帳號:guest(18.218.87.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃楷升
作者(外文):Huang, Kai-Sheng
論文名稱(中文):利用時間解析螢光光譜技術研究銀包金核殼奈米粒子與螢光分子其螢光增強效應之動力學
論文名稱(外文):Study on the Interaction between Gold-Silver Core-Shell Nanoparticle and Fluorophore by Using Time-Resolved Fluorescence Spectroscopy
指導教授(中文):陳益佳
指導教授(外文):Chen, I-Chia
口試委員(中文):朱立岡
陳貴通
口試委員(外文):Chu, Li-Kang
Tan, Kui-Thong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023553
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:95
中文關鍵詞:金屬螢光銀包金奈米粒子
外文關鍵詞:metalfluorescenceAu@Agnanoparticle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:231
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
本研究探討含羅丹明發色團之染料分子YP39,在不同距離下與銀包金核殼金屬奈米粒子之間的交互作用以及其螢光增強效應。本實驗使用螢光生命期影像顯微術,可以準確的測量單顆銀包金奈米粒子表面鍵結的染料分子的螢光生命期。而對於染料分子與金奈米粒子間的介質,我們利用導體的銀殼層當作間隙物,以晶種成長法的方法包覆直徑40 nm的金奈米粒子,控制不同的合成循環次數,分別合成出4 nm、6 nm、7.5 nm、13 nm及16 nm五種厚度不同的銀殼層。隨著銀殼層厚度的增加,從靜態螢光光譜得到校正後的螢光強度和未接上銀包金奈米粒子之YP39比例分別為0.06、0.05、0.26、1.25及0.46,且隨著距離有先增後減的現象除了在厚度13 nm的樣品其倍率大於1外,其他厚度下因被銀殼層嚴重淬息的影響,螢光增強倍率均小於1。我們以所得到的兩個生命期推導出染料分子與銀包金奈米粒子交互作用之動力學模型,實驗測得短的及長的生命期分別為15、23、26、21、25 ps及210、240、251、246、255 ps。我們推導出一簡易的動力學模型,並計算出各能量轉移間的速率。我們認為當染料被激發時,激發態的染料可以放光的方式回至基態,或者染料也可能會將能量傳給金奈米粒子的明亮模式,而獲得能量的金奈米粒子可能會將能量回傳給染料,或是以光子的方式將光放至遠場,另外,激發態染料也可能透過奈米表面能量轉移(nanosurface energy transfer, NSET)的方式將能量傳至銀殼層,此能量轉移會使染料的螢光被嚴重的淬息。
In this work, we studied the metal enhanced-fluorescence of rhodamine B dye by Au@Ag core-shell nanoparticle. We measured emission of the dye molecule bonded on the Au@Ag nanoparticle using fluorescence lifetime imaging microscopy (FLIM). We used seed-growth method to synthesized different Ag shell thicknesses of 40 nm gold nanoparticles, and controlled different cycles of seed growth to obtain five shell thickness as spacer: 4 nm, 6 nm, 7.5nm, 13 nm, and 16 nm. The enhancement factors for fluorescence are 0.06, 0.05, 0.26, 1.25 and 0.46 for Ag shell thickness 4 nm to 16 nm respectively, which display a maximum at spacer separation 13 nm. Due to the fluorescence quenching by Ag shell, the enhancement factor of all the samples are smaller than 1, except 13 nm nanoparticles. We used the first and the second lifetime to derive the kinetic model of the interaction between dye molecule and Au@Ag nanoparticle. The first time constant τ1 and second time constant τ2 for Ag shell thickness from 4 nm to 16 nm are 15, 23, 26, 21, 25 ps and 210, 240, 251, 246, 255 ps, respectively. We derived a simple kinetic model, and calculated all rates of energy transfer between dye molecules and Au@Ag nanoparticle. As the dye molecule is excited, it can relax to ground state. The excited dye molecule either can transfer energy to bright mode of Au nanoparticle. The Au nanoparticle can transfer energy back to the dye molecule, or it can also dissipate energy radiatively. In addition, the excited dye molecule can transfer energy to Ag shell via nanosurface energy transfer (NSET), leading to dramatic fluorescence quenching.
第一章 序論 1
1.1 金屬奈米粒子的螢光增強效應 1
1.2 研究動機 2
1.3 研究方法 2
第二章 基本原理 4
2.1 表面電漿子 4
2.1.1 金屬平面上的電漿子現象 4
2.1.2 激發態分子在金屬表面上的螢光緩解過程 6
2.1.3 SPP模式的動量匹配 9
2.1.4 金屬奈米粒子的表面電漿子模式 11
2.2 金屬奈米粒子的電場增強效應 12
2.2.1 單一金屬奈米粒子 14
2.2.2 金屬奈米粒子的局部電場 14
2.2.3 格林函數 (Green function) 15
2.2.4 表面電漿共振衰解機制 18
2.2.5 當染料與金屬奈米粒子共存時的局部電場增強效應 20
2.3 其他文獻回顧 21
第三章 實驗儀器 23
3.1 時間相關單一光子計數系統 23
3.1.1 原理 23
3.1.2 電子元件 27
3.2 液態樣品的時間解析螢光光譜系統 30
3.2.1 系統架設 30
3.2.2 時間相關單光子計數擷取卡 31
3.3 共軛聚焦螢光生命期影像顯微術 32
3.3.1 原理 32
3.3.2 系統架設 33
3.3.3 雷射系統 35
3.3.4 壓電平移平台 35
3.3.5 單光子雪崩二極體 35
3.4 樣品的檢測系統 36
3.4.1 紫外-可見光吸收光譜儀 ( HITACHI U-3900H ) 36
3.4.2 靜態螢光光譜儀 (HITACHI F-7000) 36
3.4.3 自架式靜態螢光光譜儀 37
3.4.4 掃描式電子顯微鏡 (SEM) 37
3.4.5 穿透式電子顯微鏡 (TEM) 38
第四章 樣品製備 39
4.1 合成金奈米粒子 39
4.2 合成銀包金奈米粒子 40
4.3 修飾染料於銀包金奈米粒子並製備液體樣品 42
4.4 修飾染料於銀包金奈米粒子並製備FLIM樣品 43
第五章 實驗結果與討論 44
5.1 樣品之SEM與TEM影像圖 44
5.2 靜態吸收光譜 51
5.2.1 染料的靜態吸收光譜 52
5.2.2 銀包金奈米粒子的靜態吸收光譜 53
5.3 靜態螢光光譜 54
5.3.1 染料的靜態螢光光譜 55
5.3.2 染料接於銀包金奈米粒子的靜態螢光光譜 57
5.4 螢光生命期的量測 59
5.4.1 染料接於銀包金核殼奈米粒子之螢光生命期 66
5.5 動力學模型 80
第六章 結論 92
參考文獻 93
1. Toma, K.; Vala, M.; Adam, P.; Homola, J.; Knoll, W.; Dostalek, J., Compact surface plasmon-enhanced fluorescence biochip. Opt. Express 2013, 21, 10121-32.
2. Dai, Z.; Zhang, J.; Dong, Q.; Guo, N.; Xu, S.; Sun, B.; Bu, Y., Adaption of Au Nanoparticles and CdTe Quantum Dots in DNA Detection. Chin. J. Chem. Eng. 2007, 15, 791-794.
3. Geddes, C. D.; Lakowicz, J. R., Editorial: Metal-Enhanced Fluorescence. J. Fluoresc. 2002, 12, 121-129.
4. Colas des Francs, G.; Bouhelier, A.; Finot, E.; Weeber, J. C.; Dereux, A.; Girard, C.; Dujardin, E., Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes. Opt. Express 2008, 16, 17654-17666.
5. Lakowicz, J. R., Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 2001, 298, 1-24.
6. Ray, K.; Badugu, R.; Lakowicz, J. R., Polyelectrolyte Layer-by-Layer Assembly To Control the Distance between Fluorophores and Plasmonic Nanostructures. Chem. Mater. 2007, 19, 5902-5909.
7. Liu, S.-Y.; Huang, L.; Li, J.-F.; Wang, C.; Li, Q.; Xu, H.-X.; Guo, H.-L.; Meng, Z.-M.; Shi, Z.; Li, Z.-Y., Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods. J. Phys. Chem. C 2013, 117, 10636-10642.
8. 林幸慧, 105學年國立清華大學博士論文
9. Lin, H.-H.; Chen, I.-C., Study of the Interaction between Gold Nanoparticles and Rose Bengal Fluorophores with Silica Spacers by Time-Resolved Fluorescence Spectroscopy. J. Phys. Chem. C 2015, 119, 26663-26671.
10. Majumder, S.; Jana, S. K.; Bagani, K.; Satpati, B.; Kumar, S.; Banerjee, S., Fluorescence resonance energy transfer and surface Plasmon resonance induced enhanced photoluminescence and photoconductivity property of Au–TiO2 metal–semiconductor nanocomposite. Opt. Mater. 2015, 40, 97-101.
11. Meyer, S. A.; Le Ru, E. C.; Etchegoin, P. G., Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal. Chem. 2011, 83, 2337-44.
12. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424, 824-830.
13. Barnes, W. L., Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 1998, 45, 661-699.
14. Metiu, H., Surface enhanced spectroscopy. PrSS 1984, 17, 153-320.
15. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, 1988; Vol. 111.
16. Wolf, M. B. E., Principles of Optics. J. Fluoresc. 1999.
17. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-97.
18. Fort, E.; Grésillon, S., Surface enhanced fluorescence. J. Phys. D: Appl. Phys. 2008, 41, 013001.
19. Brown, R. G. W., Absorption and Scattering of Light by Small Particles. Opt. Acta: Int. J. Opt. 1984, 31, 3-3.
20. Carminati, R.; Greffet, J. J.; Henkel, C.; Vigoureux, J. M., Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. Opt. Commun. 2006, 261, 368-375.
21. Novotny, L.; Hecht, B., Principles of Nano-Optics. Cambridge University Press: Cambridge, 2006.
22. S¨onnichsen, C. Plasmons in metal nanostructures. Ludwig-Maximilians-University, M¨unchen, 2001.
23. Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K., Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst., 2008, 133, 1308-46.
24. Bigot, J. Y.; Halté, V.; Merle, J. C.; Daunois, A., Electron dynamics in metallic nanoparticles. ChPh 2000, 251, 181-203.
25. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. Springer US: 2006.
26. Lavrentovich, O. D., Confocal Fluorescence Microscopy. In Characterization of Materials, John Wiley & Sons, Inc.: 2002.
27. Bastus, N. G.; Comenge, J.; Puntes, V., Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 2011, 27, 11098-105.
28. Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzan, L. M.; Perez-Juste, J.; Pastoriza-Santos, I., Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir 2013, 29 , 15076-82.
29. Kreibig, U., Vollmer, M. , Optical Properties of Metal Clusters. Springer-Verlag: New York,, 1995.
30. Jennings, T. L.; Singh, M. P.; Strouse, G. F., Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles:  Probing NSET Validity. J. Am. Chem. Soc. 2006, 128, 5462-5467.
31. Bhowmick, S.; Saini, S.; Shenoy, V. B.; Bagchi, B., Resonance energy transfer from a fluorescent dye to a metal nanoparticle. J. Chem. Phys. 2006, 125, 181102.
32. Lai, Y.-C.; Lin, C.-Y.; Chung, M.-R.; Hung, P.-Y.; Horng, J.-C.; Chen, I. C.; Chu, L.-K., Distance-Dependent Excited-State Electron Transfer from Tryptophan to Gold Nanoparticles through Polyproline Helices. J. Phys. Chem. C 2017, 121, 4882-4890.
33. Sarkar, P. K.; Polley, N.; Chakrabarti, S.; Lemmens, P.; Pal, S. K., Nanosurface Energy Transfer Based Highly Selective and Ultrasensitive “Turn on” Fluorescence Mercury Sensor. ACS Sensors 2016, 1, 789-797.
34. Guzatov, D. V.; Vaschenko, S. V.; Stankevich, V. V.; Lunevich, A. Y.; Glukhov, Y. F.; Gaponenko, S. V., Plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory, Modeling, and Experiment. J. Phys. Chem. C 2012, 116, 10723-10733.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *