帳號:guest(3.145.184.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊智堯
作者(外文):Yang, Chih-Yao
論文名稱(中文):螯合含氮配位基之雙亞硝基鐵錯合物於催化反應之研究
論文名稱(外文):Catalytic Study of Chelating ligand – Containing Dinitrosyl Iron Complexes
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen-Feng
口試委員(中文):陳建宏
魯才德
口試委員(外文):Chen, Chien-Hong
Lu, Tsai-Te
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023557
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:一氧化氮亞硝基鐵錯合物
外文關鍵詞:Nitric oxideDinitrosyl iron complexes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著非再生能源不斷地減少,能源需求也隨人口數成長,需求量增加,而大部分的能源經由燃燒石化燃料所得,但伴隨的副產物二氧化碳,是造成全球暖化的主因,因此發展出乾淨、零碳的再生能源是當今重要的議題,氫能源剛好符合上述需求,經由裂解水產生的氫氣可視為一種新的能源型式,燃燒伴隨的副產物為無汙染的水,符合無汙染能源的概念,因此設計出便宜且效率高的催化劑,使裂解水的還原電位將低是目前科學家所追求的。
本研究以2,5,8,11,14,17-hexamethyl-2,5,8,11,14,17-hexaazaoctadecane (HMHAOD)為配位基合成出金屬參核錯合物[(HMHAOD)(Fe(NO)2)3](1)與雙核[(HMHAOD)(Fe(NO)2)2][BF4]2(2),並探討其反應性及應用性。
將[(HMHAOD)(Fe(NO)2)2][BF4]2(2)在水相下進行OER實驗,可有效的幫助降低裂解水所需的氧化電位,在中性的Na2SO4水溶液下,藉由氣相層析儀偵測氧氣的產生,並進一步進行長時間電解,電解時間可長達24小時,在同相催化下是非常優異的。
In recent years, many scientists are dedicated to develope renewable energy with the limited reserves of fossil fuels and the increasing concentration of by product - CO2, which is believed to be the main cause of global warming. Therefore, the development of clean, zero carbon renewable energy is an important issue today. Hydrogen energy is just in line with tha above requirements due to it’s combustion product - water. Water is the promising source for the production of hydrogen as its abundance. So, the designed catalyst that assists in lowering oxidation potential of water oxidation is a significant challenge for scientists.
In this study, 2,5,8,11,14,17-hexamethyl-2,5,8,11,14,17-hexaazaoctadecane (HMHAOD) was synthesized as ligand to yield an amine-bound Dinitrosyl Iron Complexes (DNIC), [(HMHAOD)(Fe(NO)2)3] (1) and [(HMHAOD)(Fe(NO)2)2][BF4]2 (2) . Reactivity and applicability of DNICs were investigated.
Among DNICs synthesized, [(HMHAOD)(Fe(NO)2)2][BF4]2 (2) shows the potential to serve as a catalyst promotiong water splitting.
第一章 緒論.....................................................1
1-1. 一氧化氮 (Nitric oxide) ……………………………………………………... 1
1-2. 一氧化氮 (Nitric oxide) 的生成…………………………………………...... 4
1-3. 一氧化氮在體內的運送與儲存........................................................................ 6
1-4. 雙亞硝基鐵錯合物 (DNIC)…………………………………………………. 9
1-5. 二氧化碳的還原 ……………………………………………………………..16
1-6. 氫能源………………………………………………………………………..23
1-7. 研究方向..........................................................................................................32
第二章 實驗部分..............................................33
2-1. 一般實驗……………………………………………………………………..33
2-2. 儀器…………………………………………………………………………..33
2-3. 溶劑與藥品 …………………………………………………………………..35
2-3-1. 溶劑……………………………………………………………………...35
2-3-2. 藥品……………………………………………………………………...36
2-4. 化合物的合成與鑑定 ………………………………………………………..36
2-4-1. 合成2,5,8,11,14,17-hexamethyl-2,5,8,11,14,17-hexaazaoctadecane
(HMHAOD).............................................................................................36
2-4-2. Complex [(HMHAOD)(Fe(NO)2)3] (1) 的合成.......................................38
2-4-3. Complex [(HMHAOD)(Fe(NO)2)2] [BF4]2 (2) 的合成........................... 39
2-5. 高壓實驗……………………………………………………………………..39
2-6. 電化學方法 …………………………………………………………………..41
2-7 氣相層析儀 (GC) 之氣體檢量線………………………………………...... 41
第三章 結果與討論...........................................44
3-1. Complex [(HMHAOD)(Fe(NO)2)3] (1) 之結構與性質……………………...44
3-2. Complex [(HMHAOD)(Fe(NO)2)3] (1) 對小分子氣體的反應性……….......46
3-2-1. Complex 1 對O2(g) 的反應……………………………………………..46
3-2-2. Complex 1 對CO2(g) 的反應…………………………………………...47
3-2-3. Complex 1 對CO(g) 的反應…………………………………………….49
3-2-4. Complex 1 對 H2(g) 的反應……………………………………………50
3-3. [(HMHAOD)(Fe(NO)2)3] (1) 與CO2(g) 和各種不同還原劑之反應………..52
3-3-1. Complex 1與CO2(g) 和 Na(s) 的反應.....................................................52
3-3-2. Complex 1與CO2(g) 和 Zn(s) 的反應.....................................................53
3-3-3. Complex 1與CO2(g) 和 Al(s) 的反應.....................................................53
3-3-4. Complex 1與CO2(g) 和 K(s) 的反應......................................................54
3-3-5. Complex 1與CO2(g) 和 H2(g) 的反應…………………………………. 54
3-3-6. 還原劑與CO2(g) 反應之實驗…………………………………………. 54
3-4. [(HMHAOD)(Fe(NO)2)3] (1) 與CO2(g) 和Zn 在HMHAOD下之反應…. 55
3-5. [(HMHAOD)(Fe(NO)2)3] (1) 與還原劑在高壓CO2(g) 下之反應…………. 58
3-5-1. Complex 1與Zn(s) 和高壓CO2(g) 的反應..............................................58
3-5-2. Complex 1與高壓CO2(g)、H2(g) 的反應.................................................59
3-6. [(HMHAOD)(Fe(NO)2)3] (1) 與CO2(g) 的反應機構探討…………………. 60
3-7. [(HMHAOD)(Fe(NO)2)2] [BF4]2 (2) 之結構與性質.......................................62
3-8. [(HMHAOD)(Fe(NO)2)2] [BF4]2 (2) 於OER的研究.....................................65
3-9. [(HMHAOD)(Fe(NO)2)2] [BF4]2 (2) 進行OER的反應機構探討.................77
第四章 結論...................................................79
References......................................................81

1. Furchgott, R.F.; Zawadzki, J.V. Nature 1980, 288, 373.
2. (a) Ignarro, L. J.; Adams, J. B.; Horwitz, P. M.; Wood, K. S. J. Bioinorg. Chem. 1986, 261, 4997. (b) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Proc. Natl. Acad. Sci. 1987, 84, 9265.
3. (a) Stamler, J. S. Cell 1994, 78, 931. (b) Stamler J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898. (c) Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, Y. Biochem. Pharmacol. 2002, 63, 485. (d) Lee, J.; Chen, L; West, A. H.; Richter-Addo, G. B. Chem. Rev. 2002, 102, 1019. (e) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091
4. Koshland, D. E. Science 1992, 258, 1861.
5. Gary, L. M.; Donald, A. T.: Prentice Hall International, Inc. Inorganic Chemistry 2nd , 44.
6. Enemark, J. H.; Feltham, T. D. Coord. Chem. Rev. 1974, 13, 339.
7. (a) Lundberg, J. O.; Weitzberg, E.; Gladwin, M. T. Nat. Rev. 2008, 7, 156. (b) Lundberg, J. O.; Weitzberg, E.; Cole, J. A.; Benjamin, N. Nat. Rev. 2004, 2, 593.
8. Marletta, M. A. Cell 1994, 78, 927.
9. (a) Davis, K. L.; Martin, E.; Turko, I. V.; Murad, F. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 203. (b) Posen, G. M.; Tsai, P.; Pou, S. Chem. Rev. 2002, 102, 1191. (c) Voet, D.;Voet, J. G. Biochemistry 3rd 2004, 671. (d) Moncada, S.; Palmer, R. M. J.; Higgs, E. A. Pharmacol. Rev. 1991, 43, 109. (e) Henry, Y.; Durcrocq, C.; Drapier, J.-C.; Servent, D.; pellat, C.; Guissani, A. Eur. Biophys. J. 1991, 20, 1.
10. (a) Pryor, W. A.; Lightsey, J. W. Science 1981, 214, 435. (b) Beckman, J. S.; Beckamn, T. W.; Chen, J.; Marshall, P. A.; Freeman, B. A. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1620.
11. (a) Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155. (b) Ueno, T.; Susuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63, 485. (c) Frederik., A. C.; Wiegant, I. Y.; Malyshev, I. Y.; Kleschyov, A. L.; van Faassen, E.; Vanin, A. F. FEBS Lett. 1999, 455, 179. (d) McCleverty, J. A. Chem. Rev. 2004, 104, 403. (e) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935.
12. (a) Kharitonov, V. G.; Sundquist, A. R.; Sharma, V. S. J. Biol. Chem. 1995, 270, 2815. (b) Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1996, 118, 3419.
13. (a) Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Mülsch, A. J. Biol. Chem. 1995, 270, 29244. (b) Brosworth, C. A.; Toledo, J.C., Jr.; Zmijewski, J. W.; Li, Q.; Lancaster, J. R., Jr. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 4671.
14. (a) Calzolai, L.;Zhou, Z. H.; Adams, M. W. W.; La Mar G. N. J. Am. Chem. Soc. 1996, 118, 2513. (b) Kennedy, M. C.; Antholine, W. E.; Beinert, H. J. Biol. Chem. 1997, 727, 20340. (c) Meyer, J. Arch. Biochem. Biophys. 1981, 210, 246. (d) Welter, R.; Yu, L.; Yu, C. A. Arch. Biochem. Biophys. 1996, 331, 9. (e) Rogers, P. A.; Eide, L.; Klungland, A.; Ding, H. DNA Repair 2003, 2, 809. (f) Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699. (g) Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5146. (h) Yang, W.; Rogers, P. A.; Ding, H. J. Biol. Chem. 2002, 277, 12868. (i) Bouton, C.; Chauveau, M. J.; Lazereg, S.; Drapier, J. C. J. Biol. Chem. 2002, 277, 31220.
15. (a) Vanin, A. F.; Stukan, R. A.; Manukhina, E. B. Biochim. Biophys. Acta 1996, 1295, 5. (b) Severina, I. S.; Bussygina, O. G.; Pyatakova, N. V.; Malenkova, I. V.; Vanin, A. F. Nitric Oxide 2003, 8, 155.
16. (a) Malyshev, I. Y.; Manukhina, E. B.; Mikoyan, V. D.; Kubrina, L. N.; Vanin, A. F. FEBS Lett. 1995, 370, 159. (b) Kleschyov, I. Y.; Malugin, A. V.; Golubeva, L. Y.; Zenina, T. A.; Manukhina, E. B.; Mikoyan, V. D.; Vanin, A. F. FEBS Lett. 1996, 391, 21.
17. Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, S. R. Proc. Natl. Acad. Sci. U.S.A 2006, 103, 7670
18. McDonald, C. C.; Phillips, W. D.; Mower, H. F. J. Am. Chem. Soc. 1965, 87, 3319.
19. Cesareo, E.; Parker, L. J.; Pedersen, J. Z.; Nuccetelli, M.; Mazzetti, A. P.; Pastore, A.; Federici, G.; Caccuri, A. M.; Ricci, G.; Adams, J. J.; Parker, M. W.; Bello, M. L. J. Biol. Chem. 2005, 280, 42172.
20. Gwost, D.; Caulton, K. D. Inorg. Chem. 1973, 12, 2095.
21. (a) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627. (b) Strasdeit, H.; Krebs, B.; Henkel, G. Z. Naturforsch. 1986, 41b, 1357. (c) Bryar, T. R.; Eaton, D. R. Can. J. Chem. 1992, 70, 1917. (d) Osterloh, F.; Saak, W.; Haase, D.; Pohl, S. Chem. Commun. 1997, 979. (e) Liaw, W.-F.; Chiang, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lai, C.-H. Inorg. Chem. 2000, 39, 480. (f) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473. (g) Chiang, C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867. (h) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159. (i) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872. (j) Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799. (k) Tsai, M.-L.; Hsieh, C.-H.; Liaw, W.-F. Inorg. Chem. 2007, 46, 5110. (l) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2008, 47, 2196.
22. Gwost, D.; Caulton, K. D. Inorg. Chem. 1973, 12, 2095.
23. Wang, X.; Sundberg, E. B.; Li, L.; Kantardjieff, K. A.; Herron, S. R.; Lim, M.; Ford, P. C. Chem. Commum. 2005, 477.
24. (a) Albano, V. G.; Areneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413. (b) Chau, C.-N.; Wojcicki, A.; Calligaris, M.; Nardin, G. Inorg. Chim. Acta. 1990, 168, 105. (c) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 168, 105. (d) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041.
25. Tsai, F.-T.; Kuo T.-S.; Liaw, W.-F. J. Am. Chem. Soc. 2009, 131, 3426.
26. Tsou, C.-C.; Chiu, W.-C.; Ke, C.-H.; Tsai, J.-C.; Wang, Y.-M.; Chiang, M.-S.; Liaw, W.-F. J. Am. Chem. Soc. 2014, 136, 9424.
27. (a) Russin, J. Ann. Chim. Phys. 1858, 52, 285. (b) Lu, T.-T.; Huang, H.-W.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9027.
28. Lin, Z.-S.; Lo, F.-C.; Li, C.-H.; Chen, C.-H.; Huang, W.-N.; Hsu, I.-J.; Lee, J.-F.; Horng, J.-C.; Liaw, W.-F. Inorg. Chem. 2011, 50, 10417.
29. Luthi D. et al., Nature, 2008, 453, 379.
30. (a) Appel, A. M.;Bercaw, J. E. et al. Chem. Rev. 2013, 113, 6621. (b) Qiao, J.;Liu, Y.;Hong, F.;Zhang, J. Chem. Soc. Rev. 2014, 43, 631.
31. (a) Jesse D. Froehlich;Clifford P. Kubiak J. Am. Chem. Soc. 2015, 137, 3565. (b) Peng Kang;Zuofeng Chen;Animesh Nayak;Sheng Zhanga;Thomas J. Meyer Energy Environ. Sci., 2014, 7, 4007.
32. (a) Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. (b) John L. DiMeglio;Joel Rosenthal J. Am. Chem. Soc. 2013, 135, 8798. (c) Kedzierzawski, P.; Augustynski, J. J. Electrochem. Soc. 1994, 141, 58.
33. W. C. Chueh;C. Falter;M. Abbott;D. Scipio;P. Furler;S. M. Haile;A. Steinfeld. Science 2010, 330, 1797.
34. (a) J. M. Lehn;R. Ziessel Proc. Natl. Acad. Sci. U.S.A., 1982, 79, 701. (b) J. Chauvin;F. Lafolet;S. Chardon-Noblat;A. Deronzier;M. Jakonen;M. Haukka Chem. Eur. J. 2011, 17, 4313. (c) Z.-Y. Bian;S.-M. Chi;L. Li;W. Fu Dalton Trans. 2010, 39, 7884.
35. Azwana R. Sadique;William W. Brennessel;Patrick L. Holland Inorg. Chem. 2008, 47, 784.
36. C. Kleeberg;M. S. Cheung, et al. J. Am. Chem. Soc. 2011, 133, 19060.
37. D. S. Laitar;P. Muller;J. P. Sadighi J. Am. Chem. Soc. 2005, 127, 17196.
38. L. Gu;Y. Zhang J. Am. Chem. Soc. 2010, 132, 914.
39. R. Dobrovetsky;D. W. Stephan Angew. Chem. Int. Ed. 2013, 52, 2516.
40. C. Lescot;D. U. Nielsen, et al. J. Am. Chem. Soc. 2014, 136, 6142.
41. (a) Capon, J.-F.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J. Coord. Chem. Rev. 2009, 253, 1476. (b) Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Angew. Chem. Int. Ed. 2011, 50, 7238. (c) DuBois, D. L.; Bullock, R. M. Eur. J. Inorg. Chem. 2011, 1017.
42. Matthew W. Kanan ; Daniel G. Nocera, Science, 2008 321,1072.
43. Dennis L. Ashford ; Alexander M. Lapides ; Aaron K. Vannucci ; Kenneth Hanson ; Daniel A. Torelli ; Daniel P. Harrison ; Joseph L. Templeton ; Thomas J. Meyer, J. Am. Chem. Soc. 2014, 136, 6578.
44. Michael, K. Coggins ; Zhang, M.-T. ; Aaron K. Vannucci ; Dares, C. J. ; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 5531.
45. Xiao-Jun Su ; Meng Gao ; Lei Jiao ; Rong-Zhen Liao ; Per E. M. Siegbahn ; Jin-Pei Cheng ; Ming-Tian Zhang, Angew. Chem. Int. Ed. 2015, 54, 4909.
46. Roland N. Icke ; Burnett B. Wisegarver ; Gordan A. Alles, Org. Synth. 1945, 25, 89.
47. T. M. McDonald et al., Nature. 2015, 519, 303.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *