時κ = 110.3)。兩種化合物在420 °C的溫度下均具有出色的熱穩定性,這些高熱穩定性使化合物4和5成為高溫應用中高介電的候選材料。我們還合成了一種具有Cu―S籠狀的金屬有機配位化合物[Cu6(mpy)6]n(6),具有獨特槳葉式奈米結構以及半導體性質。通過實驗和理論方法,我們證實這種材料是一種很有前景的0D半導體。實驗量測獲得的能隙為1.9 eV,而計算的能隙為1.8 eV,兩者非常吻合,其能隙大小亦與已知的半導體材料(例如CdSe,CdTe,ZnTe,GaP)相當。該錯合物具有半導體性質的主要原因可以歸因於銅的d軌域與槳輪狀奈米結構中有機配基中的硫原子p軌域之間的較佳混成。這些結果說明金屬有機骨架化合物具有獨特的結構,並顯示有趣的白光、介電與半導體特性。
Over the last two decades, a class of porous materials identified as Metal–Organic Frameworks (MOFs), also known as coordination polymers, have emerged as potential candidates for a wide spectrum of applications in academic and industrial research throughout the world. A larger variety of inorganic and organic components can be used to construct MOFs having novel topologies with exceptional properties. Their versatile features such as porosity, larger surface areas and tunable structural properties make them a desirable family of materials for use in the next-generation opto/ microelectronic applications. In this thesis, we report on the synthesis of barium, indium, zinc and copper-based novel metal–organic frameworks (MOFs) and complexes and the investigation of their optical behavior, dielectric and semiconducting properties. Luminescent MOFs have the potential for being used in optical applications. We synthesized a new luminescent two dimensional barium-based metal–organic framework {[Ba(2,6-ndc)(H2O)2]•H2O} (1), which crystallizes in the monoclinic space group P21/n space group. Compound 1, upon excitation at 374 nm, exhibits remarkable broad band white light emission spectrum with Commission International ed’Eclairage (CIE) coordinates at (0.32, 0.33) and a low color temperature of 6113 K with a corresponding high color rendering index (CRI) of 84. This white light emission can be attributed to ligand-based emission, raised by π–π* stacking and metal to ligand charge transfer mechanisms within the crystal structure of 1. In addition, we designed a light-emitting diode using the Ba-MOF (1) as an active material which exhibited a white electroluminescence spectra. This remarkable single component MOF-based white light LED system represents a significant advancement in two-component LEDs systems that involve the use of lanthanides, transition metals, thus demonstrating the potential of this material for being an environmentally friendly, highly thermally stable and low cost source for solid-state white-light applications.
Furthermore, inspired by examples of low dielectric MOFs, we synthesized two indium-based MOFs Na[In3(odpt)2(OH)2(H2O)2](H2O)4 (2) and {[In(btc)(H2O)2]•2H2O}n (3) under hydrothermal conditions and evaluated their high dielectric properties. Compound 2 crystallized in the triclinic space group (P1 ̅) containing three In3+ centers, four guest and two coordinated water molecules while compound 3 crystallized in the C2/c monoclinic space group with one In3+ center to which two water molecules are attached and also contains two guest water molecules. Dielectric studies of 2 revealed that it has a very high dielectric constant (κ = 40.5 at 1 kHz), while compound 3 exhibited an even higher dielectric constant (κ = 56.3 at 1 kHz) thus confirming that both compounds represent promising candidates for use in gate dielectrics. The dielectric properties of 3 containing solvated guest and coordinated water molecules were also measured after eliminating both guest and coordinated water molecules (3ꞌ) and a substantial change in the dielectric value was observed (45.2). Theoretical results from density functional theory (DFT) calculations, were also consistent with the experimental findings, and showed that both compounds displayed distinct electronic behavior with diverse wide bandgaps, which was associated with the removal of the water molecules. We also investigated the dielectric properties of two solvated molecules free zinc-based MOFs [Zn(Aip)(Pbim)]n (4) and [Zn(Nip)(Pbim)]n (5). Both compound 4 and compound 5 crystallized in the monoclinic space groups P21/n and C2/c, respectively. The results of dielectric studies showed that 4 display a very high dielectric constant (κ = 65.5 at 1 kHz), while compound 5 showed an even higher dielectric constant (κ = 110.3 at 1 kHz). Both compounds were remarkably thermally stable at temperatures in the range of 420 °C. The high thermal stabilities of both compounds 4 and 5 make them appropriate contenders for use as high dielectric constant materials in high temperature applications.
We also highlighted the semiconducting property of a metal–organic complex [Cu6(mpy)6]n (6) having a unique paddle-wheel nanostructure based on a compact Cu–S cage. Using both experimental and theoretical approaches, we were able to demonstrate that properties of this material make it a promising 0D semiconductor. The experimentally obtained bandgap was 1.9 eV. The computed bandgap was 1.8 eV, which is in a good agreement with the measured value. The estimated bandgap size is comparable to those of previously reported semiconducting materials (e.g., CdSe, CdTe, ZnTe, GaP). The main reason for the semiconducting characteristics of this complex can be attributed to the strong hybridization between the d-orbitals of copper and the p-orbitals of organic atoms in the paddle-wheel like nanostructure. These results provide encouragement for more advanced studies of Cu-based metal–organic complexes, which will lead to the fabrication of even more fascinating semiconducting materials in the future.
Contents
摘要 i
Abstract iii
Acknowledgements vi
Contents viii
List of Figures xiii
List of Tables xxiiii
List of Publications xxiii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Design and Self-assembly of Metal–Organic Frameworks 4
1.3 Pre and Post Modification 7
1.4 Applications of MOFs as Luminescent Materials 9
1.4.1 Introduction to Luminescent Materials 9
1.4.2 Luminescent Properties of MOFs 9
1.4.3 White Light Emitting MOFs 17
1.5 Dielectric Properties of MOFs 20
1.5.1 Introduction to Dielectric Materials 20
1.5.2 Applications of MOFs as Dielectric Materials 27
1.6 Semiconducting Properties of MOFs 34
1.6.1 Introduction to Semiconducting Materials 34
1.6.2 Semiconducting MOFs 35
1.7 Research Motivation 38
Chapter 2. Phosphor-Free Barium–Organic Framework as White Light Emitter 39
2.1 Introduction 39
2.2 Experimental Section 40
2.2.1 General Information 40
2.2.2 Synthesis of {[Ba(2,6-ndc)(H2O)2]·H2O} (1) 40
2.2.3 Simulation Details 42
2.3 Results and Discussion 42
2.3.1 Crystal Structure of Ba-based MOF (1) 42
2.3.2 Thermogravimetric Analysis and Powder X-ray Diffraction Studies 45
2.3.3 Photoluminescence Properties 46
2.3.4 Density Functional Theory (DFT) Calculations 50
2.3.5 Device Fabrication 52
2.4 Conclusions 58
Chapter 3. Thermally Stable High-Dielectric In-based MOFs 59
3.1 Introduction 59
3.2 Experimental Section 60
3.2.1 General Information 60
3.2.2 Synthesis of Na[In3(odpt)2(OH)2(H2O)2](H2O)4 (2) 61
3.2.3 Synthesis of {[In(btc)(H2O)2]·2H2O}n (3) 62
3.2.4 Computational Details of DFT Study 63
3.3 Results and Discussion 64
3.3.1 Crystal Structures of Compound 2 64
3.3.2 Crystal Structures of Compound 3 68
3.3.3 Powder X-ray Diffraction and Thermogravimetric Analysis 72
3.3.4 Dielectric Properties 75
3.3.5 Electrical Conductivity and Impedance Studies 80
3.3.6 Electronic Structures by Theoretical DFT Study 81
3.3.7 Diffuse Reflection Studies 85
3.4 Conclusions 86
Chapter 4. Guest Free High Dielectric Zinc-based Metal–Organic Frameworks 88
4.1 Introduction 88
4.2 Experimental Section 90
4.2.1 General Information 90
4.2.2 Synthesis of [Zn(Aip)(Pbim)]n (4) 90
4.2.3 Synthesis of [Zn(Nip)(Pbim)]n (5) 91
4.3 Results and Discussion 91
4.3.1 Synthesis of Compounds 4 and 5 91
4.3.2 Crystal Structure of Compound 4 92
4.3.3 Crystal Structure of Compound 5 96
4.3.4 Powder X-ray Diffraction and Thermogravimetric Analysis 99
4.3.5 Dielectric Investigation 100
4.3.6 Electrical Conductivity and Impedance Studies 104
4.4 Conclusion 105
Chapter 5. Cu-Based Metal–Organic Complex as a Semiconductor 106
5.1 Introduction 106
5.2 Experimental Section 107
5.2.1 General Information 107
5.2.2 Synthesis of [Cu6 (mpy)6]n (6) 108
5.2.3 Computational Details of DFT Study 108
5.3 Results and Discussion 108
5.3.1 Crystal Structure of Compound 6 109
5.3.2 Powder X-ray Diffraction and Thermogravimetric Analysis 111
5.3.3 Electrical Characterization 112
5.3.4 Electrochemical Measurements 114
5.3.5 Diffuse Reflectance Spectrum 116
5.3.6 Theoretical DFT Study 117
5.4 Conclusion 119
Chapter 6. Conclusion 120
References 123
Addendum I: Crystal Data and Structure Refinement 155
1. James, S. L., Metal–organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288.
2. Safaei, M.; Foroughi, M. M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M., A review on metal–organic frameworks: synthesis and applications. Trends Anal. Chem. 2019, 118, 401–425.
3. Varela, A. S.; Ju, W.; Strasser, P., Molecular nitrogen–carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen‐doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1703614.
4. Gangu, K. K.; Maddila, S.; Mukkamala, S. B.; Jonnalagadda, S. B., A review on contemporary metal–organic framework materials. ‎Inorg. Chim. Acta 2016, 446, 61–74.
5. Mendiratta, S.; Usman, M.; Lu, K. L., Expanding the dimensions of metal–organic framework research towards dielectric. Coord. Chem. Rev. 2018, 360, 77–91.
6. Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S., Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700–5734.
7. Zhao, M.; Huang, Y.; Peng, Y.; Huang, Z.; Ma, Q.; Zhang, H., Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.
8. Loera-Serna, S.; Ortiz, E., Catalytic applications of metal–organic frameworks. Intech Open. 2016, 95–122.
9. Jiang, D.; Chen, M.; Wang, H.; Zeng, G.; Huang, D.; Cheng, M.; Liu, Y.; Xue, W.; Wang, Z., The application of different typological and structural MOFs-based materials for the dyes adsorption. Coord. Chem. Rev. 2019, 380, 471–483.
10. Usman, M.; Mendiratta, S.; Lu, K. L., Semiconductor metal–organic frameworks: Future low‐bandgap materials. Adv. Mater. 2017, 29, 1605071.
11. Janiak, C.; Vieth, J. K., MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366–2388.
12. Meng, J.; Liu, X.; Niu, C.; Pang, Q.; Li, J.; Liu, F.; Liu, Z.; Mai, L., Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186
13. Schoedel, A.; Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M., Structures of metal–organic frameworks with rod secondary building units. Chem. Soc. Rev. 2016, 116, 12466–12535.
14. Baumann, A. E.; Burns, D. A.; Liu, B.; Thoi, V. S., Metal–organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2019, 2, 1–14.
15. http://www.merriam-webster.com.
16. Stock, N.; Biswas, S., Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012, 112, 933–969.
17. Long, J. R.; Yaghi, O. M., The pervasive chemistry of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214.
18. Cook, T. R.; Zheng, Y.-R.; Stang, P. J., Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 2013, 113, 734–777.
19. Kitagawa, S.; Kitaura, R.; Noro, S. i., Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
20. Wriedt, M., Systematic investigations on magneto-structural correlations of copper (II) coordination polymers based on organic ligands with mixed carboxylic and nitrogen-based moieties. Dalton Trans. 2012, 41, 4207–4216.
21. Kitagawa, S.; Munakata, M., Molecular architecture of copper (I) coordination polymers towards crystal lattice design. În: Trends Inorg. Chem. 1993, 3, 437–462.
22. Tan, Y.-X.; Wang, F.; Zhang, J., Design and synthesis of multifunctional metal–organic zeolites. Chem. Soc. Rev. 2018, 47, 2130–2144.
23. Hoffart, D. J.; Loeb, S. J., Metal–Organic Rotaxane Frameworks: three‐dimensional polyrotaxanes from lanthanide‐ion nodes, pyridinium n‐oxide axles, and crown‐ether wheels. Angew. Chem. Int. Ed. 2005, 44, 901–904.
24. Guo, X.; Zhu, G.; Sun, F.; Li, Z.; Zhao, X.; Li, X.; Wang, H.; Qiu, S., Synthesis, structure, and luminescent properties of microporous lanthanide metal−organic frameworks with inorganic rod-shaped building units. Inorg. chem. 2006, 45, 2581–2587.
25. Yang, Q.-F.; Cui, X.-B.; Chen, Y.; Wang, Z.; Yu, J.-H.; Xu, J.-Q.; Wang, T.-G., Two new 3D lanthanide metal–organic frameworks constructed from nitrilotriacetate and oxalate ligands. Inorg. Chem. Commun. 2011, 14, 320–323.
26. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J., Supramolecular coordination: self-assembly of finite two-and three-dimensional ensembles. Chem. Rev. 2011, 111, 6810–6918.
27. Choi, H. J.; Suh, M. P., Synthesis, crystal structure, and properties of a 3-D network assembled by nickel (II) macrocyclic complex and terephthalato bridge. Inorg. Chem. 1999, 38, 6309–6312.
28. Li, B.; Chrzanowski, M.; Zhang, Y.; Ma, S., Applications of metal–organic frameworks featuring multi-functional sites. Coord. Chem. Rev. 2016, 307, 106–129.
29. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature. 2003, 423, 705–714.
30. Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K., Best practices for the synthesis, activation, and characterization of metal–organic frameworks. J. Mater. Chem. 2017, 29, 26–39.
31. Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M., Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370.
32. Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M., Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.
33. Hagrman, P. J.; Hagrman, D.; Zubieta, J., Organic–inorganic hybrid materials: From “simple” coordination polymers to organodiamine‐templated molybdenum oxides. Angew. Chem. Int. Ed. 1999, 38, 2638–2684.
34. Yin, Z.; Zhou, Y.-L.; Zeng, M.-H.; Kurmoo, M., The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Trans. 2015, 44, 5258–5275.
35. Lin, Z.-J.; Lü, J.; Hong, M.; Cao, R., Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895.
36. Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M., Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res 2001, 34, 319–30.
37. Kumagai, H.; Kepert, C. J.; Kurmoo, M., Construction of hydrogen-bonded and cooordion -bonded networks of cobalt (II) with pyromellitate: Synthesis, structures, and magnetic properties Inorg. Chem. 2002, 41, 3410–3422.
38. Davidson, G. J.; Loeb, S. J., Channels and cavities lined with interlocked components: metal‐based polyrotaxanes that utilize pyridinium axles and crown ether wheels as ligands. Angew. Chem. Int. Ed. 2003, 115, 78–81.
39 Lee, E.; Heo, J.; Kim, K., A three‐dimensional polyrotaxane network. Angew. Chem. Int. Ed. 2000, 39, 2699–2701.
40. Seetharaj, R.; Vandana, P.; Arya, P.; Mathew, S., Dependence of solvents, pH, molar ratio and temperature in tuning metal–organic framework architecture. Arab. J. Chem. 2019, 12, 295–315
41. Hong, Y.-s.; Sun, S.-l.; Sun, Q.; Gao, E.-Q.; Ye, M., Tuning adsorption capacity through ligand pre-modification in functionalized Zn-MOF analogues. Mater. Chem. Phys. 2020, 243, 122601.
42. Deng, H.; Doonan, C.J.; Furukawa, H.; Ferreira, R.B.; Towne, J.; Knobler, C.B.; Wang, B.; Yaghi, O.M. Multiple functional groups of varying ratios in metal–organic frameworks. Science 2010, 327, 846–850.
43. Ban, Y.; Li, Y.; Liu, X.; Peng, Y.; Yang, W. Solvothermal synthesis mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology. Microporous Mesoporous Mater. 2013, 173, 29–36.
44. Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Grenã, J.M.; et al. Functionalization in flexible porous solids: Effects on the pore opening and the host–guest interactions. J. Am. Chem. Soc. 2010, 132, 1127–1136.
45. Yin, Z.; Wan, S.; Yang, J.; Kurmoo, M.; Zeng, M.-H., Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coord. Chem. Rev. 2019, 378, 500–512.
46. Hoskins, B.; Robson, R., Design construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI [4,4',4'',4'''-tetracyanotetraphenylmethane] BF4·xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554.
47. Oh, M.; Mirkin, C. A., Ion exchange as a way of controlling the chemical compositions of nano‐and microparticles made from infinite coordination polymers. Angew. Chem. Int. Ed. 2006, 45, 5492–5494.
48. Vimont, A.; Goupil, J.-M.; Lavalley, J.-C.; Daturi, M.; Surblé, S.; Serre, C.; Millange, F.; Férey, G.; Audebrand, N., Investigation of acid sites in a zeotypic giant pores chromium (III) carboxylate. J. Am. Chem. Soc. 2006, 128, 3218–3227.
49. Wu, C.-D.; Hu, A.; Zhang, L.; Lin, W., A homochiral porous metal−organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 2005, 127, 8940–8941
50. Wang, X.-S.; Ma, S.; Sun, D.; Parkin, S.; Zhou, H.-C., A mesoporous metal−organic framework with permanent porosity. J. Am. Chem. Soc. 2006, 128, 16474–16475.
51. Tanabe, K. K.; Wang, Z.; Cohen, S. M., Systematic functionalization of a metal−organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 2008, 130, 8508–8517.
52. Haneda, T.; Kawano, M.; Kawamichi, T.; Fujita, M., Direct observation of the labile imine formation through single-crystal-to-single-crystal reactions in the pores of a porous coordination network. J. Am. Chem. Soc. 2008, 130, 1578–1579.
53. Tu, B.; Pang, Q.; Wu, D.; Song, Y.; Weng, L.; Li, Q., Ordered vacancies and their chemistry in metal–organic frameworks. J. Am. Chem. Soc. 2014, 136, 14465–14471.
54. Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K., Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.
55. Hao, Y.; Chen, S.; Zhou, Y.; Zhang, Y.; Xu, M., Recent progress in metal–organic framework (MOF) based Luminescent chemodosimeters. J. Nanomater. 2019, 9, 974.
56. Li, H.-Y.; Zhao, S.-N.; Zang, S.-Q.; Li, J., Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401.
57. Yin, H.-Q.; Yin, X.-B., Metal–Organic frameworks with multiple luminescence emissions: designs and applications. Acc. Chem. Res. 2020, 53, 485–495.
58. Pan, M.; Liao, W.-M.; Yin, S.-Y.; Sun, S.-S.; Su, C.-Y., Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies. Chem. Soc. Rev. 2018, 118, 8889–8935.
59. Liu, Y.; Xie, X.-Y.; Cheng, C.; Shao, Z.-S.; Wang, H.-S., Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. J. Mater. Chem. C. 2019, 7, 10743–10763.
60. Li, S.-Y.; Sun, Z.-B.; Zhao, C.-H., Charge-transfer emitting triarylborane π-electron systems. Inorg. Chem. 2017, 56, 8705–8717.
61. Nguyen, T. N.; Ebrahim, F. M.; Stylianou, K. C., Photoluminescent, upconversion luminescent and nonlinear optical metal–organic frameworks: From fundamental photophysics to potential applications. Coord. Chem. Rev. 2018, 377, 259–306.
62. Cui, Y.; Yue, Y.; Qian, G.; Chen, B., Luminescent functional metal–organic frameworks. Chem. Soc. Rev. 2012, 112, 1126–1162.
63. Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D., Influence of connectivity and porosity on ligand-based luminescence in zinc metal−organic frameworks. J.Am. Chem.l Soc. 2007, 129, 7136–7144.
64. Yu, W.; Cheng, C.; Cheng, Y.; Wu, P.; Song, Y.; Chi, Y.; Chou, P. Excited-state intramolecular proton transfer in five-memberedhydrogen-bonding systems: 2-pyridyl pyrazoles. J. Am. Chem. Soc. 2003, 125, 10800–10801.
65. Tarkka, R. M.; Zhang, X.; Jenekhe, S. A. Electrically generated intramolecular proton transfer: electroluminescence and stimulated emission from polymers. J. Am. Chem. Soc. 1996, 118, 9438–9439.
66. Jayaramulu, K.; Kanoo, P.; George, S. J.; Maji, T. K. Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand. Chem. Commun. 2010, 46, 7906–7908.
67. Krueger, R. A.; Blanquart, G., Predicting aromatic exciplex fluorescence emission energies. Phys. Chem. Chem. Phys. 2019, 21, 10325–10335.
68. McManus, G. J.; Perry IV, J. J.; Perry, M.; Wagner, B. D.; Zaworotko, M. J., Exciplex fluorescence as a diagnostic probe of structure in coordination polymers of Zn2+ and 4,4‘-bipyridine containing intercalated pyrene and enclathrated aromatic solvent guests. J.Am. Chem.Soc. 2007, 129, 9094–9101.
69. Bünzli, J.-C. G.; Piguet, C., Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077.
70. Cadman, L. K.; Mahon, M. F.; Burrows, A. D., The effect of metal distribution on the luminescence properties of mixed-lanthanide metal–organic frameworks. Dalton Trans. 2018, 47, 2360–2367.
71. Vogler, A.; Kunkely, H., Luminescent metal complexes: diversity of excited states. In Transition Metal and Rare Earth Compounds, Springer: 2001, 143–182.
72. Zhao, S.-N.; Wang, G.; Poelman, D.; Voort, P. V. D., Luminescent lanthanide MOFs: a unique platform for chemical sensing. Materials. 2018, 11, 572.
73. Vogler, A.; Nikol, H., Photochemistry and photophysics of coordination compounds of the main group metals. Pure Appl. Chem. 1992, 64, 1311–1317.
74. Li, X.; Yu, J.; Gosztola, D. J.; Fry, H. C.; Deria, P., Wavelength-dependent energy and Charge Transfer in MOF: A step toward artificial porous light-harvesting System. J. Am.Chem. Soc. 2019, 141, 16849–16857.
75. Yu, J.; Park, J.; Van Wyk, A.; Rumbles, G.; Deria, P., Excited-state electronic properties in Zr-based metal–organic frameworks as a function of a topological network. J. Am. Chem. Soc. 2018, 140, 10488–10496.
76. Leong, K.; Foster, M. E.; Wong, B. M.; Spoerke, E. D.; Van Gough, D.; Deaton, J. C.; Allendorf, M. D., Energy and charge transfer by donor–acceptor pairs confined in a metal–organic framework: a spectroscopic and computational investigation. J. Mater. Chem. A. 2014, 2, 3389–3398.
77. Shin, Y.-g. K.; Brunschwig, B. S.; Creutz, C.; Sutin, N., Electroabsorption spectroscopy of charge-transfer states of transition-metal complexes. 2. Metal-to-ligand and ligand-to-metal charge-transfer excited states of pentaammineruthenium complexes. J. Phy. Chem. 1996, 100, 8157–8169.
78. Santaclara, J. G.; Nasalevich, M. A.; Castellanos, S.; Evers, W. H.; Spoor, F. C.; Rock, K.; Siebbeles, L. D.; Kapteijn, F.; Grozema, F.; Houtepen, A., Organic linker defines the excited‐state decay of photocatalytic MIL‐125 (Ti)‐type materials. ChemSusChem 2016, 9, 388–395.
79. Yang, Q.-Y.; Wu, K.; Jiang, J.-J.; Hsu, C.-W.; Pan, M.; Lehn, J.-M.; Su, C.-Y., Pure white-light and yellow-to-blue emission tuning in single crystals of Dy (III) metal–organic frameworks. Chem. Commun. 2014, 50, 7702–7704.
80. Buenzli, J.-C. G., On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 2015, 293, 19–47.
81. Heine, J.; Müller-Buschbaum, K., Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242.
82. Cornelio, J.; Zhou, T.-Y.; Alkaş, A.; Telfer, S. G., Systematic tuning of the luminescence output of multicomponent metal–organic frameworks. J. Am. Chem. Soc. 2018, 140, 15470–15476.
83. An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S.; Rosi, N. L., Zinc-adeninate metal−organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc. 2011, 133, 1220–1223.
84. Jia, H.; Wang, Z.; Yuan, T.; Yuan, F.; Li, X.; Li, Y.; Tan, Z. a.; Fan, L.; Yang, S., Electroluminescent warm white light‐emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots. Adv. Sci. 2019, 6, 1900397.
85. Shang, M.; Li, C.; Lin, J., How to produce white light in a single-phase host? Chem. Soc. Rev. 2014, 43, 1372–1386.
86. D'Andrade, B. W.; Forrest, S. R., White organic light‐emitting devices for solid‐state lighting. Adv. Mater. 2004, 16, 1585–1595.
87. Tang, Q.; Liu, S.; Liu, Y.; He, D.; Miao, J.; Wang, X.; Ji, Y.; Zheng, Z., Color tuning and white light emission via in situ doping of luminescent lanthanide metal–organic frameworks. Inorg. Chem. 2014, 53, 289–293.
88. Zhou, Y.; Yan, B., Imparting tunable and white-light luminescence to a nanosized metal–organic framework by controlled encapsulation of lanthanide cations. Inorg. Chem. 2014, 53, 3456–3463.
89. Liu, X.-Y.; Li, Y.; Tsung, C.-K.; Li, J., Encapsulation of yellow phosphors into nanocrystalline metal–organic frameworks for blue-excitable white light emission. Chem. Commun. 2019, 55, 10669–10672.
90. Wu, Z.-F.; Tan, B.; Wang, J.-Y.; Du, C.-F.; Deng, Z.-H.; Huang, X.-Y., Tunable photoluminescence and direct white-light emission in Mg-based coordination networks. Chem. Commun. 2015, 51, 157–160.
91. Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically driven white light emission from intrinsic metal–organic framework. ACS nano. 2016, 10, 8366–8375.
92. Ukpaka, C. P., Mathematical model to predict the characteristics of polarization in dielectric materials: The concept of piezoelectricity and electrostriction. Chem. Int. 2019, 5, 232–240.
93. Muraka, S. P.; Eizenberg, M.; Sinha, A. K., Interlayer dielectrics for semiconductor technologies. Elsevier: 2003.
94. G. E. Moore, Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff, Solid-State Circuits Society Newsletter, IEEE, 2006, 11, 33–35.
95. Volksen, W.; Miller, R. D.; Dubois, G., Low dielectric constant materials. Chem. Soc. Rev 2010, 110, 56–110.
96. Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A., A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions. Chem. Eur. J. 2011, 17, 11372–11388.
97. Usman, M.; Lee, C.-H.; Hung, D.-S.; Lee, S.-F.; Wang, C.-C.; Luo, T.-T.; Zhao, L.; Wu, M.-K.; Lu, K.-L., Intrinsic low dielectric behaviour of a highly thermally stable Sr-based metal–organic framework for interlayer dielectric materials. J. Mater. Chem. C. 2014, 2, 3762–3768.
98. Mendiratta, S.; Usman, M.; Tseng, T.-W.; Luo, T.-T.; Lee, S.-F.; Zhao, L.; Wu, M.-K.; Lee, M. M.; Sun, S.-S.; Lin, Y.-C., Low dielectric behavior of a robust, guest-free magnesium (II)-organic framework: A potential application of an alkaline-earth metal compound. Eur. J. Inorg. Chem. 2015, 1669, 1669–74.
99. Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A., High-к gate dielectrics for emerging flexible and stretchable electronics. Chem. Soc. Rev. 2018, 118, 5690–5754.
100. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. In Nanoscience and technology: a collection of reviews from Nature journals, World Scientific: 2010; 320–329.
101. Hardy, C. G.; Islam, M. S.; Gonzalez-Delozier, D.; Morgan, J. E.; Cash, B.; Benicewicz, B. C.; Ploehn, H. J.; Tang, C., Converting an electrical insulator into a dielectric capacitor: end-capping polystyrene with oligoaniline. Chem.Mater. 2013, 25, 799–807.
102. Thomas-Hillman, I.; Laybourn, A.; Dodds, C.; Kingman, S. W., Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis. J. Mater. Chem. A 2018, 6, 11564–11581.
103. Dang, Z. M.; Zhou, T.; Yao, S. H.; Yuan, J. K.; Zha, J. W.; Song, H. T.; Li, J. Y.; Chen, Q.; Yang, W. T.; Bai, J., Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 2009, 21, 2077–2082.
104. Ortiz, R. P.; Facchetti, A.; Marks, T. J., High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Soc. Rev. 2010, 110, 205–239.
105. Robertson, J., High dielectric constant oxides. Eur. Phys. J. 2004, 28, 265–291.
106. Dąbrowski, J.; Miyazaki, S.; Inumiya, S.; Kozłowski, G.; Lippert, G.; Łupina, G.; Nara, Y.; Müssig, H. J.; Ohta, A.; Pei, Y. In The influence of defects and impurities on electrical properties of high-к dielectrics. Materials Science Forum, Trans Tech Publ. 2009, 55–109.
107. Zhao, Y., Design of Higher-к and more stable rare earth oxides as gate dielectrics for advanced CMOS devices. Materials. 2012, 5, 1413–1438.
108. Lee, B.; Hande, A.; Park, T.; Chung, K.; Ahn, J.; Rousseau, M.; Hong, D.; Li, H.; Liu, X.; Shenai, D., ALD of LaHfOx nano-laminates for high-κ gate dielectric applications. Microelectron Eng. 2011, 88, 3385–3388.
109. Zhao, Y.; Kita, K.; Kyuno, K.; Toriumi, A., Higher-k LaYOx films with strong moisture resistance. Appl. Phys. Lett. 2006, 89, 252905.
110. Zhou, B.; Kobayashi, A.; Cui, H.-B.; Long, L.-S.; Fujimori, H.; Kobayashi, H., Anomalous dielectric behavior and thermal motion of water molecules confined in channels of porous coordination polymer crystals. J. Am. Chem. Soc. 2011, 133, 5736–5739.
111. Zhou, B.; Imai, Y.; Kobayashi, A.; Wang, Z. M.; Kobayashi, H., Giant dielectric anomaly of a metal–organic perovskite with four‐membered ring ammonium cations. Angew. Chem. Int. Ed. 2011, 123, 11643–11647.
112. Pathak, A.; Chiou, G. R.; Gade, N. R.; Usman, M.; Mendiratta, S.; Luo, T.-T.; Tseng, T. W.; Chen, J.-W.; Chen, F.-R.; Chen, K.-H., High-κ samarium-based metal–organic framework for gate dielectric applications. ACS Appl. Mater. Interfaces. 2017, 9, 21872–21878.
113. Usman, M.; Feng, P.-H.; Chiou, K.-R.; Chen, J.-W.; Lee, L.-W.; Liu, Y.-H.; Lu, K.-L., Polar molecule confinement effects on dielectric modulations of Sr-based metal–organic frameworks. ACS Appl. Electron. Mater. 2019, 1, 836–844.
114. Chen, Q.; Guo, P.-C.; Zhao, S.-P.; Liu, J.-L.; Ren, X.-M., A rhombus channel metal–organic framework comprised of Sr2+ and thiophene-2,5-dicarboxylic acid exhibiting novel dielectric bistability. CrystEngComm 2013, 15, 1264–1270.
115. Inamdar, A. I.; Pathak, A.; Usman, M.; Chiou, K.-R.; Tsai, P.-H.; Mendiratta, S.; Kamal, S.; Liu, Y.-H.; Chen, J.-W.; Chiang, M.-H., Highly hydrophobic metal–organic framework for self-protecting gate dielectrics. J. Mater. Chem. A. 2020, 8, 11958–11965
116. Schneider, C.; Ukaj, D.; Koerver, R.; Talin, A. A.; Kieslich, G.; Pujari, S. P.; Zuilhof, H.; Janek, J.; Allendorf, M. D.; Fischer, R. A., High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu3 BTC2 micropores. Chem. Sci. 2018, 9, 7405–7412.
117. Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S. l.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A. n.; Dincă, M., High electrical conductivity in Ni3 (2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 2014, 136, 8859–8862.
118. Alvaro, M.; Carbonell, E.; Ferrer, B.; i Xamena, F. X. L.; Garcia, H., Semiconductor behavior of a metal–organic framework (MOF). Chem. Eur. J. 2007, 13, 5106–5112.
119. Yang, C.; Dong, R.; Wang, M.; Petkov, P. S.; Zhang, Z.; Wang, M.; Han, P.; Ballabio, M.; Bräuninger, S. A.; Liao, Z., A semiconducting layered metal–organic framework magnet. Nat. Commun. 2019, 10, 1–9.
120. Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M. I.; Goossens, S.; Li, L.-J.; Wong, H.-S. P.; Koppens, F. H., Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.
121. Shamiryan, D.; Abell, T.; Iacopi, F.; Maex, K., Low-k dielectric materials. Mater. Today. 2004, 7, 34–39.
122. Ieong, M.; Narayanan, V.; Singh, D.; Topol, A.; Chan, V.; Ren, Z., Transistor scaling with novel materials. Mater. Today. 2006, 9, 26–31.
123. Lee, B. L.; Lee, E. K.; Han, K. M., Organic polymer semiconductor, method of preparing the same, and ambipolar organic thin film transistor using the same. Google Patents: 2013.
124. Mousavi, H.; Khodadadi, J.; Kurdestany, J. M.; Yarmohammadi, Z., Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers. Phys. Lett. A. 2016, 380, 3823–3827.
125. Pedesseau, L.; Sapori, D.; Traore, B.; Robles, R.; Fang, H.-H.; Loi, M. A.; Tsai, H.; Nie, W.; Blancon, J.-C.; Neukirch, A., Advances and promises of layered halide hybrid perovskite semiconductors. ACS nano. 2016, 10, 9776–9786.
126. Siemensmeyer, K.; Peeples, C. A.; Tholen, P.; Schmitt, F. J.; Çoşut, B.; Hanna, G.; Yücesan, G., Phosphonate metal–organic frameworks: A novel family of semiconductors. Adv.Mater. 2020, 2000474.
127. Sippel, P.; Denysenko, D.; Loidl, A.; Lunkenheimer, P.; Sastre, G.; Volkmer, D., Dielectric relaxation processes, electronic structure, and band gap engineering of MFU‐4‐type metal‐organic frameworks: Towards a rational design of semiconducting microporous materials. Adv. Funct. Mater. 2014, 24, 3885–3896.
128. Stavila, V.; Talin, A. A.; Allendorf, M. D., MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994–6010.
129. Rubio-Giménez, V.; Tatay, S.; Martí-Gastaldo, C., Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chem. Soc. Rev. 2020, 49, 5601–5638.
130. Hendon, C. H.; Tiana, D.; Vaid, T. P.; Walsh, A., Thermodynamic and electronic properties of tunable II–VI and IV–VI semiconductor based metal–organic frameworks from computational chemistry. J. Mater. Chem. C. 2013, 1, 95–100.
131. Bhardwaj, S. K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A. L.; Kim, K.-H.; Deep, A., An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A. 2018, 6, 14992–15009.
132. Silva, C. G.; Corma, A.; García, H., Metal–organic frameworks as semiconductors. J.Mater.Chem. 2010, 20, 3141–3156.
133. Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M., Cu3 (hexaiminotriphenylene) 2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 2015, 54, 4349–4352.
134. Xie, J.; Wang, L.; Anderson, J. S., Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chem. Sci. J. 2020, 11, 8350–8372.
135. Talin, A. A.; Allendorf, M. D.; Stavila, V.; Leonard, F., Tunable electrical conductivity in metal-organic framework thin film devices. Google Patents: 2016.
136. Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P., Tunable electrical conductivity in metal–organic framework thin-film devices. Science 2014, 343, 66–69.
137. Pathak, A.; Shen, J.-W.; Usman, M.; Wei, L.-F.; Mendiratta, S.; Chang, Y.-S.; Sainbileg, B.; Ngue, C.-M.; Chen, R.-S.; Hayashi, M., Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity. Nat. Commun. 2019, 10, 1–7.
138. Zhan, W.-w.; Kuang, Q.; Zhou, J.-z.; Kong, X.-j.; Xie, Z.-x.; Zheng, L.-s., Semiconductor@ metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 2013, 135, 1926–1933.
139. Tonzani, S. Lighting technology: Time to change the bulb. Nature News 2009, 459, 312– 314.
140. Tonzani, S., Time to change the bulb. Nature 2009, 459, 312.
141. Wen, Y.; Sheng, T.; Zhu, X.; Zhuo, C.; Su, S.; Li, H.; Hu, S.; Zhu, Q. L.; Wu, X., Introduction of red‐green‐blue fluorescent dyes into a metal–organic framework for tunable white light emission. Adv. Mater. 2017, 29, 1700778.
142. Pimputkar, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S., Prospects for LED lighting. Nat. Photonics 2009, 3, 180–182.
143. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Electroluminescent conjugated polymers—seeing polymers in a new light. Angew. Chem. Int. Ed. 1998, 37, 402–428.
144. Wada, Y.; Sato, M.; Tsukahara, Y., Fine control of red–green–blue photoluminescence in zeolites incorporated with rare‐earth ions and a photosensitizer. Angew. Chem. Int. Ed. 2006, 45, 1925–1928.
145. Shunmugam, R.; Tew, G. N., White‐light emission from mixing blue and red‐emitting metal complexes. Polym. Adv. Technol. 2008, 19, 596–601.
146. Gong, Q.; Hu, Z.; Deibert, B. J.; Emge, T. J.; Teat, S. J.; Banerjee, D.; Mussman, B.; Rudd, N. D.; Li, J., Solution processable MOF yellow phosphor with exceptionally high quantum efficiency. J. Am. Chem. Soc. 2014, 136, 16724–16727.
147. Zhang, L.-Y.; Hou, Y.-J.; Pan, M.; Chen, L.; Zhu, Y.-X.; Yin, S.-Y.; Shao, G.; Su, C.-Y., Near-infrared (NIR) emitting Nd/Yb(III) complexes sensitized by MLCT states of Ru(II)/Ir(III) metalloligands in the visible light region. Dalton Trans. 2015, 44, 15212–15219.
148. de Lill, D. T.; de Bettencourt-Dias, A.; Cahill, C. L., Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. Inorg. Chem. 2007, 46, 3960–3965.
149. Vijayakumar, C.; Praveen, V. K.; Ajayaghosh, A., RGB Emission through controlled donor self‐assembly and modulation of excitation energy transfer: A novel strategy to white‐light‐emitting organogels. Adv. Mater. 2009, 21, 2059–2063.
150. Usman, M.; Haider, G.; Mendiratta, S.; Luo, T.-T.; Chen, Y.-F.; Lu, K.-L., Continuous broadband emission from a metal–organic framework as a human-friendly white light source. J. Mater. Chem. C 2016, 4, 4728–4732.
151. G. M. Sheldrick. SHELXL-97, Program for structure refinement; University of Göttingen: Germany, 1997.
152. Dong, M. J.; Zhao, M.; Ou, S.; Zou, C.; Wu, C. D. A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules. Angew. Chem. Int. Ed .2014, 53, 1575–1579.
153. Zhu, A.-X.; Qiu, Z.-Z.; Yang, L.-B.; Fang, X.-D.; Chen, S.-J.; Xu, Q.-Q.; Li, Q.-X. A luminescent cadmium (II) metal–organic framework based on a triazolate–carboxylate ligand exhibiting selective gas adsorption and guest-dependent photoluminescence properties. CrystEngComm. 2015, 17, 4787–4792.
154. Kanoo, P.; Ghosh, A. C.; Cyriac, S. T.; Maji, T. K. A metal–organic framework with highly polar pore surfaces: Selective CO2 Adsorption and guest‐dependent on/off emission properties. Chem. Eur. J. 2012, 18, 237–244.
155. Chen, L.; Yan, C.; Pan, M.; Fan, Y.-Z.; Zhang, L.-Y.; Yin, S.-Y.;Hou, Y.-J.; Wu, K.; Jiang, J.-J.; Su, C.-Y. Semidirected versus holodirected coordination and single-component white light luminescence in Pb(II) complexes. New J. Chem. 2015, 39, 5287–5292.
156. Li, M.-X.; Miao, Z.-X.; Shao, M.; Liang, S.-W.; Zhu, S.-R. Metal–organic frameworks constructed from 2,4,6-tris(4-pyridyl)-1,3,5-triazine. Inorg. Chem. 2008, 47, 4481–4489.
157. Du, M.; Jiang, X.-J.; Zhao, X.-J. Molecular tectonics of mixed-ligand metal−organic frameworks: positional isomeric effect, metal-directed assembly, and structural diversification. Inorg. Chem. 2007, 46, 3984–3995.
158. Sun, D.; Collins, D. J.; Ke, Y.; Zuo, J. L.; Zhou, H. C. Construction of open metal–organic frameworks based on predesigned carboxylate isomers: from achiral to chiral nets. Chem. Eur. J. 2006, 12, 3768–3776.
159. Han, L.; Yuan, D.; Wu, B.; Liu, C.; Hong, M. Syntheses, structures and properties of three novel coordination polymers with a flexible asymmetrical bridging ligand. Inorg. Chem. Acta 2006, 359, 2232–2240.
160. Huang, Y.-Q.; Ding, B.; Song, H.-B.; Zhao, B.; Ren, P.; Cheng, P.; Wang, H.-G.; Liao, D.-Z.; Yan, S.-P. A novel 3D porous metal–organic framework based on trinuclear cadmium clusters as a promising luminescent material exhibiting tunable emissions between UV and visible wavelengths. Chem. Commun. 2006, 47, 4906–4908.
161. Nanishi, Y. Nobel Prize in Physics: The birth of the blue LED. Nat. Photonics 2014, 8, 884.
162. G. Kresse, J. Furthmüller. Phys. Rev. B 1996, 54, 11169.
163. Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 78, 1396.
164. Pan, C.; Nan, J.; Dong, X.; Ren, X.-M.; Jin, W. A highly thermally stable ferroelectric metal–organic framework and its thin film with substrate surface nature dependent morphology. J. Am. Chem. Soc. 2011, 133, 12330–12333.
165. Kim, J.-Y.; Jeon, J.-H.; Kwon, M.-K. Indium tin oxide-free transparent conductive electrode for gan-based ultraviolet light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 7945–7950.
166. Goswami, S.; Ray, D.; Otake, K.-i.; Kung, C.-W.; Garibay, S. J.; Islamoglu, T.; Atilgan, A.; Cui, Y.; Cramer, C. J.; Farha, O. K. A porous, electrically conductive hexa-zirconium (IV) metal–organic framework. Chem. Sci. 2018, 9, 4477–4482.
167. Yu, J.; Cui, Y.; Xu, H.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Confinement of pyridinium hemicyanine dye within an anionic metal–organic framework for two-photon-pumped lasing. Nat. Commun. 2013, 4, 2719.
168. Medishetty, R.; Nalla, V.; Nemec, L.; Henke, S.; Mayer, D.; Sun, H.; Reuter, K.; Fischer, R. A. A new class of lasing materials: Intrinsic stimulated emission from nonlinear optically active metal–organic frameworks. Adv. Mater. 2017, 29, 1605637.
169. Vanderah, T. A., Talking ceramics. Science 2002, 298, 1182–1184.
170. Roy, P.; Kizilyalli, I., Stacked high-ε gate dielectric for gigascale integration of metal–oxide–semiconductor technologies. App. Phy. Lett. 1998, 72, 2835–2837.
171. Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Kavalieros, J.; Metz, M. High-к /metal-gate stack and its MOSFET characteristics. IEEE Electron Device Lett. 2004, 25, 408–410.
172. Ha, Y. G.; Everaerts, K.; Hersam, M. C.; Marks, T. J. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc. Chem. Res. 2014, 47, 1019–1028.
173. Baldwin, A. F.; Ma, R.; Mannodi-Kanakkithodi, A.; Huan, T. D.; Wang, C.; Tefferi, M.; Marszalek, J. E.; Cakmak, M.; Cao, Y.; Ramprasad, R.; Sotzing, G. A. Poly(dimethyltin glutarate) as a prospective material for high dielectric applications. Adv. Mater. 2015, 27, 346–351.
174. Facchetti, A.; Yoon, M. H.; Marks, T. J., Gate dielectrics for organic field‐effect transistors: new opportunities for organic electronics. Adv. Mater. 2005, 17, 1705–1725.
175. Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 1999, 283, 822–824.
176. Han, Z.-B.; Li, B.-Y.; Ji, J.-W.; Du, Y.-E.; An, H.-Y.; Zeng, M.-H., A 3D chiral porous In (III) coordination polymer with PtS topological net. Dalton Trans. 2011, 40, 9154–9158.
177. Piskunov, A. V.; Maleeva, A. V.; Fukin, G. K.; Baranov, E. V.; Bogomyakov, A. S.; Cherkasov, V. K.; Abakumov, G. A., Synthesis and molecular structure of indium complexes based on 3,6-di-tert-butyl-o-benzoquinone. Looking for indium (I) o-semiquinolate. Dalton Trans. 2011, 40, 718–725.
178. Scatena, R.; Guntern, Y. T.; Macchi, P., Electron density and dielectric properties of highly porous MOFs: binding and mobility of guest molecules in Cu3(BTC)2 and Zn3(BTC)2. J. Am. Chem. Soc. 2019, 141, 9382–9390.
179. Qu, B.-T.; Lai, J.-C.; Liu, S.; Liu, F.; Gao, Y.-D.; You, X.-Z., Cu- and Ag-based metal–organic frameworks with 4-Pyranone-2,6-dicarboxylic acid: syntheses, crystal structures, and dielectric properties. ‎ Cryst. Growth Des. 2015, 15, 1707–1713.
180. Banday, A.; Murugavel, S.; Kanaujia, P. K.; Prakash, G. V.; Ramanan, A., Calcium and strontium coordination polymers based on rigid and flexible aromatic dicarboxylates: Synthesis, structure, photoluminescence and dielectric properties. Chemistry Select 2017, 2, 8567–8576.
181. Ghosh, A., Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys. Rev. B. 1990, 41, 1479
182. Sánchez-Andújar, M.; Yáñez-Vilar, S.; Pato-Doldán, B.; Gómez-Aguirre, C.; Castro-García, S.; Señarís-Rodríguez, M., Apparent colossal dielectric constants in nanoporous metal– organic frameworks. J. Phys. Chem. C 2012, 116, 13026–13032.
183. Sinclair, D. C.; Adams, T. B.; Morrison, F. D.; West, A. R., CaCu3 Ti4 O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 2002, 80, 2153–2155.
184. Pato-Doldán, B.; Sánchez-Andújar, M.; Gómez-Aguirre, L. C.; Yáñez-Vilar, S.; López-Beceiro, J.; Gracia-Fernández, C.; Haghighirad, A.; Ritter, F.; Castro-García, S.; Señarís-Rodríguez, M., Near room temperature dielectric transition in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]. Phys. Chem. Chem. Phys. 2012, 14, 8498–8501.
185. Kang, Y.; Fang, W.-H.; Zhang, L.; Zhang, J., A structure-directing method to prepare semiconductive zeolitic cluster–organic frameworks with Cu3I4 building units. Chem. Commun. 2015, 51, 8994–8997.
186. Huff, H.; Gilmer, D., High dielectric constant materials: VLSI MOSFET applications. Springer Science & Business Media: 2006; Vol. 16.

187. Hao, X., A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr 2013, 3, 1330001.
188. Li, Q.; Yao, F.-Z.; Liu, Y.; Zhang, G.; Wang, H.; Wang, Q., High-temperature dielectric materials for electrical energy storage. Annual Review of Materials Research 2018, 48, 219–243.
189. Homes, C.; Vogt, T.; Shapiro, S.; Wakimoto, S.; Ramirez, A., Optical response of high-dielectric-constant perovskite-related oxide. Science 2001, 293, 673–676.
190. Summerfelt, S. R.; Beratan, H. R., Electrode interface for high-dielectric-constant materials. Google Patents: 1995.
191. Xie, L.; Huang, X.; Wu, C.; Jiang, P., Core-shell structured poly (methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J. Mater. Chem. 2011, 21, 5897–5906.
192. Zschieschang, U.; Klauk, H.; Halik, M.; Schmid, G.; Dehm, C., Flexible organic circuits with printed gate electrodes. Adv. Mater. 2003, 15, 1147–1151.
193. Lim, S. C.; Kim, S. H.; Koo, J. B.; Lee, J. H.; Ku, C. H.; Yang, Y. S.; Zyung, T., Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics. ‎Appl. Phys. Lett. 2007, 90, 173512.
194. Usman, M.; Lu, K.-L., Metal–organic frameworks: The future of low-κ materials. NPG Asia Mater. 2016, 8, e333–e333.
195. Han, S.; Zhang, J.; Teng, B.; Ji, C.; Zhang, W.; Sun, Z.; Luo, J., Inorganic–organic hybrid switchable dielectric materials with the coexistence of magnetic anomalies induced by reversible high-temperature phase transition. J. Mater. Chem. C 2017, 5, 8509–8515.
196. Sgarbossa, P.; Bertani, R.; Di Noto, V.; Piga, M.; Giffin, G. A.; Terraneo, G.; Pilati, T.; Metrangolo, P.; Resnati, G., Interplay between structural and dielectric features of new low к hybrid organic–organometallic supramolecular ribbons. Cryst. Growth Des. 2012, 12, 297–305.
197. Liu, H.-C.; Su, W.-C.; Liu, Y.-L., Self-assembled benzoxazine-bridged polysilsesquioxanes exhibiting ultralow-dielectric constants and yellow-light photoluminescent emission. J. Mater. Chem. 2011, 21, 7182–7187.
198. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal–organic frameworks. Science. 2013, 341, 1230444.
199. Murray, L. J.; Dincă, M.; Long, J. R., Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.
200. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.
201. Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A., A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions. Eur. J. Chem. 2011, 17, 11372–11388.
202. Hendon, C. H.; Walsh, A.; Dincă, M., Frontier orbital engineering of metal–organic frameworks with extended inorganic connectivity: Porous alkaline-earth oxides. Inorg. Chem. 2016, 55, 7265–7269.
203. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.
204. Li, Y.; Tang, J.; He, L.; Liu, Y.; Liu, Y.; Chen, C.; Tang, Z., Core–shell upconversion nanoparticle@metal–organic framework nanoprobes for luminescent/magnetic dual‐mode Targeted Imaging. Adv. Mater. 2015, 27, 4075–4080.
205. Kulkarni, R.; Noda, Y.; Barange, D. K.; Kochergin, Y. S.; Lyu, P.; Balcarova, B.; Nachtigall, P.; Bojdys, M. J., Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework. Nat. Commun. 2019, 10, 1–8.
206. Luo, Z.; Fan, S.; Gu, C.; Liu, W.; Chen, J.; Li, B.; Liu, J., Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem. 2019, 26, 3341–3369.
207. Krishtab, M.; Stassen, I.; Stassin, T.; Cruz, A. J.; Okudur, O. O.; Armini, S.; Wilson, C.; De Gendt, S.; Ameloot, R., Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-к dielectrics. ‎Nat. Commun. 2019, 10, 1–9.
208. Zhao, Y.; Zhou, Z.; Chen, G.; Li, Q., In situ synthesis of core–shell ZIF‑8@ modified sepiolite hybrids for multi‑scale construction of epoxy composites with improved low‑dielectric properties and thermal stability. J. Mater. Sci. Mater. 2020, 31, 6866–6874.
209. Ye, Q.; Song, Y.-M.; Wang, G.-X.; Chen, K.; Fu, D.-W.; Hong Chan, P. W.; Zhu, J.-S.; Huang, S. D.; Xiong, R.-G., Ferroelectric metal−organic framework with a high dielectric constant. J. Am. Chem. Soc. 2006, 128, 6554–6555.
210. Fu, D.-W.; Dai, J.; Ge, J.-Z.; Ye, H.-Y.; Qu, Z.-R., Synthesis, structure and dielectric properties of the first 1D Ba-tetrazole complex [Ba (4-TPA)2 (H2O)4 · 3.5 (H2O)]n . Inorg. Chem. Commun. 2010, 13, 282–285.
211. Campanelli, A. R.; Domenicano, A.; Ramondo, F.; Hargittai, I., Group electronegativities from benzene ring deformations: A quantum chemical study. J. Phys. Chem. A. 2004, 108, 4940–4948.
212. Stasyuk, O.; Szatylowicz, H.; Krygowski, T.; Guerra, C. F., How amino and nitro substituents direct electrophilic aromatic substitution in benzene: an explanation with Kohn–Sham molecular orbital theory and Voronoi deformation density analysis. Phys. Chem. Chem. Phys. 2016, 18, 11624–11633.
213. Ye, H.-Y.; Liao, W.-Q.; Zhou, Q.; Zhang, Y.; Wang, J.; You, Y.-M.; Wang, J.-Y.; Chen, Z.-N.; Li, P.-F.; Fu, D.-W., Dielectric and ferroelectric sensing based on molecular recognition in Cu(1,10-phenlothroline)2SeO4·(diol) systems. Nat. Commun. 2017, 8, 1–7.
214. Bermúdez-García, J.; Vicent-Luna, J.; Yáñez-Vilar, S.; Hamad, S.; Sánchez-Andújar, M.; Castro-García, S.; Calero, S.; Señarís-Rodríguez, M., Liquid self-diffusion of H2O and DMF molecules in Co-MOF-74: molecular dynamics simulations and dielectric spectroscopy studies. Phys. Chem. Chem. Phys. 2016, 18, 19605–19612.
215. Mendiratta, S.; Usman, M.; Luo, T.-T.; Lee, S.-F.; Lin, Y.-C.; Lu, K.-L., Guest dependent dielectric properties of nickel(II)-based supramolecular networks. CrystEngComm. 2014, 16, 6309–6315.
216. Yu, S.-S.; Yuan, G.-J.; Duan, H.-B., The low dielectric constant and relaxation dielectric behavior in hydrogen-bonding metal–organic frameworks. RSC Adv. 2015, 5, 45213–45216.
217. Hill, R.; Dissado, L., A relationship between the amplitude of the susceptibility and the frequency of the maximum dielectric loss. Nature 1979, 281, 286–287.
218. Schwarze, M.; Tress, W.; Beyer, B.; Gao, F.; Scholz, R.; Poelking, C.; Ortstein, K.; Günther, A. A.; Kasemann, D.; Andrienko, D.; et al. Band structure engineering in organic semiconductors. Science 2016, 352, 1446–1449.
219. Ning, C.-Z.; Dou, L.; Yang, P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 1–14.
220. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.
221. Zhang, Y.; Chang, T.-R.; Zhou, B.; Cui, Y.-T.; Yan, H.; Liu, Z.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y.; et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.
222. Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B.-G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.
223. Sainbileg, B.; Hayashi, M. Possible indirect to direct bandgap transition in SnS2 via nickel doping. Chem. Phys. 2019, 522, 59–64.
224. Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.
225. Jordan, M. I.; Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 2015, 349, 255–260.
226. Musib, M.; Wang, F.; Tarselli, M. A.; Yoho, R.; Yu, K.-H.; Andrés, R. M.; Greenwald, N. F.; Pan, X.; Lee, C.-H.; Zhang, J.; et al. Artificial intelligence in research. Science 2017, 357, 28–30.
227. Almeida, A. F. de; Moreira, R.; Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem. 2019, 3, 589–604.
228. Hush, M. R. Machine Learning for quantum physics. Science 2017, 355, 580–580.
229. Parkes, D. C.; Wellman, M. P. Economic reasoning and artificial intelligence. Science 2015, 349, 267–272.
230. Song, Y.; Fan, R.-Q.; Xing, K.; Du, X.; Su, T.; Wang, P.; Yang, Y.-L., Insight into the controllable synthesis of Cu(I)/Cu(II) metal–organic complexes: size-exclusive selective dye adsorption and semiconductor properties. Cryst. Growth Des. 2017, 17, 2549-2559.
231. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis Set. Phys. Rev. B 1996, 54, 11169–11186.
232. Dyson, G.; Hamilton, A.; Mitchell, B.; R. Owen, G. A new family of flexible scorpionate ligands based on 2-mercaptopyridine. Dalton Trans. 2009, 0, 6120–6126.
233. Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical Sensors. Chem. Soc. Rev. 2017, 46, 3185–3241.
234. Sun, L.; Campbell, M. G.; Dincă, M. electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566–3579.
235. Stallinga, P. Electronic Transport in Organic Materials: Comparison of band theory with percolation/(variable range) hopping theory. Adv. Mater. 2011, 23, 3356–3362.
236. Schrøder, T. B.; Dyre, J. C. Scaling and universality of AC conduction in disordered solids. Phys. Rev. Lett. 2000, 84, 310–313.
237. Harun, M. H.; Saion, E.; Kassim, A.; Hussain, M. Y.; Mustafa, I. S.; Omer, M. A. A., Temperature dependence of AC electrical conductivity of PVA-PPy-FeCl3 composite polymer films. MPJ. 2008, 3, 24-31.
238. Rahal, A.; Borchani, S. M.; Guidara, K.; Megdiche, M. Electrical, Dielectric properties and study of AC electrical conduction mechanism of Li0.9□0.1NiV0.5P0.5O4. R. Soc. Open Sci. 5, 171472.
239. Jonscher, A. K. The ‘Universal’ dielectric response. Nature 1977, 267, 673–679.
240. Sainbileg, B.; Lai, Y.-R.; Chen, L.-C.; Hayashi, M. The dual-defective SnS2 monolayers: promising 2D photocatalysts for overall water splitting. Phys. Chem. Chem. Phys. 2019.
241. Kim, D.; Han, H.; Lee, J. H.; Choi, J. W.; Grossman, J. C.; Jang, H. M.; Kim, D. Electron−hole separation in ferroelectric oxides for efficient photovoltaic responses. Proc. Natl. Acad. Sci. 2018, 115, 6566–6571.







1. James, S. L., Metal–organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288.
2. Safaei, M.; Foroughi, M. M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M., A review on metal–organic frameworks: synthesis and applications. Trends Anal. Chem. 2019, 118, 401–425.
3. Varela, A. S.; Ju, W.; Strasser, P., Molecular nitrogen–carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen‐doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1703614.
4. Gangu, K. K.; Maddila, S.; Mukkamala, S. B.; Jonnalagadda, S. B., A review on contemporary metal–organic framework materials. ‎Inorg. Chim. Acta 2016, 446, 61–74.
5. Mendiratta, S.; Usman, M.; Lu, K. L., Expanding the dimensions of metal–organic framework research towards dielectric. Coord. Chem. Rev. 2018, 360, 77–91.
6. Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S., Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700–5734.
7. Zhao, M.; Huang, Y.; Peng, Y.; Huang, Z.; Ma, Q.; Zhang, H., Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.
8. Loera-Serna, S.; Ortiz, E., Catalytic applications of metal–organic frameworks. Intech Open. 2016, 95–122.
9. Jiang, D.; Chen, M.; Wang, H.; Zeng, G.; Huang, D.; Cheng, M.; Liu, Y.; Xue, W.; Wang, Z., The application of different typological and structural MOFs-based materials for the dyes adsorption. Coord. Chem. Rev. 2019, 380, 471–483.
10. Usman, M.; Mendiratta, S.; Lu, K. L., Semiconductor metal–organic frameworks: Future low‐bandgap materials. Adv. Mater. 2017, 29, 1605071.
11. Janiak, C.; Vieth, J. K., MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366–2388.
12. Meng, J.; Liu, X.; Niu, C.; Pang, Q.; Li, J.; Liu, F.; Liu, Z.; Mai, L., Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186
13. Schoedel, A.; Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M., Structures of metal–organic frameworks with rod secondary building units. Chem. Soc. Rev. 2016, 116, 12466–12535.
14. Baumann, A. E.; Burns, D. A.; Liu, B.; Thoi, V. S., Metal–organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2019, 2, 1–14.
15. http://www.merriam-webster.com.
16. Stock, N.; Biswas, S., Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012, 112, 933–969.
17. Long, J. R.; Yaghi, O. M., The pervasive chemistry of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214.
18. Cook, T. R.; Zheng, Y.-R.; Stang, P. J., Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 2013, 113, 734–777.
19. Kitagawa, S.; Kitaura, R.; Noro, S. i., Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
20. Wriedt, M., Systematic investigations on magneto-structural correlations of copper (II) coordination polymers based on organic ligands with mixed carboxylic and nitrogen-based moieties. Dalton Trans. 2012, 41, 4207–4216.
21. Kitagawa, S.; Munakata, M., Molecular architecture of copper (I) coordination polymers towards crystal lattice design. În: Trends Inorg. Chem. 1993, 3, 437–462.
22. Tan, Y.-X.; Wang, F.; Zhang, J., Design and synthesis of multifunctional metal–organic zeolites. Chem. Soc. Rev. 2018, 47, 2130–2144.
23. Hoffart, D. J.; Loeb, S. J., Metal–Organic Rotaxane Frameworks: three‐dimensional polyrotaxanes from lanthanide‐ion nodes, pyridinium n‐oxide axles, and crown‐ether wheels. Angew. Chem. Int. Ed. 2005, 44, 901–904.
24. Guo, X.; Zhu, G.; Sun, F.; Li, Z.; Zhao, X.; Li, X.; Wang, H.; Qiu, S., Synthesis, structure, and luminescent properties of microporous lanthanide metal−organic frameworks with inorganic rod-shaped building units. Inorg. chem. 2006, 45, 2581–2587.
25. Yang, Q.-F.; Cui, X.-B.; Chen, Y.; Wang, Z.; Yu, J.-H.; Xu, J.-Q.; Wang, T.-G., Two new 3D lanthanide metal–organic frameworks constructed from nitrilotriacetate and oxalate ligands. Inorg. Chem. Commun. 2011, 14, 320–323.
26. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J., Supramolecular coordination: self-assembly of finite two-and three-dimensional ensembles. Chem. Rev. 2011, 111, 6810–6918.
27. Choi, H. J.; Suh, M. P., Synthesis, crystal structure, and properties of a 3-D network assembled by nickel (II) macrocyclic complex and terephthalato bridge. Inorg. Chem. 1999, 38, 6309–6312.
28. Li, B.; Chrzanowski, M.; Zhang, Y.; Ma, S., Applications of metal–organic frameworks featuring multi-functional sites. Coord. Chem. Rev. 2016, 307, 106–129.
29. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature. 2003, 423, 705–714.
30. Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K., Best practices for the synthesis, activation, and characterization of metal–organic frameworks. J. Mater. Chem. 2017, 29, 26–39.
31. Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M., Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370.
32. Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M., Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.
33. Hagrman, P. J.; Hagrman, D.; Zubieta, J., Organic–inorganic hybrid materials: From “simple” coordination polymers to organodiamine‐templated molybdenum oxides. Angew. Chem. Int. Ed. 1999, 38, 2638–2684.
34. Yin, Z.; Zhou, Y.-L.; Zeng, M.-H.; Kurmoo, M., The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Trans. 2015, 44, 5258–5275.
35. Lin, Z.-J.; Lü, J.; Hong, M.; Cao, R., Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895.
36. Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M., Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res 2001, 34, 319–30.
37. Kumagai, H.; Kepert, C. J.; Kurmoo, M., Construction of hydrogen-bonded and cooordion -bonded networks of cobalt (II) with pyromellitate: Synthesis, structures, and magnetic properties Inorg. Chem. 2002, 41, 3410–3422.
38. Davidson, G. J.; Loeb, S. J., Channels and cavities lined with interlocked components: metal‐based polyrotaxanes that utilize pyridinium axles and crown ether wheels as ligands. Angew. Chem. Int. Ed. 2003, 115, 78–81.
39 Lee, E.; Heo, J.; Kim, K., A three‐dimensional polyrotaxane network. Angew. Chem. Int. Ed. 2000, 39, 2699–2701.
40. Seetharaj, R.; Vandana, P.; Arya, P.; Mathew, S., Dependence of solvents, pH, molar ratio and temperature in tuning metal–organic framework architecture. Arab. J. Chem. 2019, 12, 295–315
41. Hong, Y.-s.; Sun, S.-l.; Sun, Q.; Gao, E.-Q.; Ye, M., Tuning adsorption capacity through ligand pre-modification in functionalized Zn-MOF analogues. Mater. Chem. Phys. 2020, 243, 122601.
42. Deng, H.; Doonan, C.J.; Furukawa, H.; Ferreira, R.B.; Towne, J.; Knobler, C.B.; Wang, B.; Yaghi, O.M. Multiple functional groups of varying ratios in metal–organic frameworks. Science 2010, 327, 846–850.
43. Ban, Y.; Li, Y.; Liu, X.; Peng, Y.; Yang, W. Solvothermal synthesis mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology. Microporous Mesoporous Mater. 2013, 173, 29–36.
44. Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Grenã, J.M.; et al. Functionalization in flexible porous solids: Effects on the pore opening and the host–guest interactions. J. Am. Chem. Soc. 2010, 132, 1127–1136.
45. Yin, Z.; Wan, S.; Yang, J.; Kurmoo, M.; Zeng, M.-H., Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coord. Chem. Rev. 2019, 378, 500–512.
46. Hoskins, B.; Robson, R., Design construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI [4,4',4'',4'''-tetracyanotetraphenylmethane] BF4·xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554.
47. Oh, M.; Mirkin, C. A., Ion exchange as a way of controlling the chemical compositions of nano‐and microparticles made from infinite coordination polymers. Angew. Chem. Int. Ed. 2006, 45, 5492–5494.
48. Vimont, A.; Goupil, J.-M.; Lavalley, J.-C.; Daturi, M.; Surblé, S.; Serre, C.; Millange, F.; Férey, G.; Audebrand, N., Investigation of acid sites in a zeotypic giant pores chromium (III) carboxylate. J. Am. Chem. Soc. 2006, 128, 3218–3227.
49. Wu, C.-D.; Hu, A.; Zhang, L.; Lin, W., A homochiral porous metal−organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 2005, 127, 8940–8941
50. Wang, X.-S.; Ma, S.; Sun, D.; Parkin, S.; Zhou, H.-C., A mesoporous metal−organic framework with permanent porosity. J. Am. Chem. Soc. 2006, 128, 16474–16475.
51. Tanabe, K. K.; Wang, Z.; Cohen, S. M., Systematic functionalization of a metal−organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 2008, 130, 8508–8517.
52. Haneda, T.; Kawano, M.; Kawamichi, T.; Fujita, M., Direct observation of the labile imine formation through single-crystal-to-single-crystal reactions in the pores of a porous coordination network. J. Am. Chem. Soc. 2008, 130, 1578–1579.
53. Tu, B.; Pang, Q.; Wu, D.; Song, Y.; Weng, L.; Li, Q., Ordered vacancies and their chemistry in metal–organic frameworks. J. Am. Chem. Soc. 2014, 136, 14465–14471.
54. Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K., Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.
55. Hao, Y.; Chen, S.; Zhou, Y.; Zhang, Y.; Xu, M., Recent progress in metal–organic framework (MOF) based Luminescent chemodosimeters. J. Nanomater. 2019, 9, 974.
56. Li, H.-Y.; Zhao, S.-N.; Zang, S.-Q.; Li, J., Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401.
57. Yin, H.-Q.; Yin, X.-B., Metal–Organic frameworks with multiple luminescence emissions: designs and applications. Acc. Chem. Res. 2020, 53, 485–495.
58. Pan, M.; Liao, W.-M.; Yin, S.-Y.; Sun, S.-S.; Su, C.-Y., Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies. Chem. Soc. Rev. 2018, 118, 8889–8935.
59. Liu, Y.; Xie, X.-Y.; Cheng, C.; Shao, Z.-S.; Wang, H.-S., Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. J. Mater. Chem. C. 2019, 7, 10743–10763.
60. Li, S.-Y.; Sun, Z.-B.; Zhao, C.-H., Charge-transfer emitting triarylborane π-electron systems. Inorg. Chem. 2017, 56, 8705–8717.
61. Nguyen, T. N.; Ebrahim, F. M.; Stylianou, K. C., Photoluminescent, upconversion luminescent and nonlinear optical metal–organic frameworks: From fundamental photophysics to potential applications. Coord. Chem. Rev. 2018, 377, 259–306.
62. Cui, Y.; Yue, Y.; Qian, G.; Chen, B., Luminescent functional metal–organic frameworks. Chem. Soc. Rev. 2012, 112, 1126–1162.
63. Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D., Influence of connectivity and porosity on ligand-based luminescence in zinc metal−organic frameworks. J.Am. Chem.l Soc. 2007, 129, 7136–7144.
64. Yu, W.; Cheng, C.; Cheng, Y.; Wu, P.; Song, Y.; Chi, Y.; Chou, P. Excited-state intramolecular proton transfer in five-memberedhydrogen-bonding systems: 2-pyridyl pyrazoles. J. Am. Chem. Soc. 2003, 125, 10800–10801.
65. Tarkka, R. M.; Zhang, X.; Jenekhe, S. A. Electrically generated intramolecular proton transfer: electroluminescence and stimulated emission from polymers. J. Am. Chem. Soc. 1996, 118, 9438–9439.
66. Jayaramulu, K.; Kanoo, P.; George, S. J.; Maji, T. K. Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand. Chem. Commun. 2010, 46, 7906–7908.
67. Krueger, R. A.; Blanquart, G., Predicting aromatic exciplex fluorescence emission energies. Phys. Chem. Chem. Phys. 2019, 21, 10325–10335.
68. McManus, G. J.; Perry IV, J. J.; Perry, M.; Wagner, B. D.; Zaworotko, M. J., Exciplex fluorescence as a diagnostic probe of structure in coordination polymers of Zn2+ and 4,4‘-bipyridine containing intercalated pyrene and enclathrated aromatic solvent guests. J.Am. Chem.Soc. 2007, 129, 9094–9101.
69. Bünzli, J.-C. G.; Piguet, C., Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077.
70. Cadman, L. K.; Mahon, M. F.; Burrows, A. D., The effect of metal distribution on the luminescence properties of mixed-lanthanide metal–organic frameworks. Dalton Trans. 2018, 47, 2360–2367.
71. Vogler, A.; Kunkely, H., Luminescent metal complexes: diversity of excited states. In Transition Metal and Rare Earth Compounds, Springer: 2001, 143–182.
72. Zhao, S.-N.; Wang, G.; Poelman, D.; Voort, P. V. D., Luminescent lanthanide MOFs: a unique platform for chemical sensing. Materials. 2018, 11, 572.
73. Vogler, A.; Nikol, H., Photochemistry and photophysics of coordination compounds of the main group metals. Pure Appl. Chem. 1992, 64, 1311–1317.
74. Li, X.; Yu, J.; Gosztola, D. J.; Fry, H. C.; Deria, P., Wavelength-dependent energy and Charge Transfer in MOF: A step toward artificial porous light-harvesting System. J. Am.Chem. Soc. 2019, 141, 16849–16857.
75. Yu, J.; Park, J.; Van Wyk, A.; Rumbles, G.; Deria, P., Excited-state electronic properties in Zr-based metal–organic frameworks as a function of a topological network. J. Am. Chem. Soc. 2018, 140, 10488–10496.
76. Leong, K.; Foster, M. E.; Wong, B. M.; Spoerke, E. D.; Van Gough, D.; Deaton, J. C.; Allendorf, M. D., Energy and charge transfer by donor–acceptor pairs confined in a metal–organic framework: a spectroscopic and computational investigation. J. Mater. Chem. A. 2014, 2, 3389–3398.
77. Shin, Y.-g. K.; Brunschwig, B. S.; Creutz, C.; Sutin, N., Electroabsorption spectroscopy of charge-transfer states of transition-metal complexes. 2. Metal-to-ligand and ligand-to-metal charge-transfer excited states of pentaammineruthenium complexes. J. Phy. Chem. 1996, 100, 8157–8169.
78. Santaclara, J. G.; Nasalevich, M. A.; Castellanos, S.; Evers, W. H.; Spoor, F. C.; Rock, K.; Siebbeles, L. D.; Kapteijn, F.; Grozema, F.; Houtepen, A., Organic linker defines the excited‐state decay of photocatalytic MIL‐125 (Ti)‐type materials. ChemSusChem 2016, 9, 388–395.
79. Yang, Q.-Y.; Wu, K.; Jiang, J.-J.; Hsu, C.-W.; Pan, M.; Lehn, J.-M.; Su, C.-Y., Pure white-light and yellow-to-blue emission tuning in single crystals of Dy (III) metal–organic frameworks. Chem. Commun. 2014, 50, 7702–7704.
80. Buenzli, J.-C. G., On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 2015, 293, 19–47.
81. Heine, J.; Müller-Buschbaum, K., Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242.
82. Cornelio, J.; Zhou, T.-Y.; Alkaş, A.; Telfer, S. G., Systematic tuning of the luminescence output of multicomponent metal–organic frameworks. J. Am. Chem. Soc. 2018, 140, 15470–15476.
83. An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S.; Rosi, N. L., Zinc-adeninate metal−organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc. 2011, 133, 1220–1223.
84. Jia, H.; Wang, Z.; Yuan, T.; Yuan, F.; Li, X.; Li, Y.; Tan, Z. a.; Fan, L.; Yang, S., Electroluminescent warm white light‐emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots. Adv. Sci. 2019, 6, 1900397.
85. Shang, M.; Li, C.; Lin, J., How to produce white light in a single-phase host? Chem. Soc. Rev. 2014, 43, 1372–1386.
86. D'Andrade, B. W.; Forrest, S. R., White organic light‐emitting devices for solid‐state lighting. Adv. Mater. 2004, 16, 1585–1595.
87. Tang, Q.; Liu, S.; Liu, Y.; He, D.; Miao, J.; Wang, X.; Ji, Y.; Zheng, Z., Color tuning and white light emission via in situ doping of luminescent lanthanide metal–organic frameworks. Inorg. Chem. 2014, 53, 289–293.
88. Zhou, Y.; Yan, B., Imparting tunable and white-light luminescence to a nanosized metal–organic framework by controlled encapsulation of lanthanide cations. Inorg. Chem. 2014, 53, 3456–3463.
89. Liu, X.-Y.; Li, Y.; Tsung, C.-K.; Li, J., Encapsulation of yellow phosphors into nanocrystalline metal–organic frameworks for blue-excitable white light emission. Chem. Commun. 2019, 55, 10669–10672.
90. Wu, Z.-F.; Tan, B.; Wang, J.-Y.; Du, C.-F.; Deng, Z.-H.; Huang, X.-Y., Tunable photoluminescence and direct white-light emission in Mg-based coordination networks. Chem. Commun. 2015, 51, 157–160.
91. Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F., Electrically driven white light emission from intrinsic metal–organic framework. ACS nano. 2016, 10, 8366–8375.
92. Ukpaka, C. P., Mathematical model to predict the characteristics of polarization in dielectric materials: The concept of piezoelectricity and electrostriction. Chem. Int. 2019, 5, 232–240.
93. Muraka, S. P.; Eizenberg, M.; Sinha, A. K., Interlayer dielectrics for semiconductor technologies. Elsevier: 2003.
94. G. E. Moore, Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff, Solid-State Circuits Society Newsletter, IEEE, 2006, 11, 33–35.
95. Volksen, W.; Miller, R. D.; Dubois, G., Low dielectric constant materials. Chem. Soc. Rev 2010, 110, 56–110.
96. Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A., A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions. Chem. Eur. J. 2011, 17, 11372–11388.
97. Usman, M.; Lee, C.-H.; Hung, D.-S.; Lee, S.-F.; Wang, C.-C.; Luo, T.-T.; Zhao, L.; Wu, M.-K.; Lu, K.-L., Intrinsic low dielectric behaviour of a highly thermally stable Sr-based metal–organic framework for interlayer dielectric materials. J. Mater. Chem. C. 2014, 2, 3762–3768.
98. Mendiratta, S.; Usman, M.; Tseng, T.-W.; Luo, T.-T.; Lee, S.-F.; Zhao, L.; Wu, M.-K.; Lee, M. M.; Sun, S.-S.; Lin, Y.-C., Low dielectric behavior of a robust, guest-free magnesium (II)-organic framework: A potential application of an alkaline-earth metal compound. Eur. J. Inorg. Chem. 2015, 1669, 1669–74.
99. Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A., High-к gate dielectrics for emerging flexible and stretchable electronics. Chem. Soc. Rev. 2018, 118, 5690–5754.
100. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. In Nanoscience and technology: a collection of reviews from Nature journals, World Scientific: 2010; 320–329.
101. Hardy, C. G.; Islam, M. S.; Gonzalez-Delozier, D.; Morgan, J. E.; Cash, B.; Benicewicz, B. C.; Ploehn, H. J.; Tang, C., Converting an electrical insulator into a dielectric capacitor: end-capping polystyrene with oligoaniline. Chem.Mater. 2013, 25, 799–807.
102. Thomas-Hillman, I.; Laybourn, A.; Dodds, C.; Kingman, S. W., Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis. J. Mater. Chem. A 2018, 6, 11564–11581.
103. Dang, Z. M.; Zhou, T.; Yao, S. H.; Yuan, J. K.; Zha, J. W.; Song, H. T.; Li, J. Y.; Chen, Q.; Yang, W. T.; Bai, J., Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 2009, 21, 2077–2082.
104. Ortiz, R. P.; Facchetti, A.; Marks, T. J., High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Soc. Rev. 2010, 110, 205–239.
105. Robertson, J., High dielectric constant oxides. Eur. Phys. J. 2004, 28, 265–291.
106. Dąbrowski, J.; Miyazaki, S.; Inumiya, S.; Kozłowski, G.; Lippert, G.; Łupina, G.; Nara, Y.; Müssig, H. J.; Ohta, A.; Pei, Y. In The influence of defects and impurities on electrical properties of high-к dielectrics. Materials Science Forum, Trans Tech Publ. 2009, 55–109.
107. Zhao, Y., Design of Higher-к and more stable rare earth oxides as gate dielectrics for advanced CMOS devices. Materials. 2012, 5, 1413–1438.
108. Lee, B.; Hande, A.; Park, T.; Chung, K.; Ahn, J.; Rousseau, M.; Hong, D.; Li, H.; Liu, X.; Shenai, D., ALD of LaHfOx nano-laminates for high-κ gate dielectric applications. Microelectron Eng. 2011, 88, 3385–3388.
109. Zhao, Y.; Kita, K.; Kyuno, K.; Toriumi, A., Higher-k LaYOx films with strong moisture resistance. Appl. Phys. Lett. 2006, 89, 252905.
110. Zhou, B.; Kobayashi, A.; Cui, H.-B.; Long, L.-S.; Fujimori, H.; Kobayashi, H., Anomalous dielectric behavior and thermal motion of water molecules confined in channels of porous coordination polymer crystals. J. Am. Chem. Soc. 2011, 133, 5736–5739.
111. Zhou, B.; Imai, Y.; Kobayashi, A.; Wang, Z. M.; Kobayashi, H., Giant dielectric anomaly of a metal–organic perovskite with four‐membered ring ammonium cations. Angew. Chem. Int. Ed. 2011, 123, 11643–11647.
112. Pathak, A.; Chiou, G. R.; Gade, N. R.; Usman, M.; Mendiratta, S.; Luo, T.-T.; Tseng, T. W.; Chen, J.-W.; Chen, F.-R.; Chen, K.-H., High-κ samarium-based metal–organic framework for gate dielectric applications. ACS Appl. Mater. Interfaces. 2017, 9, 21872–21878.
113. Usman, M.; Feng, P.-H.; Chiou, K.-R.; Chen, J.-W.; Lee, L.-W.; Liu, Y.-H.; Lu, K.-L., Polar molecule confinement effects on dielectric modulations of Sr-based metal–organic frameworks. ACS Appl. Electron. Mater. 2019, 1, 836–844.
114. Chen, Q.; Guo, P.-C.; Zhao, S.-P.; Liu, J.-L.; Ren, X.-M., A rhombus channel metal–organic framework comprised of Sr2+ and thiophene-2,5-dicarboxylic acid exhibiting novel dielectric bistability. CrystEngComm 2013, 15, 1264–1270.
115. Inamdar, A. I.; Pathak, A.; Usman, M.; Chiou, K.-R.; Tsai, P.-H.; Mendiratta, S.; Kamal, S.; Liu, Y.-H.; Chen, J.-W.; Chiang, M.-H., Highly hydrophobic metal–organic framework for self-protecting gate dielectrics. J. Mater. Chem. A. 2020, 8, 11958–11965
116. Schneider, C.; Ukaj, D.; Koerver, R.; Talin, A. A.; Kieslich, G.; Pujari, S. P.; Zuilhof, H.; Janek, J.; Allendorf, M. D.; Fischer, R. A., High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu3 BTC2 micropores. Chem. Sci. 2018, 9, 7405–7412.
117. Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S. l.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A. n.; Dincă, M., High electrical conductivity in Ni3 (2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 2014, 136, 8859–8862.
118. Alvaro, M.; Carbonell, E.; Ferrer, B.; i Xamena, F. X. L.; Garcia, H., Semiconductor behavior of a metal–organic framework (MOF). Chem. Eur. J. 2007, 13, 5106–5112.
119. Yang, C.; Dong, R.; Wang, M.; Petkov, P. S.; Zhang, Z.; Wang, M.; Han, P.; Ballabio, M.; Bräuninger, S. A.; Liao, Z., A semiconducting layered metal–organic framework magnet. Nat. Commun. 2019, 10, 1–9.
120. Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M. I.; Goossens, S.; Li, L.-J.; Wong, H.-S. P.; Koppens, F. H., Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.
121. Shamiryan, D.; Abell, T.; Iacopi, F.; Maex, K., Low-k dielectric materials. Mater. Today. 2004, 7, 34–39.
122. Ieong, M.; Narayanan, V.; Singh, D.; Topol, A.; Chan, V.; Ren, Z., Transistor scaling with novel materials. Mater. Today. 2006, 9, 26–31.
123. Lee, B. L.; Lee, E. K.; Han, K. M., Organic polymer semiconductor, method of preparing the same, and ambipolar organic thin film transistor using the same. Google Patents: 2013.
124. Mousavi, H.; Khodadadi, J.; Kurdestany, J. M.; Yarmohammadi, Z., Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers. Phys. Lett. A. 2016, 380, 3823–3827.
125. Pedesseau, L.; Sapori, D.; Traore, B.; Robles, R.; Fang, H.-H.; Loi, M. A.; Tsai, H.; Nie, W.; Blancon, J.-C.; Neukirch, A., Advances and promises of layered halide hybrid perovskite semiconductors. ACS nano. 2016, 10, 9776–9786.
126. Siemensmeyer, K.; Peeples, C. A.; Tholen, P.; Schmitt, F. J.; Çoşut, B.; Hanna, G.; Yücesan, G., Phosphonate metal–organic frameworks: A novel family of semiconductors. Adv.Mater. 2020, 2000474.
127. Sippel, P.; Denysenko, D.; Loidl, A.; Lunkenheimer, P.; Sastre, G.; Volkmer, D., Dielectric relaxation processes, electronic structure, and band gap engineering of MFU‐4‐type metal‐organic frameworks: Towards a rational design of semiconducting microporous materials. Adv. Funct. Mater. 2014, 24, 3885–3896.
128. Stavila, V.; Talin, A. A.; Allendorf, M. D., MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994–6010.
129. Rubio-Giménez, V.; Tatay, S.; Martí-Gastaldo, C., Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chem. Soc. Rev. 2020, 49, 5601–5638.
130. Hendon, C. H.; Tiana, D.; Vaid, T. P.; Walsh, A., Thermodynamic and electronic properties of tunable II–VI and IV–VI semiconductor based metal–organic frameworks from computational chemistry. J. Mater. Chem. C. 2013, 1, 95–100.
131. Bhardwaj, S. K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A. L.; Kim, K.-H.; Deep, A., An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A. 2018, 6, 14992–15009.
132. Silva, C. G.; Corma, A.; García, H., Metal–organic frameworks as semiconductors. J.Mater.Chem. 2010, 20, 3141–3156.
133. Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M., Cu3 (hexaiminotriphenylene) 2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 2015, 54, 4349–4352.
134. Xie, J.; Wang, L.; Anderson, J. S., Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chem. Sci. J. 2020, 11, 8350–8372.
135. Talin, A. A.; Allendorf, M. D.; Stavila, V.; Leonard, F., Tunable electrical conductivity in metal-organic framework thin film devices. Google Patents: 2016.
136. Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P., Tunable electrical conductivity in metal–organic framework thin-film devices. Science 2014, 343, 66–69.
137. Pathak, A.; Shen, J.-W.; Usman, M.; Wei, L.-F.; Mendiratta, S.; Chang, Y.-S.; Sainbileg, B.; Ngue, C.-M.; Chen, R.-S.; Hayashi, M., Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity. Nat. Commun. 2019, 10, 1–7.
138. Zhan, W.-w.; Kuang, Q.; Zhou, J.-z.; Kong, X.-j.; Xie, Z.-x.; Zheng, L.-s., Semiconductor@ metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 2013, 135, 1926–1933.
139. Tonzani, S. Lighting technology: Time to change the bulb. Nature News 2009, 459, 312– 314.
140. Tonzani, S., Time to change the bulb. Nature 2009, 459, 312.
141. Wen, Y.; Sheng, T.; Zhu, X.; Zhuo, C.; Su, S.; Li, H.; Hu, S.; Zhu, Q. L.; Wu, X., Introduction of red‐green‐blue fluorescent dyes into a metal–organic framework for tunable white light emission. Adv. Mater. 2017, 29, 1700778.
142. Pimputkar, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S., Prospects for LED lighting. Nat. Photonics 2009, 3, 180–182.
143. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Electroluminescent conjugated polymers—seeing polymers in a new light. Angew. Chem. Int. Ed. 1998, 37, 402–428.
144. Wada, Y.; Sato, M.; Tsukahara, Y., Fine control of red–green–blue photoluminescence in zeolites incorporated with rare‐earth ions and a photosensitizer. Angew. Chem. Int. Ed. 2006, 45, 1925–1928.
145. Shunmugam, R.; Tew, G. N., White‐light emission from mixing blue and red‐emitting metal complexes. Polym. Adv. Technol. 2008, 19, 596–601.
146. Gong, Q.; Hu, Z.; Deibert, B. J.; Emge, T. J.; Teat, S. J.; Banerjee, D.; Mussman, B.; Rudd, N. D.; Li, J., Solution processable MOF yellow phosphor with exceptionally high quantum efficiency. J. Am. Chem. Soc. 2014, 136, 16724–16727.
147. Zhang, L.-Y.; Hou, Y.-J.; Pan, M.; Chen, L.; Zhu, Y.-X.; Yin, S.-Y.; Shao, G.; Su, C.-Y., Near-infrared (NIR) emitting Nd/Yb(III) complexes sensitized by MLCT states of Ru(II)/Ir(III) metalloligands in the visible light region. Dalton Trans. 2015, 44, 15212–15219.
148. de Lill, D. T.; de Bettencourt-Dias, A.; Cahill, C. L., Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. Inorg. Chem. 2007, 46, 3960–3965.
149. Vijayakumar, C.; Praveen, V. K.; Ajayaghosh, A., RGB Emission through controlled donor self‐assembly and modulation of excitation energy transfer: A novel strategy to white‐light‐emitting organogels. Adv. Mater. 2009, 21, 2059–2063.
150. Usman, M.; Haider, G.; Mendiratta, S.; Luo, T.-T.; Chen, Y.-F.; Lu, K.-L., Continuous broadband emission from a metal–organic framework as a human-friendly white light source. J. Mater. Chem. C 2016, 4, 4728–4732.
151. G. M. Sheldrick. SHELXL-97, Program for structure refinement; University of Göttingen: Germany, 1997.
152. Dong, M. J.; Zhao, M.; Ou, S.; Zou, C.; Wu, C. D. A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules. Angew. Chem. Int. Ed .2014, 53, 1575–1579.
153. Zhu, A.-X.; Qiu, Z.-Z.; Yang, L.-B.; Fang, X.-D.; Chen, S.-J.; Xu, Q.-Q.; Li, Q.-X. A luminescent cadmium (II) metal–organic framework based on a triazolate–carboxylate ligand exhibiting selective gas adsorption and guest-dependent photoluminescence properties. CrystEngComm. 2015, 17, 4787–4792.
154. Kanoo, P.; Ghosh, A. C.; Cyriac, S. T.; Maji, T. K. A metal–organic framework with highly polar pore surfaces: Selective CO2 Adsorption and guest‐dependent on/off emission properties. Chem. Eur. J. 2012, 18, 237–244.
155. Chen, L.; Yan, C.; Pan, M.; Fan, Y.-Z.; Zhang, L.-Y.; Yin, S.-Y.;Hou, Y.-J.; Wu, K.; Jiang, J.-J.; Su, C.-Y. Semidirected versus holodirected coordination and single-component white light luminescence in Pb(II) complexes. New J. Chem. 2015, 39, 5287–5292.
156. Li, M.-X.; Miao, Z.-X.; Shao, M.; Liang, S.-W.; Zhu, S.-R. Metal–organic frameworks constructed from 2,4,6-tris(4-pyridyl)-1,3,5-triazine. Inorg. Chem. 2008, 47, 4481–4489.
157. Du, M.; Jiang, X.-J.; Zhao, X.-J. Molecular tectonics of mixed-ligand metal−organic frameworks: positional isomeric effect, metal-directed assembly, and structural diversification. Inorg. Chem. 2007, 46, 3984–3995.
158. Sun, D.; Collins, D. J.; Ke, Y.; Zuo, J. L.; Zhou, H. C. Construction of open metal–organic frameworks based on predesigned carboxylate isomers: from achiral to chiral nets. Chem. Eur. J. 2006, 12, 3768–3776.
159. Han, L.; Yuan, D.; Wu, B.; Liu, C.; Hong, M. Syntheses, structures and properties of three novel coordination polymers with a flexible asymmetrical bridging ligand. Inorg. Chem. Acta 2006, 359, 2232–2240.
160. Huang, Y.-Q.; Ding, B.; Song, H.-B.; Zhao, B.; Ren, P.; Cheng, P.; Wang, H.-G.; Liao, D.-Z.; Yan, S.-P. A novel 3D porous metal–organic framework based on trinuclear cadmium clusters as a promising luminescent material exhibiting tunable emissions between UV and visible wavelengths. Chem. Commun. 2006, 47, 4906–4908.
161. Nanishi, Y. Nobel Prize in Physics: The birth of the blue LED. Nat. Photonics 2014, 8, 884.
162. G. Kresse, J. Furthmüller. Phys. Rev. B 1996, 54, 11169.
163. Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 78, 1396.
164. Pan, C.; Nan, J.; Dong, X.; Ren, X.-M.; Jin, W. A highly thermally stable ferroelectric metal–organic framework and its thin film with substrate surface nature dependent morphology. J. Am. Chem. Soc. 2011, 133, 12330–12333.
165. Kim, J.-Y.; Jeon, J.-H.; Kwon, M.-K. Indium tin oxide-free transparent conductive electrode for gan-based ultraviolet light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 7945–7950.
166. Goswami, S.; Ray, D.; Otake, K.-i.; Kung, C.-W.; Garibay, S. J.; Islamoglu, T.; Atilgan, A.; Cui, Y.; Cramer, C. J.; Farha, O. K. A porous, electrically conductive hexa-zirconium (IV) metal–organic framework. Chem. Sci. 2018, 9, 4477–4482.
167. Yu, J.; Cui, Y.; Xu, H.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Confinement of pyridinium hemicyanine dye within an anionic metal–organic framework for two-photon-pumped lasing. Nat. Commun. 2013, 4, 2719.
168. Medishetty, R.; Nalla, V.; Nemec, L.; Henke, S.; Mayer, D.; Sun, H.; Reuter, K.; Fischer, R. A. A new class of lasing materials: Intrinsic stimulated emission from nonlinear optically active metal–organic frameworks. Adv. Mater. 2017, 29, 1605637.
169. Vanderah, T. A., Talking ceramics. Science 2002, 298, 1182–1184.
170. Roy, P.; Kizilyalli, I., Stacked high-ε gate dielectric for gigascale integration of metal–oxide–semiconductor technologies. App. Phy. Lett. 1998, 72, 2835–2837.
171. Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Kavalieros, J.; Metz, M. High-к /metal-gate stack and its MOSFET characteristics. IEEE Electron Device Lett. 2004, 25, 408–410.
172. Ha, Y. G.; Everaerts, K.; Hersam, M. C.; Marks, T. J. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc. Chem. Res. 2014, 47, 1019–1028.
173. Baldwin, A. F.; Ma, R.; Mannodi-Kanakkithodi, A.; Huan, T. D.; Wang, C.; Tefferi, M.; Marszalek, J. E.; Cakmak, M.; Cao, Y.; Ramprasad, R.; Sotzing, G. A. Poly(dimethyltin glutarate) as a prospective material for high dielectric applications. Adv. Mater. 2015, 27, 346–351.
174. Facchetti, A.; Yoon, M. H.; Marks, T. J., Gate dielectrics for organic field‐effect transistors: new opportunities for organic electronics. Adv. Mater. 2005, 17, 1705–1725.
175. Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 1999, 283, 822–824.
176. Han, Z.-B.; Li, B.-Y.; Ji, J.-W.; Du, Y.-E.; An, H.-Y.; Zeng, M.-H., A 3D chiral porous In (III) coordination polymer with PtS topological net. Dalton Trans. 2011, 40, 9154–9158.
177. Piskunov, A. V.; Maleeva, A. V.; Fukin, G. K.; Baranov, E. V.; Bogomyakov, A. S.; Cherkasov, V. K.; Abakumov, G. A., Synthesis and molecular structure of indium complexes based on 3,6-di-tert-butyl-o-benzoquinone. Looking for indium (I) o-semiquinolate. Dalton Trans. 2011, 40, 718–725.
178. Scatena, R.; Guntern, Y. T.; Macchi, P., Electron density and dielectric properties of highly porous MOFs: binding and mobility of guest molecules in Cu3(BTC)2 and Zn3(BTC)2. J. Am. Chem. Soc. 2019, 141, 9382–9390.
179. Qu, B.-T.; Lai, J.-C.; Liu, S.; Liu, F.; Gao, Y.-D.; You, X.-Z., Cu- and Ag-based metal–organic frameworks with 4-Pyranone-2,6-dicarboxylic acid: syntheses, crystal structures, and dielectric properties. ‎ Cryst. Growth Des. 2015, 15, 1707–1713.
180. Banday, A.; Murugavel, S.; Kanaujia, P. K.; Prakash, G. V.; Ramanan, A., Calcium and strontium coordination polymers based on rigid and flexible aromatic dicarboxylates: Synthesis, structure, photoluminescence and dielectric properties. Chemistry Select 2017, 2, 8567–8576.
181. Ghosh, A., Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys. Rev. B. 1990, 41, 1479
182. Sánchez-Andújar, M.; Yáñez-Vilar, S.; Pato-Doldán, B.; Gómez-Aguirre, C.; Castro-García, S.; Señarís-Rodríguez, M., Apparent colossal dielectric constants in nanoporous metal– organic frameworks. J. Phys. Chem. C 2012, 116, 13026–13032.
183. Sinclair, D. C.; Adams, T. B.; Morrison, F. D.; West, A. R., CaCu3 Ti4 O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 2002, 80, 2153–2155.
184. Pato-Doldán, B.; Sánchez-Andújar, M.; Gómez-Aguirre, L. C.; Yáñez-Vilar, S.; López-Beceiro, J.; Gracia-Fernández, C.; Haghighirad, A.; Ritter, F.; Castro-García, S.; Señarís-Rodríguez, M., Near room temperature dielectric transition in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]. Phys. Chem. Chem. Phys. 2012, 14, 8498–8501.
185. Kang, Y.; Fang, W.-H.; Zhang, L.; Zhang, J., A structure-directing method to prepare semiconductive zeolitic cluster–organic frameworks with Cu3I4 building units. Chem. Commun. 2015, 51, 8994–8997.
186. Huff, H.; Gilmer, D., High dielectric constant materials: VLSI MOSFET applications. Springer Science & Business Media: 2006; Vol. 16.

187. Hao, X., A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr 2013, 3, 1330001.
188. Li, Q.; Yao, F.-Z.; Liu, Y.; Zhang, G.; Wang, H.; Wang, Q., High-temperature dielectric materials for electrical energy storage. Annual Review of Materials Research 2018, 48, 219–243.
189. Homes, C.; Vogt, T.; Shapiro, S.; Wakimoto, S.; Ramirez, A., Optical response of high-dielectric-constant perovskite-related oxide. Science 2001, 293, 673–676.
190. Summerfelt, S. R.; Beratan, H. R., Electrode interface for high-dielectric-constant materials. Google Patents: 1995.
191. Xie, L.; Huang, X.; Wu, C.; Jiang, P., Core-shell structured poly (methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J. Mater. Chem. 2011, 21, 5897–5906.
192. Zschieschang, U.; Klauk, H.; Halik, M.; Schmid, G.; Dehm, C., Flexible organic circuits with printed gate electrodes. Adv. Mater. 2003, 15, 1147–1151.
193. Lim, S. C.; Kim, S. H.; Koo, J. B.; Lee, J. H.; Ku, C. H.; Yang, Y. S.; Zyung, T., Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics. ‎Appl. Phys. Lett. 2007, 90, 173512.
194. Usman, M.; Lu, K.-L., Metal–organic frameworks: The future of low-κ materials. NPG Asia Mater. 2016, 8, e333–e333.
195. Han, S.; Zhang, J.; Teng, B.; Ji, C.; Zhang, W.; Sun, Z.; Luo, J., Inorganic–organic hybrid switchable dielectric materials with the coexistence of magnetic anomalies induced by reversible high-temperature phase transition. J. Mater. Chem. C 2017, 5, 8509–8515.
196. Sgarbossa, P.; Bertani, R.; Di Noto, V.; Piga, M.; Giffin, G. A.; Terraneo, G.; Pilati, T.; Metrangolo, P.; Resnati, G., Interplay between structural and dielectric features of new low к hybrid organic–organometallic supramolecular ribbons. Cryst. Growth Des. 2012, 12, 297–305.
197. Liu, H.-C.; Su, W.-C.; Liu, Y.-L., Self-assembled benzoxazine-bridged polysilsesquioxanes exhibiting ultralow-dielectric constants and yellow-light photoluminescent emission. J. Mater. Chem. 2011, 21, 7182–7187.
198. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal–organic frameworks. Science. 2013, 341, 1230444.
199. Murray, L. J.; Dincă, M.; Long, J. R., Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.
200. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.
201. Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A., A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions. Eur. J. Chem. 2011, 17, 11372–11388.
202. Hendon, C. H.; Walsh, A.; Dincă, M., Frontier orbital engineering of metal–organic frameworks with extended inorganic connectivity: Porous alkaline-earth oxides. Inorg. Chem. 2016, 55, 7265–7269.
203. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.
204. Li, Y.; Tang, J.; He, L.; Liu, Y.; Liu, Y.; Chen, C.; Tang, Z., Core–shell upconversion nanoparticle@metal–organic framework nanoprobes for luminescent/magnetic dual‐mode Targeted Imaging. Adv. Mater. 2015, 27, 4075–4080.
205. Kulkarni, R.; Noda, Y.; Barange, D. K.; Kochergin, Y. S.; Lyu, P.; Balcarova, B.; Nachtigall, P.; Bojdys, M. J., Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework. Nat. Commun. 2019, 10, 1–8.
206. Luo, Z.; Fan, S.; Gu, C.; Liu, W.; Chen, J.; Li, B.; Liu, J., Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem. 2019, 26, 3341–3369.
207. Krishtab, M.; Stassen, I.; Stassin, T.; Cruz, A. J.; Okudur, O. O.; Armini, S.; Wilson, C.; De Gendt, S.; Ameloot, R., Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-к dielectrics. ‎Nat. Commun. 2019, 10, 1–9.
208. Zhao, Y.; Zhou, Z.; Chen, G.; Li, Q., In situ synthesis of core–shell ZIF‑8@ modified sepiolite hybrids for multi‑scale construction of epoxy composites with improved low‑dielectric properties and thermal stability. J. Mater. Sci. Mater. 2020, 31, 6866–6874.
209. Ye, Q.; Song, Y.-M.; Wang, G.-X.; Chen, K.; Fu, D.-W.; Hong Chan, P. W.; Zhu, J.-S.; Huang, S. D.; Xiong, R.-G., Ferroelectric metal−organic framework with a high dielectric constant. J. Am. Chem. Soc. 2006, 128, 6554–6555.
210. Fu, D.-W.; Dai, J.; Ge, J.-Z.; Ye, H.-Y.; Qu, Z.-R., Synthesis, structure and dielectric properties of the first 1D Ba-tetrazole complex [Ba (4-TPA)2 (H2O)4 · 3.5 (H2O)]n . Inorg. Chem. Commun. 2010, 13, 282–285.
211. Campanelli, A. R.; Domenicano, A.; Ramondo, F.; Hargittai, I., Group electronegativities from benzene ring deformations: A quantum chemical study. J. Phys. Chem. A. 2004, 108, 4940–4948.
212. Stasyuk, O.; Szatylowicz, H.; Krygowski, T.; Guerra, C. F., How amino and nitro substituents direct electrophilic aromatic substitution in benzene: an explanation with Kohn–Sham molecular orbital theory and Voronoi deformation density analysis. Phys. Chem. Chem. Phys. 2016, 18, 11624–11633.
213. Ye, H.-Y.; Liao, W.-Q.; Zhou, Q.; Zhang, Y.; Wang, J.; You, Y.-M.; Wang, J.-Y.; Chen, Z.-N.; Li, P.-F.; Fu, D.-W., Dielectric and ferroelectric sensing based on molecular recognition in Cu(1,10-phenlothroline)2SeO4·(diol) systems. Nat. Commun. 2017, 8, 1–7.
214. Bermúdez-García, J.; Vicent-Luna, J.; Yáñez-Vilar, S.; Hamad, S.; Sánchez-Andújar, M.; Castro-García, S.; Calero, S.; Señarís-Rodríguez, M., Liquid self-diffusion of H2O and DMF molecules in Co-MOF-74: molecular dynamics simulations and dielectric spectroscopy studies. Phys. Chem. Chem. Phys. 2016, 18, 19605–19612.
215. Mendiratta, S.; Usman, M.; Luo, T.-T.; Lee, S.-F.; Lin, Y.-C.; Lu, K.-L., Guest dependent dielectric properties of nickel(II)-based supramolecular networks. CrystEngComm. 2014, 16, 6309–6315.
216. Yu, S.-S.; Yuan, G.-J.; Duan, H.-B., The low dielectric constant and relaxation dielectric behavior in hydrogen-bonding metal–organic frameworks. RSC Adv. 2015, 5, 45213–45216.
217. Hill, R.; Dissado, L., A relationship between the amplitude of the susceptibility and the frequency of the maximum dielectric loss. Nature 1979, 281, 286–287.
218. Schwarze, M.; Tress, W.; Beyer, B.; Gao, F.; Scholz, R.; Poelking, C.; Ortstein, K.; Günther, A. A.; Kasemann, D.; Andrienko, D.; et al. Band structure engineering in organic semiconductors. Science 2016, 352, 1446–1449.
219. Ning, C.-Z.; Dou, L.; Yang, P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 1–14.
220. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.
221. Zhang, Y.; Chang, T.-R.; Zhou, B.; Cui, Y.-T.; Yan, H.; Liu, Z.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y.; et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.
222. Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B.-G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.
223. Sainbileg, B.; Hayashi, M. Possible indirect to direct bandgap transition in SnS2 via nickel doping. Chem. Phys. 2019, 522, 59–64.
224. Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.
225. Jordan, M. I.; Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 2015, 349, 255–260.
226. Musib, M.; Wang, F.; Tarselli, M. A.; Yoho, R.; Yu, K.-H.; Andrés, R. M.; Greenwald, N. F.; Pan, X.; Lee, C.-H.; Zhang, J.; et al. Artificial intelligence in research. Science 2017, 357, 28–30.
227. Almeida, A. F. de; Moreira, R.; Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem. 2019, 3, 589–604.
228. Hush, M. R. Machine Learning for quantum physics. Science 2017, 355, 580–580.
229. Parkes, D. C.; Wellman, M. P. Economic reasoning and artificial intelligence. Science 2015, 349, 267–272.
230. Song, Y.; Fan, R.-Q.; Xing, K.; Du, X.; Su, T.; Wang, P.; Yang, Y.-L., Insight into the controllable synthesis of Cu(I)/Cu(II) metal–organic complexes: size-exclusive selective dye adsorption and semiconductor properties. Cryst. Growth Des. 2017, 17, 2549-2559.
231. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis Set. Phys. Rev. B 1996, 54, 11169–11186.
232. Dyson, G.; Hamilton, A.; Mitchell, B.; R. Owen, G. A new family of flexible scorpionate ligands based on 2-mercaptopyridine. Dalton Trans. 2009, 0, 6120–6126.
233. Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical Sensors. Chem. Soc. Rev. 2017, 46, 3185–3241.
234. Sun, L.; Campbell, M. G.; Dincă, M. electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566–3579.
235. Stallinga, P. Electronic Transport in Organic Materials: Comparison of band theory with percolation/(variable range) hopping theory. Adv. Mater. 2011, 23, 3356–3362.
236. Schrøder, T. B.; Dyre, J. C. Scaling and universality of AC conduction in disordered solids. Phys. Rev. Lett. 2000, 84, 310–313.
237. Harun, M. H.; Saion, E.; Kassim, A.; Hussain, M. Y.; Mustafa, I. S.; Omer, M. A. A., Temperature dependence of AC electrical conductivity of PVA-PPy-FeCl3 composite polymer films. MPJ. 2008, 3, 24-31.
238. Rahal, A.; Borchani, S. M.; Guidara, K.; Megdiche, M. Electrical, Dielectric properties and study of AC electrical conduction mechanism of Li0.9□0.1NiV0.5P0.5O4. R. Soc. Open Sci. 5, 171472.
239. Jonscher, A. K. The ‘Universal’ dielectric response. Nature 1977, 267, 673–679.
240. Sainbileg, B.; Lai, Y.-R.; Chen, L.-C.; Hayashi, M. The dual-defective SnS2 monolayers: promising 2D photocatalysts for overall water splitting. Phys. Chem. Chem. Phys. 2019.
241. Kim, D.; Han, H.; Lee, J. H.; Choi, J. W.; Grossman, J. C.; Jang, H. M.; Kim, D. Electron−hole separation in ferroelectric oxides for efficient photovoltaic responses. Proc. Natl. Acad. Sci. 2018, 115, 6566–6571.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *