帳號:guest(3.135.212.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃聖儒
作者(外文):Huang, Sheng-Ju
論文名稱(中文):電漿子誘發TiO2-AuNR-TiO2奈米啞鈴介面的電荷分離 及對抗藥性腫瘤的紅外光驅動第一型光動力治療
論文名稱(外文):Plasmon-induced Interfacial Charge Transfer of TiO2- AuNR-TiO2 Nanodumbbell and NIR Light Driven Type 1 Photodynamic Therapy against Drug Resistant Tumors
指導教授(中文):黃國柱
指導教授(外文):Hwang, Kuo-Chu
口試委員(中文):張聰慧
吳劍侯
口試委員(外文):Chang, Tsong-Huei
Wu, Chien-Hou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023579
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:光動力治療電漿子光觸媒
外文關鍵詞:Photodynamic therapyPlasmonic photocatalyst
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
電漿子光觸媒材料在近年來是一個非常熱門的主題,利用貴金屬奈米粒子及半導體的特 性:表面電漿共振(LSPR)及蕭特基屏障(Schottky junction)來提昇光觸媒效率,此兩大特色能 夠使得材料有許多優點包含:可見光-紅外光驅動、電子電洞對分離、 表面電場的增強等。
在本論文中,我們利用水溶膠(Sol-gel method)合成了紅外光驅動的奈米材料:奈米啞鈴 (ND),是由金以及二氧化鈦組成,能夠輕易的利用控制奈米金棒(AuNRs)的長寬比控制ND 的特徵吸收峰。啞鈴型結構能夠使兩組成材料與溶液接觸提升效率,且此複合材料的能階位 置能夠在紅外光驅動下產生氫氧自由基。在此使用電子自旋共振光譜的技術直接偵測系統中 所產生的活性氧化物(ROS),以及使用磷光放光光譜偵測單重態氧氣。
由於光療中所用的到光敏劑的穩定性和光源穿深度的問題,目前僅能夠使用在皮膚表層 的癌症治療。在章節3-3中利用ND來對具有抗藥性的癌細胞進行第一型光動力治療(ROS)及 光熱治療,由於ND具有蕭特基屏障因此在毒殺癌細胞具有較好的效果;章節3-4及3-5中利用 表面電場的增強的性質,應用在表面拉曼增強光譜及催化對硝基苯酚還原反應。
Recently, plasmonic photocatalyst is popular in the field of nanotechnology and it widely made use of the noble metal nanoparticles and semiconductors, which possesses two unique features; localized surface plasmonic resonance (LSPR) and Schottky junction. These properties assert to have advantages in the plasmonic photocatalyst, such as broad UV-visible-NIR absorbance, forced charge carrier separation, and enhanced local electromagnetic field.
In this scenario, we use a sol-gel method to prepare a nanomaterial, nanodumbbells (ND), which can be activated by NIR light. It is made of the combination of gold and TiO2. Moreover, by changing the ratio of the length and width of the gold nanorods (AuNRs), we can easily control the tunable absorption band position of the ND. The unique property of nanodumbbell material could enhance the photocatalytic efficiency due to proper band position and generation of hydroxyl radical (・OH) upon NIR light illumination. We have utilized the electron paramagnetic resonance
spectrometer and phosphorescence emission spectra techniques to measure the ROS generated during the reaction.
Simultaneously, in chapter 3-3 we have employed the nanodumbbell (ND) for PDT/PTT therpeutuic reagent (such as type -1 PDT) for the killing of drug resistant cancer cells (NCI-H23) upon 980 nm light irradiation and similarly, the schottky junction has better killing efficiency comparing with AuNRs upon the light irradiation. Therefore, broad UV-visible NIR absorbance with high molar extinction-coefficient could penetrate the deep tissue as well as better photo stability. In chapter 3-4 and 3-5, we have utilized the enhanced local electromagnetic field to catalyze the reduction reaction of 4-Nitrophenol and surface-enhanced Raman spectroscopy(SERS).
第一章 緒論 1
1-1 奈米科技 1
1-2 奈米材料特性 1
1-2-1 尺寸效應 1
1-2-2 表面效應 1
1-2-3 量子侷限效應 2
1-3 非等向複合材料 3
1-3-1 金屬/半導體複合材料特性以及其優點 3
1-3-2 金屬/半導體複合材料合成 7
1-4 奈米材料的應用 9
1-4-1 光動力治療 9
1-4-2 光熱治療 11
1-4-3表面增強拉曼散射光譜 12
第二章 實驗 15
2-1 研究動機與目的 15
2-2 實驗藥品與儀器 18
2-2-1實驗藥品 18
2-2-2 實驗儀器 19
2-3 實驗步驟 20
2-3-1 奈米金棒(AuNRs)合成 20
2-3-2 奈米啞鈴合成 20
2-3-3 儀器鑑定 21
2-3-4 奈米啞鈴表面修飾 21
2-3-5 單重態氧氣磷光放光量測 22
2-3-6 活性氧化物質量測 22
2-3-7 對苯二甲酸衍生物偵測氫氧自由基 23
2-3-8 光動力治療於癌症治療 23
2-3-9 近紅外光誘發光觸媒反應 25
2-3-10 表面拉曼增強 26
第三章 結果與討論 27
3-1 奈米啞鈴(Nanodumbbells)的合成以及鑑定 27
3-2 活性氧化物的鑑定及應用 34
3-2-1 電子自旋共振光譜偵測活性氧化物 35
3-2-2 對苯二甲酸偵測系統中氫氧自由基 41
3-2-3 磷光放光光譜偵測單重態氧氣 43
3-3 光熱治療(PTT)及光動力治療(PDT) 48
3-3-1 奈米啞鈴及奈米金棒的表面修飾 49
3-3-2 奈米啞鈴及奈米金棒的In vitro顯影 51
3-3-3 奈米啞鈴光熱治療(PTT)及光動力治療(PDT) 53
3-3-4 奈米金棒光熱治療(PTT)及光動力治療(PDT) 55
3-3-5 光熱治療(PTT)及光動力治療(PDT)比例的計算 56
3-4 近紅外光光觸媒 59
3-4-1 對硝基苯酚的還原反應 59
3-4-2 亞甲基藍降解 63
3-5 表面拉曼增強 65
第四章 結論 67
參考文獻 68
Supporting Information 75
1. Werner, D.; Hashimoto, S.; Uwada, T., Langmuir 2010, 26 (12), 9956-9963.
2. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W., Nat Mater. 2005, 4 (5), 366-377.
3. Reddy, K. G.; Deepak, T. G.; Anjusree, G. S.; Thomas, S.; Vadukumpully, S.; Subramanian, K. R. V.; Nair, S. V.; Nair, A. S., Phys. Chem. Chem. Phys. 2014, 16 (15), 6838-6858.
4. Bose, S.; Garcia-Garcia, A. M.; Ugeda, M. M.; Urbina, J. D.; Michaelis, C. H.; Brihuega, I.; Kern, K., Nat. Mater. 2010, 9 (7), 550-554.
5. Wang, F.; Cheng, S.; Bao, Z.; Wang, J., Angew. Chem., Int. Ed. 2013, 52 (39), 10344-8.
6. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Chem. Rev. 1995, 95 (1), 69-96.
7. Chen, H. M.; Chen, C. K.; Lin, C. C.; Liu, R.-S.; Yang, H.; Chang, W.-S.; Chen, K.-H.; Chan, T.-S.; Lee, J.-F.; Tsai, D. P., J. Phys. Chem. C 2011, 115 (44), 21971-21980.
8. Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U., Science 2004, 304 (5678), 1787-1790.
9. Saunders, A. E.; Popov, I.; Banin, U., J. Phys. Chem. B 2006, 110 (50), 25421-25429.
10. Kwon, S. G.; Krylova, G.; Phillips, P. J.; Klie, R. F.; Chattopadhyay, S.; Shibata, T.; Bunel, E. E.; Liu, Y.; Prakapenka, V. B.; Lee, B.; Shevchenko, E. V., Nat. Mater. 2015, 14 (2), 215-223.
11. Kramer, D.; Viswanath, R. N.; Weissmüller, J., Nano Lett. 2004, 4 (5), 793-796.
12. Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L.-W.; Paul
Alivisatos, A., Nature 2004, 430 (6996), 190-195.
68
13. Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P., Rep. Prog. Phys. 2013, 76 (4), 046401.
14. Mubeen, S.; Hernandez-Sosa, G.; Moses, D.; Lee, J.; Moskovits, M., Nano Lett. 2011, 11 (12), 5548-5552.
15. Wu, K.; Chen, J.; McBride, J. R.; Lian, T., Science 2015, 349 (6248), 632-635.
16. Kim, S. M.; Lee, H.; Goddeti, K. C.; Kim, S. H.; Park, J. Y., J. Phys. Chem. C 2015,
119 (28), 16020-16025.
17. Kim, S. M.; Lee, S. J.; Kim, S. H.; Kwon, S.; Yee, K. J.; Song, H.; Somorjai, G. A.; Park, J. Y., Nano Lett. 2013, 13 (3), 1352-1358.
18. Naskar, S.; Schlosser, A.; Miethe, J. F.; Steinbach, F.; Feldhoff, A.; Bigall, N. C., Chem. Mater. 2015, 27 (8), 3159-3166.
19. LaMer, V. K.; Dinegar, R. H., J. Am. Chem. Soc. 1950, 72 (11), 4847-4854.
20. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E., Angew. Chem., Int. Ed. 2009, 48 (1),
60-103.
21. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Nano Lett. 2013, 13 (2), 765-71.
22. Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V., Nat. Mater. 2016, 15 (2), 141-153.
23. Konan, Y. N.; Gurny, R.; Allémann, E., J. Photochem. Photobiol., B 2002, 66 (2),
89-106.
24. Niedre, M.; Patterson, M. S.; Wilson, B. C., Photochem. Photobiol. 2002, 75 (4),
382-391.
25. Vankayala, R.; Sagadevan, A.; Vijayaraghavan, P.; Kuo, C. L.; Hwang, K. C., Angew.
Chem., Int. Ed. 2011, 50 (45), 10640-4.
26. Montalti, M.; Cantelli, A.; Battistelli, G., Chem. Soc. Rev. 2015, 44 (14), 4853-4921.
69
27. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., J. Am. Chem. Soc. 2006, 128 (6), 2115-2120.
28. C. M. Penney , L. M. G. M. L., Nature Physical Science 1972, 235, 110-112.
29. Kastrup, L.; Hell, S. W., Angew. Chem., Int. Ed. 2004, 43 (48), 6646-9.
30. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Chem. Phys. Lett. 1974, 26 (2),
163-166.
31. Sutherland, W. S.; Laserna, J. J.; Angebranndt, M. J.; Winefordner, J. D., Anal.
Chem. 1990, 62 (7), 689-693.
32. Sha, M. Y.; Xu, H.; Natan, M. J.; Cromer, R., J. Am. Chem. Soc. 2008, 130 (51),
17214-17215.
33. Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.; Heath, J. R., Science 2004, 306
(5704), 2055-2056.
34. Kleinman, S. L.; Ringe, E.; Valley, N.; Wustholz, K. L.; Phillips, E.; Scheidt, K. A.;
Schatz, G. C.; Van Duyne, R. P., . Am. Chem. Soc. 2011, 133 (11), 4115-4122.
35. Brosseau, C. L.; Rayner, K. S.; Casadio, F.; Grzywacz, C. M.; Van Duyne, R. P.,
Anal. Chem. 2009, 81 (17), 7443-7447.
36. Hsu, K. C.; Chen, D. H., ACS Appl. Mater. Interfaces 2015, 7 (49), 27571-9.
37. Ma, L.; Huang, Y.; Hou, M.; Xie, Z.; Zhang, Z., Sci. Rep. 2015, 5, 15442.
38. Ren, B.; Lin, X.-F.; Yang, Z.-L.; Liu, G.-K.; Aroca, R. F.; Mao, B.-W.; Tian, Z.-Q., J.
Am. Chem. Soc. 2003, 125 (32), 9598-9599.
39. Frontiera, R. R.; Dasgupta, J.; Mathies, R. A., J. Am. Chem. Soc. 2009, 131 (43),
15630-15632.
40. Bailo, E.; Deckert, V., Angew. Chem., Int. Ed. 2008, 47 (9), 1658-1661.
41. Zheng, Z.; Tachikawa, T.; Majima, T., J. Am. Chem. Soc. 2015, 137 (2), 948-57. 70

42. Lou, Z.; Fujitsuka, M.; Majima, T., ACS Nano 2016, 10 (6), 6299-305.
43. Wang, G.; Xiao, X.; Li, W.; Lin, Z.; Zhao, Z.; Chen, C.; Wang, C.; Li, Y.; Huang, X.; Miao, L.; Jiang, C.; Huang, Y.; Duan, X., Nano Lett. 2015, 15 (7), 4692-8.
44. Mamak, M.; Choi, S. Y.; Stadler, U.; Dolbec, R.; Boulos, M.; Petrov, S., J. Mater. Chem. 2010, 20 (44), 9855.
45. Mattox, T. M.; Bergerud, A.; Agrawal, A.; Milliron, D. J., Chem. Mater. 2014, 26 (5), 1779-1784.
46. Choi, J.; Moon, K.; Kang, I.; Kim, S.; Yoo, P. J.; Oh, K. W.; Park, J., Chem. Eng. J. 2015, 281, 236-242.
47. Fang, C.; Jia, H.; Chang, S.; Ruan, Q.; Wang, P.; Chen, T.; Wang, J., Energy Environ. Sci. 2014, 7 (10), 3431-3438.
48. Gao, J.; Bender, C. M.; Murphy, C. J., Langmuir 2003, 19 (21), 9065–9070.
49. Fan, H.; Lopez, G. P.; Brinker, C. J.; Lu, Y., 2005, US 6913832 B2.
50. Thierry, B.; Ng, J.; Krieg, T.; Griesser, H. J., Chem. Commun. (Camb) 2009,
(13),
1724-6.
51. Sim, H. R.; Wark, A. W.; Lee, H. J., Analyst 2010, 135 (10), 2528-32.
52. Vigderman, L.; Zubarev, E. R., Adv. Drug Deliv. Rev. 2013, 65 (5), 663-76.
53. Walther, A.; Muller, A. H., Chem. Rev. 2013, 113 (7), 5194-261.
54. Vijayaraghavan, P.; Liu, C. H.; Vankayala, R.; Chiang, C. S.; Hwang, K. C., Adv.
Mater. 2014, 26 (39), 6689-95.
55. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi,
S. E.; Li, T., J. Phys. Chem. B 2005, 109 (29), 13857-13870.
56. Shi, Y.; Luo, H. Q.; Li, N. B., Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011,
78 (5), 1403-7.
71
57. Cassaignon, S.; Koelsch, M.; Jolivet, J.-P., J. Phys. Chem. Solids 2007, 68 (5-6), 695-700.
58. Yoon, I.; Li, J. Z.; Shim, Y. K., Clin. Endosc. 2013, 46 (1), 7-23.
59. Hervier, A.; Renzas, J. R.; Park, J. Y.; Somorjai, G. A., Nano Lett. 2009, 9 (11),
3930-3933.
60. Lee, H.; Nedrygailov, I. I.; Lee, C.; Somorjai, G. A.; Park, J. Y., Angew. Chem. Int. Ed. 2015, 54 (8), 2340-2344.
61. Kale, M. J.; Avanesian, T.; Christopher, P., ACS Catalysis 2014, 4 (1), 116-128.
62. Kale, M. J.; Christopher, P., Science 2015, 349 (6248), 587-588.
63. Brongersma, M. L.; Halas, N. J.; Nordlander, P., Nat. Nanotechnol. 2015, 10 (1),
25-34.
64. Johnson, P. B.; Christy, R. W., Phys. Rev. B 1972, 6 (12), 4370-4379.
65. Christensen, N. E., Phys. Rev. B 1976, 13 (6), 2698-2701.
66. Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa, H., J. Phys. Chem. Lett.
2010, 1 (13), 2031-2036.
67. DeRosa, M. C.; Crutchley, R. J., Coord. Chem. Rev. 2002, 233–234, 351-371.
68. Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.;
Zhou, H.; Meng, X.; Wang, P.; Lee, C.-S.; Zhang, W.; Han, X., Nat. Commun. 2014, 5, 4596.
69. Charbouillot, T.; Brigante, M.; Mailhot, G.; Maddigapu, P. R.; Minero, C.; Vione, D.,
J. Photochem. Photobiol., A 2011, 222 (1), 70-76.
70. Zhao, T.; Shen, X.; Li, L.; Guan, Z.; Gao, N.; Yuan, P.; Yao, S. Q.; Xu, Q.-H.; Xu, G.
Q., Nanoscale 2012, 4 (24), 7712-7719.
71. Vankayala, R.; Huang, Y. K.; Kalluru, P.; Chiang, C. S.; Hwang, K. C., Small 2014,
10 (8), 1612-22.
72
72. Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y., Nat. Med. 2012, 18 (10), 1580-5.
73. Guo, W.; Guo, C.; Zheng, N.; Sun, T.; Liu, S., Adv. Mater. 2017, 29 (4).
74. Long, C. A.; Kearns, D. R., J. Am. Chem. Soc. 1975, 97 (8), 2018-2020.
75. Kalluru, P.; Vankayala, R.; Chiang, C.-S.; Hwang, K. C., Angew. Chem. Int. Ed.
2013, 52 (47), 12332-12336.
76. Vankayala, R.; Lin, C. C.; Kalluru, P.; Chiang, C. S.; Hwang, K. C., Biomaterials
2014, 35 (21), 5527-38.
77. Vankayala, R.; Kuo, C.-L.; Nuthalapati, K.; Chiang, C.-S.; Hwang, K. C., Adv.
Funct. Mater. 2015, 25 (37), 5934-5945.
78. Kalluru, P.; Vankayala, R.; Chiang, C.-S.; Hwang, K. C., Adv. Funct. Mater. 2016, 26
(43), 7908-7920.
79. Bessho, Y.; Oguri, T.; Achiwa, H.; Muramatsu, H.; Maeda, H.; Niimi, T.; Sato, S.;
Ueda, R., Cancer Sci 2006, 97 (3), 192-8.
80. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K.; Han, M. S.;
Mirkin, C. A., Science 2006, 312 (5776), 1027-30.
81. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., J. Am. Chem. Soc. 2006, 128
(6), 2115-2120.
82. Hu, K.-W.; Liu, T.-M.; Chung, K.-Y.; Huang, K.-S.; Hsieh, C.-T.; Sun, C.-K.; Yeh,
C.-S., J. Am. Chem. Soc. 2009, 131 (40), 14186-14187.
83. Christopher, P.; Ingram, D. B.; Linic, S., J. Phys. Chem. C 2010, 114 (19),
9173-9177.
84. Kumar, S. G.; Devi, L. G., T., J. Phys. Chem. A 2011, 115 (46), 13211-13241.
73
85. Feng, Z. V.; Lyon, J. L.; Croley, J. S.; Crooks, R. M.; Vanden Bout, D. A.; Stevenson, K. J., J. Chem. Educ. 2009, 86 (3), 368.
86. Zhu, Z.; Guo, X.; Wu, S.; Zhang, R.; Wang, J.; Li, L., Ind. Eng. Chem. Res. 2011, 50 (24), 13848-13853.
87. Khalavka, Y.; Becker, J.; Sönnichsen, C., J. Am. Chem. Soc. 2009, 131 (5), 1871-1875.
88. Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M., Angew. Chem. Int. Ed. 2006, 45 (5), 813-816.
89. Mei, Y.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R., Langmuir 2005, 21 (26), 12229-12234.
90. Tang, S.; Vongehr, S.; Meng, X., J. Mater. Chem. 2010, 20 (26), 5436-5445.
91. Gangula, A.; Podila, R.; M, R.; Karanam, L.; Janardhana, C.; Rao, A. M., Langmuir
2011, 27 (24), 15268-15274.
92. Tian, J.; Sang, Y.; Yu, G.; Jiang, H.; Mu, X.; Liu, H., Adv. Mater. 2013, 25 (36), 5075-5080.
93. Jensen, L.; Schatz, G. C., J. Phys. Chem. A 2006, 110 (18), 5973-5977.
94. Tian, F.; Bonnier, F.; Casey, A.; Shanahan, A. E.; Byrne, H. J., Anal. Methods 2014, 6
(22), 9116-9123.
95. Bao, Z.; Sun, Z.; Xiao, M.; Chen, H.; Tian, L.; Wang, J., J. Mater. Chem. 2011, 21 (31), 11537.
96. Zheng, Z.; Tachikawa, T.; Majima, T., J. Am. Chem. Soc. 2015, 137 (2), 948-957.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *