|
1. Toma, K.; Vala, M.; Adam, P.; Homola, J.; Knoll, W.; Dostalek, J., Compact surface plasmon-enhanced fluorescence biochip. Opt. Express 2013, 21, 10121-32. 2. Dai, Z.; Zhang, J.; Dong, Q.; Guo, N.; Xu, S.; Sun, B.; Bu, Y., Adaption of Au Nanoparticles and CdTe Quantum Dots in DNA Detection. Chin. J. Chem. Eng. 2007, 15, 791-794. 3. Geddes, C. D.; Lakowicz, J. R., Editorial: Metal-Enhanced Fluorescence. J. Fluoresc. 2002, 12, 121-129. 4. Colas des Francs, G.; Bouhelier, A.; Finot, E.; Weeber, J. C.; Dereux, A.; Girard, C.; Dujardin, E., Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes. Opt. Express 2008, 16, 17654-17666. 5. Lakowicz, J. R., Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 2001, 298, 1-24. 6. Ray, K.; Badugu, R.; Lakowicz, J. R., Polyelectrolyte Layer-by-Layer Assembly To Control the Distance between Fluorophores and Plasmonic Nanostructures. Chem. Mater. 2007, 19, 5902-5909. 7. Liu, S.-Y.; Huang, L.; Li, J.-F.; Wang, C.; Li, Q.; Xu, H.-X.; Guo, H.-L.; Meng, Z.-M.; Shi, Z.; Li, Z.-Y., Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods. J. Phys. Chem. C 2013, 117, 10636-10642. 8. 林幸慧, 105學年國立清華大學博士論文 9. Lin, H.-H.; Chen, I.-C., Study of the Interaction between Gold Nanoparticles and Rose Bengal Fluorophores with Silica Spacers by Time-Resolved Fluorescence Spectroscopy. J. Phys. Chem. C 2015, 119, 26663-26671. 10. Majumder, S.; Jana, S. K.; Bagani, K.; Satpati, B.; Kumar, S.; Banerjee, S., Fluorescence resonance energy transfer and surface Plasmon resonance induced enhanced photoluminescence and photoconductivity property of Au–TiO2 metal–semiconductor nanocomposite. Opt. Mater. 2015, 40, 97-101. 11. Meyer, S. A.; Le Ru, E. C.; Etchegoin, P. G., Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal. Chem. 2011, 83, 2337-44. 12. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424, 824-830. 13. Barnes, W. L., Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 1998, 45, 661-699. 14. Metiu, H., Surface enhanced spectroscopy. PrSS 1984, 17, 153-320. 15. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, 1988; Vol. 111. 16. Wolf, M. B. E., Principles of Optics. J. Fluoresc. 1999. 17. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-97. 18. Fort, E.; Grésillon, S., Surface enhanced fluorescence. J. Phys. D: Appl. Phys. 2008, 41, 013001. 19. Brown, R. G. W., Absorption and Scattering of Light by Small Particles. Opt. Acta: Int. J. Opt. 1984, 31, 3-3. 20. Carminati, R.; Greffet, J. J.; Henkel, C.; Vigoureux, J. M., Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. Opt. Commun. 2006, 261, 368-375. 21. Novotny, L.; Hecht, B., Principles of Nano-Optics. Cambridge University Press: Cambridge, 2006. 22. S¨onnichsen, C. Plasmons in metal nanostructures. Ludwig-Maximilians-University, M¨unchen, 2001. 23. Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K., Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst., 2008, 133, 1308-46. 24. Bigot, J. Y.; Halté, V.; Merle, J. C.; Daunois, A., Electron dynamics in metallic nanoparticles. ChPh 2000, 251, 181-203. 25. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. Springer US: 2006. 26. Lavrentovich, O. D., Confocal Fluorescence Microscopy. In Characterization of Materials, John Wiley & Sons, Inc.: 2002. 27. Bastus, N. G.; Comenge, J.; Puntes, V., Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 2011, 27, 11098-105. 28. Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzan, L. M.; Perez-Juste, J.; Pastoriza-Santos, I., Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir 2013, 29 , 15076-82. 29. Kreibig, U., Vollmer, M. , Optical Properties of Metal Clusters. Springer-Verlag: New York,, 1995. 30. Jennings, T. L.; Singh, M. P.; Strouse, G. F., Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity. J. Am. Chem. Soc. 2006, 128, 5462-5467. 31. Bhowmick, S.; Saini, S.; Shenoy, V. B.; Bagchi, B., Resonance energy transfer from a fluorescent dye to a metal nanoparticle. J. Chem. Phys. 2006, 125, 181102. 32. Lai, Y.-C.; Lin, C.-Y.; Chung, M.-R.; Hung, P.-Y.; Horng, J.-C.; Chen, I. C.; Chu, L.-K., Distance-Dependent Excited-State Electron Transfer from Tryptophan to Gold Nanoparticles through Polyproline Helices. J. Phys. Chem. C 2017, 121, 4882-4890. 33. Sarkar, P. K.; Polley, N.; Chakrabarti, S.; Lemmens, P.; Pal, S. K., Nanosurface Energy Transfer Based Highly Selective and Ultrasensitive “Turn on” Fluorescence Mercury Sensor. ACS Sensors 2016, 1, 789-797. 34. Guzatov, D. V.; Vaschenko, S. V.; Stankevich, V. V.; Lunevich, A. Y.; Glukhov, Y. F.; Gaponenko, S. V., Plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory, Modeling, and Experiment. J. Phys. Chem. C 2012, 116, 10723-10733.
|