帳號:guest(3.142.201.142)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):温逸凡
作者(外文):Wen, Yi-Fan
論文名稱(中文):以超快時間解析光學克爾光閘螢光光譜研究非甲基取代苯-四氰基乙烯錯合物分子間電荷轉移動態學
論文名稱(外文):Ultrafast Time-Resolved Optical Kerr Gating Fluorescence Studies of Intermolecular Charge Transfer in non-Methyl Substituted Benzene- Tetracyanoethylene Complexes
指導教授(中文):鄭博元
指導教授(外文):Cheng, Po-Yuan
口試委員(中文):王念夏
朱立岡
口試委員(外文):Wang, Niann-Shiah
Chu, Li-Kang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023578
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:117
中文關鍵詞:電子轉移四氰基乙烯非甲基取代苯
外文關鍵詞:electron transferEDA complex
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
我們利用自行架設的克爾光閘超快時間解析螢光(time-resolved fluorescence, TRFL)光譜系統,搭配自行撰寫的一套全自動數據擷取電腦程式來探討電子給體-受體錯合物(electron donor-acceptor, EDA)的分子間電子轉移動力學行為,利用錯合物的光譜資訊以及理論計算來分析,並且提出可能的動力學模型。本論文研究的為非甲基取代苯(non-methyl substituted benzene)-四氰基乙烯(tetracyanoethylene, TCNE)錯合物,包括chlorobenzene (PhCl)-TCNE、fluorobenzene (PhF)-TCNE、benzonitrile (PhCN)-TCNE、p-tolunitrile (p-MePhCN)-TCNE以及p-chlorobenzene (p-ClPhCN)-TCNE錯合物,溶於CH2Cl2以及CCl4溶劑中的電荷轉移(charge-transfer, CT)動力學。
  我們以飛秒雷射脈衝垂直激發非甲基取代苯-TCNE錯合物之電荷轉移吸收譜帶,量測靜態吸收、靜態螢光光譜以及時間解析螢光光譜(time-resolved fluorescence),來了解錯合物受光激發後從激發態回到基態之動態學過程。我們在這些錯合物中的總螢光衰減函數P(t)擬合了幾個時間常數,我們將最快的時間常數指認為solvation以及激發態之間的內轉換過程,最慢的時間常數指認為激發態經由電荷再結合回到基態的過程。在CH2Cl2溶劑中,PhCl-TCNE、PhF-TCNE、PhCN-TCNE都有著相似的solvation以及IC的時間常數(<0.2),但有著不同且沒有明顯規律的CR速率(PhCl-TCNE :45 ps、PhF-TCNE :21 ps、PhCN-TCNE:28 ps)。在CCl4溶劑中,PhCl -TCNE、PhF-TCNE、PhCN-TCNE、p-MePhCN-TCNE、p-ClPhCN-TCNE也有著不同的CR速率(PhCl -TCNE: 580 ps, PhF-TCNE: 470 ps, PhCN-TCNE: 140 ps, p-MePhCN: 210 ps, p-ClPhCN: 280 ps)。這些錯合物在極性與非極性溶劑中時間常數的差異,主要來自solvation以及〖∆G〗^0的影響,而我們觀察CR速率與反應自由能變化的關係發現了〖lnk〗_(ET ) V.S.〖-∆G〗^0的曲線有雙反轉(double-inverted region)的現象,我們引用ISM(intersecting state model)理論來分析,可以定性地解釋兩個溶劑中雙反轉的現象。
In this thesis, we used an ultrafast time-resolved fluorescence (TRFL) spectrometer implemented by optical Kerr gating (OKG) and density functional theory calculations to study the electron transfer dynamics in some substituted benzene-tetracyanoethylene (SBZ-TCNE) complexes (SBZ = Chlorobenzene, Fluorobenzene, Benzonitrile, p-Tolunitrile, p-Chlorobenzonitrile) in two solvents (CH2Cl2, CCl4) with different polarities. We used a femtosecond laser to excite the SBZ-TCNE complexes to the charge-transfer (CT) states, and obtained the information from their absorption, fluorescence and TRFL spectra. The analysis of the total fluorescence intensity function P(t), which described the temporal evolution of the population of the excited states and the transition dipole moments, revealed the relaxations of the complexes such as the charge recombination (CR). We found different decay behaviors of the complexes excited states in two solvents. The fastest components of the complexes are in the similar time scale (< 0.2 ps), which is assigned to CT2→CT1 transition, and the slowest one is identified as the CR. The CR time constants of PhCl-TCNE, PhF-TCNE, PhCN-TCNE in the CH2Cl2 are 45, 21, and 28 ps. The CR time constants of PhCl-TCNE, PhF-TCNE, PhCN-TCNE, p-MePhCN-TCNE and p-ClPhCN-TCNE are 580, 470, 140, 210 and 280 ps, respectively. We found that the CR rates of complexes in the polar solvent are faster than in the nonpolar solvent which is mostly due to solvation effects. Surprisingly, the relationship between CR time constants and -∆G0 does not completely obey the Marcus theory and exhibits a double-inversion behavior. We used the intersecting state model (ISM) to explain this unexpected behavior. This model proposed that ultraexothermic reactions accompany large changes in structures which can affect the reorganization energy, and reaction barrier, resulting in the observed double-inversion behavior.
目錄
摘要 i
Abstract ii
表目錄 v
圖目錄 vi
第一章 1
1.1電子轉移概論 1
1.2電子轉移概論 2
1.3 EDA錯合物概述 8
1.4論文研究目的 9
第二章 實驗系統與技術 11
2.1超快飛秒雷射系統 11
2.1.1雷射產生源 12
2.1.2能量放大器 15
2.2實驗技術 19
2.2.1 optical Kerr gating簡介 20
2.2.2時間解析克爾光閘螢光光譜儀實驗系統與組成 21
2.2.3超快時間解析克爾光閘螢光光譜實驗自動化數據擷取系統 34
2.3時間解析克爾光閘螢光光譜儀的校正 36
2.3.1光譜靈敏度的校正 36
2.3.2時間延遲(temporal delay)校正 43
2.4 EDA錯合物溶液的製備 47
2.4.1 TCNE的空白實驗 50
第三章 非甲基取代苯-四氰基乙烯錯合物之電荷轉移態研究 53
3.1非甲基取代苯-TCNE錯合物於CH2Cl2、CCl4溶劑中的靜態光譜 53
3.1.1氯苯-TCNE錯合物溶於CH2Cl2、CCl4溶劑中的靜態光譜 54
3.1.2氟苯-TCNE錯合物溶於CH2Cl2、CCl4溶劑中的靜態光譜 57
3.1.3苯甲腈-TCNE錯合物溶於CH2Cl2、CCl4溶劑中的靜態光譜 59
3.1.4對甲苯腈-TCNE、對氯甲苯腈-TCNE錯合物溶於CCl4溶劑中的靜態光譜 63
3.1.5非甲基取代苯-TCNE錯合物溶於CH2Cl2、CCl4溶劑中的靜態光譜 63
3.2非甲基取代苯-TCNE錯合物於CH2Cl2、CCl4溶劑中的TRFL光譜 70
3.2.1非甲基取代苯-TCNE錯合物於CH2Cl2溶劑中的時間解析螢光光譜 71
3.2.2非甲基取代苯-TCNE錯合物於CCl4溶劑中的時間解析螢光光譜 84
3.3基態結構之理論計算結果 98
3.4綜合討論 104
3.4.1螢光放光平均頻率函數 104
3.4.2總螢光衰減函數 105
3.4.3平衡態電荷再結合動態學 108
第四章 結論 114

(1) Siedow, J.; Umbach, A.Plant Cell 1995, 7 (7), 821–831.
(2) Hervás, M.; Navarro, J. A.; DeLa Rosa, M. A., Acc. Chem. Res. 2003, 36 (10), 798–805.
(3) Listorti, A.; O’Regan, B.; Durrant, J. R.Chemistry of Materials. 2011, pp 3381–3399.
(4) Williams, R. M.; Zwier, J. M.; Verhoeven, J. W., J. Am. Chem. Soc. 1995, 117 (14), 4093–4099.
(5) Yamada, M.; Ohkubo, K.; Shionoya, M.; Fukuzumi, S., J. Am. Chem. Soc. 2014, 136, 13240−13248.
(6) Fox, M. A. Photochem. Photobiol. 1990, 52 (3), 617–627.
(7) Morandeira, A.; Fürstenberg, A.; Pagès, S. Spectrum 2004, 17 (4).
(8) Marcus, R. A., J. Chem. Phys. 1956, 24 (5), 966–978.
(9) Kroon, J.; Oevering, H.; Verhoeven, J. W.; Warman, J. M.; Oliver, A. M.; Paddon-Row, M. N.J. Phys. Chem. 1993, 97, 5065–5069.
(10) Miller, J. R.; Calcaterra, L. T.; Closs, G. L.J. Am. Chem. Soc. 1984, 106 (10), 3047–3049.
(11) Nicolet, O.; Banerji, N.; Pages, S.; Vauthey, E.J Phys Chem A 2005, 109 (37), 8236–8245.
(12) Varandas, A. J. C.; Formosinho, S. J.J. Chem. Soc. Chem. Commun. 1986, No. 2, 163–165.
(13) Serpa, C.; Gomes, P. J. S.; Arnaut, L. G.; Formosinho, S. J.; Pina, J.; DeMelo, J. S.Chem. - A Eur. J. 2006, 12 (19), 5014–5023.
(14) Mulliken, R. S.J. Phys. Chem. 1952, 56 (7), 801–822.
(15) Leonhardt, H.; Weller, A.Zeitschrift für Phys. Chemie 1961, 29 (29), 277–280.
(16) Miyasaka, H.; Ojima, S.; Noboru, M.J. Phys. Chem. 1990, 93, 3380–3382.
(17) Ojima, S.; Miyasaka, H.; Noboru, M.J. Phys. Chem. 1990, 94, 7534–7539.
(18) Ojima, S.; Miyasaka, H.; Noboru, M.J. Phys. Chem. 1990, 94, 5834–5839.
(19) Ojima, S.; Miyasaka, H.; Noboru, M.J. Phys. Chem. 1990, 94, 5834–5839.
(20) Frey, J. E.; Andrews, A. M.; Ankoviac, D. G.; Beaman, D. N.; Pont, L. E.Du; Elmer, T. E.; Lang, S. R.; Zwart, M. A. O.; Seagle, R. E.; Torreano, L. A.1990, No. 7, 606–624.
(21) Yamamoto, K.; Kabir, M. H.; Hayashi, M.; Tominaga, K.Phys Chem Chem Phys 2005, 7 (9), 1945–1952.
(22) Chiu, C. C.; Hung, C. C.; Chen, C. L.; Cheng, P. Y.J. Phys. Chem. B 2013, 117 (33), 9734–9756.

(1) Fleming, G. R., Chemical Applications of Ultrafast Spectroscopy Oxford: New York, 1986.
(2) Lakowicz, J. R., Principle of Fluorescence Spectroscopy. 2nd ed.; Plenum Press: New York, 1999.
(3) Boyd, R. W., Nonlinear Optical. Academic Press: San Deigo, CA, 1992.
(4) http://www.moxtek.com/opticals/visible_light.html.
(5) Kalpouzos, C.; Lotshaw, W. T.; McMorrow, D.; Wallance, G. A. K., J. Phys. Chem. 1987, 91.
(6) Kinoshita, S.; Ozawa, H.; Kanematsu, Y.; Tanaka, I.; Sugimoto, N.; Fujiwara, S., Rev. Sci. Instrum. 2000, 71 (9), 3317-3322.
(7) Marcus, Y., The Properties of Solvents. John Wiley: Sons, New York, 1998.
(8) Neelakandan, M.; Pant, D.; Quitevis, E. L., Chem. Phys. Lett. 1997, 265.
(9) Weber, M. J., Handbook of Optical Materials. CRC Press: Boca Raton, FL, 2003.
(10) Kalpouzos, C.; Lotshaw, W. T.; Mcmorrow, D.; Kenneywallace, G. A., J. Phys. Chem. 1987, 91 (8), 2028-2030.
(11) Takeda, J.; Nakajima, K.; Kurita, S.; Tomimoto, S.; Saito, S.; Suemoto, T., Physical Review B 2000, 62 (15), 10083-10087.
(12) Schmidt, B.; Laimgruber, S.; Zinth, W.; Gilch, P., Applied Physics B-Lasers and Optical 2003, 76 (8), 809-814.
(13) Arzhantsev, S.; Maroncelli, M., Appl. Spectrosc. 2005, 59 (2), 206-220.
(14) http://www.andor.com/pdfs/specs/du970n.pdf.
(15) Gardecki, J. A.; Maroncelli, M., Appl. Spectrosc. 2005, 52 (9), 1179-1189.
(16) Bevinton, P. R.; Robinson, D. K., Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill: New York, 1992.
(17) Rubtsov, I. V.; Yoshihara, K., J. Phys. Chem. A 1999, 103 (49), 10202-10212.
(18) Wynne, K.; Galli, C.; Hochstrasser, R. M., J. Chem. Phys. 1994, 100 (7), 4797-4810.
(19) Ewall, R. X.; Sonnessa, A. J., J. Am. Chem. Soc. 1970, 92 (9), 2845-&.

(1) 洪志昌, 清華大學化學系博士論文 2010
(2) 邱志忠, 清華大學化學系博士論文 2013.
(3) 葉友芳, 清華大學化學系碩士論文 2014.
(4) 余慶安, 清華大學化學系碩士論文 2015.
(5) Kroll, M., J Am. Chem. Soc., 1968, 90, 1097.
(6) Lippert, E., Z Naturforsch Pt A 1955, 10 (7), 541-545.
(7) Mataga, N.; Kaifu, Y.; Koizumi, M., Bull. Chem. Soc. Jpn. 1955, 28 (9), 690- 691.
(8) Mataga, N.; Kaifu, Y.; Koizumi, M., Bull. Chem. Soc. Jpn. 1956, 29 (4), 465-470.
(9) Lippert, E., Zeitschrift Fur Electrochemie 1957, 61 (8), 962-975.
(10) Reynolds, L.; Gardeck, J. A.; Frankland, S. J. V.; Horng, M. L.; Maroncelli, M., J. Phys. Chem. 1996, 100 (24), 10337-10354.
(11) Jarzeba, W.; Murata, S.; Tachiya, M., Chem. Phys. Lett. 1999, 301 (3-4), 347-355.
(12) Laurence, C.; Nicolet, P.; Dalati, M. T.; Abbound, J. L. M.; Nortario, R., J. Phys. Chem. 1994, 98 (23), 5807-5816.
(13) Kamlet, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M., J. Phys. Chem. 1995, 99 (48), 17311-17337.
(14) Sun, Z.; Lu, J.; Zhang, D. H.; Lee S. Y., J. Chem. Phys. 2008, 128, 144114.
(15) Frontiera, R. R.; Shim, S.; Mathies, R. A., J. Chem. Phys. 2008, 129, 064507.
(16) Gustavsson, T.; Cassara, L.; Gullbinas, V.; Gurzadyan, G.; Mialocq, J. C.; Pommeret, S.; Sorgius, M.; Meulen P. V. D., J. Phys. Chem. A. 1998, 102, 4229-4245.
(17) Maroncelli, M.; Horng, M. L.; Gardecki, J. A.; Papazyan, A., J. Phys. Chem. 1995, 99, 17311-17337.
(18) Nagasawa, Y.; Yartsev, A. P.; Tominaga, K.; Bisht, P. B.; Johnson, A. E.; Yoshihara, K., J. Phys. Chem. 1995, 99, 653-662.
(19) Zhao, Y.; Truhlar, D. G., J Phys. Chem. A. 2006, 110, 13126-13130.
(20) Chiu, C. C.; Hung, C. C.; Chen, C. L.; Cheng, P. Y., J. Phys. Chem. B. 2013, 117, 9734-9756.
(21) Miller, J. R.; Beitz, J. V.; Huddleston, R. K., J. Am. Chem. Soc. 1984, 106, 5057-5068.
(22) Serpa, C.; Gomes, P. J. S., Arnaut, L. G.; Melo, J. S. D.; Formosinho, S. J., ChemPhysChem 2006, 7, 2533-2539.
(23) Zakrzewski, V. G.; Dolgounitcheva, O.; Ortiz, J. V., J. Chem. Phys. 1996, 105, 5872.
(24) Merkel, P. B.; Luo, P.; Dinnocenzo, J. P.; Farid, S., J. Org. Chem. 2009, 74, 5163-5173.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用超快時間解析螢光光譜研究甲苯-四氰基乙烯和苯-四氰基乙烯錯合物分子間電荷轉移動態學
2. 以超快時間解析螢光光譜研究非甲基取代苯-四氰基乙烯錯合物之分子間電子轉移動力學
3. 利用飛秒雷射光譜技術研究丙酮與二甲基亞碸分子之三體光分解反應動態學
4. 大氣中小分子吸收光譜之研究 1. 利用共振腔振盪衰減法研究CO及CH3OO近紅外吸收光譜 2. 利用同步輻射光研究H2O及其同位素分子之真空紫外吸收光譜
5. 氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反應動態學 2.偶氮苯陽離子在異構化途徑之同調振動
6. 以時間解析螢光光譜研究苯乙烯比啶分子及其銥錯合物之光化學
7. 分子衍生物在溶液中單體與聚集體之光譜研究
8. 氣相飛秒瞬時吸收光譜之建立與應用
9. 1.反應S(3P)+OCS、S(3P)+O2、及O(3P)+SO2之高溫化學動力學研究。2.敏化InN/TiO2太陽能電池材料之研究
10. 利用簡併四波混頻光譜法在超音波射束中研究HS自由基之高預解離電子態A2Σ+
11. Coumarin 481在環糊精水溶液中的超快動態學研究
12. Hexa-Peri-Hexabenzocoronene (HBC)分子衍生物之單體、聚集體與奈米顆粒的研究
13. 胞嘧啶及其水合團簇之氣相超快激發態動態學研究
14. 以超快時間解析克爾光閘螢光光譜研究四氰基乙烯-甲基苯電子給體-受體錯合物之電子轉移動態學
15. 液體 / 空氣界面二倍頻現象的超快時間解析光譜研究
 
* *