帳號:guest(3.145.161.235)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏力宇
作者(外文):Wei, Li-Yu.
論文名稱(中文):以螢光生命期影像顯微技術研究不同奈米結構 對於金屬螢光增強效應的影響
論文名稱(外文):Investigating the metal enhanced fluorescence by various nanostructures of gold particles using fluorescence lifetime image microscope
指導教授(中文):陳益佳
指導教授(外文):Chen, I-Chia
口試委員(中文):朱立岡
陳貴通
口試委員(外文):Chu, Li-Kang
Tan, Kui-Thong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023550
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:螢光金奈米粒子結構動力學模型
外文關鍵詞:nanoparticlesfluorescencestructure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:36
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
本篇研究探討了不同結構對於金屬增強螢光效應之影響。為了要能穩定控制
螢光染料分子與金奈米粒子的間距,我們以抗生物素蛋白(Avidin)作為間隙物,
並在染料分子與金奈米粒子表面上修飾生物素(biotin),使抗生物素蛋白能鍵結於
金奈米粒子表面與染料分子,達成控制間距離的目的。再利用螢光生命期影像顯
微技術分析單顆奈米粒子對於螢光染料生命期與螢光放光強度的影響及建立合
理之分子動力學模型。所使用的金奈米粒子為60 nm 球形、170 nm 具有四偶極
矩共振吸收峰的球形、具有避雷針電場集中效應之70 nm 立方形與63 nm 菱形
十二面體形,其收取到之螢光生命期均呈現三自然指數衰竭,在不同結構中第一
部分生命其均呈現低於時間解析30 ps 之螢光生命期,第二部分生命期中170 nm
球形約為0.2 ns、70 nm 方形為0.25 ns、63 nm 菱形十二面體為0.28 ns 與60 nm球形金奈米粒子為0.33 ns,在第三部分生命期中170 nm 與60 nm 球形奈米粒子呈現1.8 ns,63 nm 菱形十二面體與70 nm 方形金奈米粒子呈現1.2 ns。將第一部分指認為染料分子受到金奈米粒子局部電場影響下的放光生命期,第二個部分
螢光生命期為200-350 ps 並將其指認為激發態染料分子將能量傳遞給金奈米粒
子明亮模式後,再回傳給染料分子放光之螢光生命期,第三部分螢光生命期為在
金奈米粒子電場影響下背景螢光生命期。最後,以實驗測得之結果及參考先前研
究之文獻,我們推出簡易的動力學模型並釋解出動力學模型中的各個速率常數與
螢光放光增益效率。由螢光放光增益效率的計算發現增益強度依序為70 nm 方形
奈米粒子、63 nm 菱形十二面體金奈米粒子、170 nm 球形金奈米粒子與60 nm 球
形金奈米粒子,因此螢光增強與結構尖端強度相關。
We study the effects of metal-enhanced fluorescence on Rhodamine B dye
molecule by nanoparticles with varied structures. Avidin was used as a spacer to
connect Rhodamine B and the surface of nanoparticles. Fluorescence lifetime image
microscopy (FLIM) combined with time correlated single photon counting (TCSPC)
was used to detect the emission image and lifetime of dye on single nanoparticle.
Spherical gold particles dia. 60 nm and 170 nm, gold cube length 70 nm and 63 nm
rhombi dodecahedral (RB) were synthesized and used in this study. For all emission
curves we observe triexponential decay with the first lifetime less than 30 ps limited by
our instrument. The second lifetime is 0.2, 0.25, 0.28 and 0.33 ns for 170 nm sphere,
70 nm cube, 63 nm RB, and 60 nm sphere, respectively. The third lifetime (amplitude
2%) for spheres ∼1.8 ns is similar to that of free Rhodamine B but for RB and cube is
shortened to 1.2 ns. We assign the first temporal component to the decay of dye under influence of the local electric field of gold nanoparticle. The second temporal component is referred to the excited dye molecule transferring energy to the bright mode of nanoparticle then transferring back to the dye molecule. The long component can be due to dye attaching on varied gold surface resulting some trace emission signal.Based on the data and previous work we derive a kinetic model to explain our observation. Our data reveal that the 70 nm cube has the best enhancement influorescence, followed by 63 nm RB. This is because of the greatest electric field produced in the corners of nanostructures during photoexcitation.
圖目錄 ........................................................................................................................................... X
表目錄 ........................................................................................................................................... X
第一章 序論 ................................................................................................................................... 1
1.1 螢光增強效益簡介 ........................................................................................ 1
1.2 研究動機 ........................................................................................................ 2
1.3 研究方法 ........................................................................................................ 2
第二章 基本原理 ........................................................................................................................... 4
2.1 金屬表面電漿子現象 .................................................................................... 4
2.2 表面電漿共振衰減機制 ................................................................................ 8
2.3 當染料與金屬奈米粒子共存時的局部電場增強效應 .............................. 10
第三章 文獻回顧 ......................................................................................................................... 11
3.1 金屬奈米粒子增強螢光效應 ...................................................................... 11
3.1.1 影響因素............................................................................................ 11
3.1.1.1 距離因素 ................................................................................ 11
3.1.1.2 染料吸收及放光峰同時與表面電漿共振吸收峰重疊 ........ 15
.............................................................................................................. 15
3.1.1.3 金屬粒徑 ................................................................................ 18
3.1.2 理論模型............................................................................................ 19
3.2 金屬奈米粒子淬息螢光效應 ...................................................................... 27
第四章 樣品製備 ......................................................................................................................... 31
4.1 合成球形金奈米粒子 .................................................................................. 31
4.2 方形金奈米粒子 .......................................................................................... 31
4.3 菱形十二面體金奈米粒子 .......................................................................... 32
4.4 金板粒 .......................................................................................................... 33
4.5 製備FLIM 樣品 .......................................................................................... 33
第五章 儀器架設 ......................................................................................................................... 36
5.1 時間相關單一光子計數系統(Time-correlated single photon counting
system, TCSPC) .................................................................................................. 36
5.1.1 原理.................................................................................................... 36
IX
5.1.2 電子元件............................................................................................ 39
5.1.2.1 分數式鑑別器 ........................................................................ 39
5.1.2.2 時間-振幅轉換器 ................................................................... 41
5.2 共軛焦螢光生命期影像顯微鏡 .................................................................. 42
5.2.1 原理.................................................................................................... 42
5.2.2 儀器架設............................................................................................ 43
5.2.2.1 雷射系統 ................................................................................ 44
5.2.2.2 壓電平移平台 ........................................................................ 45
5.2.2.3 單光子雪崩二極體(single-photon avalanche diode, SPAD)
.............................................................................................................. 45
5.3 液態樣品時間解析螢光光譜系統 .............................................................. 45
5.4 自架式靜態螢光光譜 .................................................................................. 46
5.5 時間有限差方法(Finite-Difference Time-Domain, FDTD) ..................... 47
第六章 實驗結果與討論 .............................................................................................................. 50
6.1 YP-37 染料分子螢光研究 ............................................................................ 50
6.1.1 實驗結果............................................................................................ 50
6.1.1.1 YP-37 與抗生物素蛋白的結合特性 ...................................... 50
6.1.1.2 YP-37 結合於抗生物素蛋白之結構放光特性 ...................... 51
6.2 金奈米粒子大小與結構 .............................................................................. 54
6.2.1 實驗結果............................................................................................ 54
6.2.1.1 SEM 影像圖 ............................................................................ 54
6.2.1.2 金奈米粒子靜態吸收光譜與時間有限差法模擬 ................ 56
6.3 FILM 樣品之靜態螢光光譜 ........................................................................ 57
6.4 FILM 樣品之時間解析螢光光譜 ................................................................ 58
6.4.1 實驗結果........................................................ 錯誤! 尚未定義書籤。
6.4.1.1 60 nm 球形金奈米粒子之時間解析螢光光譜生命期影像 .. 60
6.4.1.2 170 nm 球形金奈米粒子之時間解析螢光光譜與生命期影像
.............................................................................................................. 65
6.4.1.3 70 nm 方形金奈米粒子之時間解析螢光光譜生命期影像 .. 72
6.4.1.4 63 nm 菱形十二面體金奈米粒子之時間解析螢光光譜 ...... 77
6.5 分子動力學模型 .......................................................................................... 82
第七章 結論 ................................................................................................................................. 89
參考資料 ...................................................................................................................................... 90
Simultaneous Excitation and Emission Enhancement of Fluorescence
Assisted by Double Plasmon Modes of Gold Nanorods. J. Phys. Chem. C 2013, 117,
10636-10642.
2. Green, N. M., Avidin. 3. The nature of the biotin-binding site. Biochem. J. 1963,
89, 599-609.
3. Ray, K.; Badugu, R.; Lakowicz, J. R., Polyelectrolyte Layer-by-Layer Assembly to
Control the Distance between Fluorophores and Plasmonic Nanostructures. Chem.
Mat. 2007, 19, 5902-5909.
4. Anger, P.; Bharadwaj, P.; Novotny, L., Enhancement and Quenching of Single-
Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002.
5. Zhang, Y.; Dragan, A.; Geddes, C. D., Wavelength Dependence of Metal-Enhanced
Fluorescence. J. Phys. Chem. C 2009, 113, 12095-12100.
6. Xie, F.; Baker, M. S.; Goldys, E. M., Enhanced Fluorescence Detection on
Homogeneous Gold Colloid Self-Assembled Monolayer Substrates. Chem. Mat. 2008,
20 , 1788-1797.
7. Aslan, K.; Malyn, S. N.; Geddes, C. D., Metal-Enhanced Fluorescence from Gold
Surfaces: Angular Dependent Emission. J. Fluoresc. 2007, 17 , 7-13.
8. Geddes, C. D.; Lakowicz, J. R., Metal-Enhanced Fluorescence. J. Fluoresc. 2002, 12 ,
121-129.
9. Chowdhury, M. H.; Aslan, K.; Malyn, S. N.; Lakowicz, J. R.; Geddes, C. D., Metal-
Enhanced Chemiluminescence: Radiating Plasmons Generated from Chemically
Induced Electronic Excited States. Appl. Phys. Lett. 2006, 88.
10. Lin, H.-H.; Chen, I. C., Study of the Interaction between Gold Nanoparticles and
Rose Bengal Fluorophores with Silica Spacers by Time-Resolved Fluorescence
Spectroscopy. J. Phys. Chem. C 2015, 119, 26663-26671.
11. Fu, B.; Flynn, J. D.; Isaacoff, B. P.; Rowland, D. J.; Biteen, J. S., Super-Resolving the
Distance-Dependent Plasmon-Enhanced Fluorescence of Single Dye and Fluorescent
Protein Molecules. J. Phys. Chem. C 2015, 119, 19350-19358.
12. Hu, M.; Hartland, G. V., Heat Dissipation for Au Particles in Aqueous Solution:
Relaxation Time versus Size. J. Phys. Chem. B 2002, 106, 7029-7033.
13. (a) Wang, J. T.; Moore, J.; Laulhe, S.; Nantz, M.; Achilefu, S.; Kang, K. A.,
Fluorophore-Gold Nanoparticle Complex for Sensitive Optical Biosensing and Imaging.
Nanot 2012, 23, 095501; (b) Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C.
J., Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to
Silica-Coated Gold Nanorods. Acs Nano 2014, 8, 8392-8406.
91
14. (a) Bharadwaj, P.; Novotny, L., Spectral Dependence of Single Molecule
Fluorescence Enhancement. Opt. Express 2007, 15 , 14266-14274; (b) Guzatov, D. V.;
Vaschenko, S. V.; Stankevich, V. V.; Lunevich, A. Y.; Glukhov, Y. F.; Gaponenko, S. V.,
Plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory,
Modeling, and Experiment. J. Phys. Chem. C 2012, 116, 10723-10733; (c) Khatua, S.;
Paulo, P. M. R.; Yuan, H.; Gupta, A.; Zijlstra, P.; Orrit, M., Resonant Plasmonic
Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods. ACS Nano
2014, 8, 4440-4449.
15. Bastus, N. G.; Comenge, J.; Puntes, V., Kinetically controlled seeded growth
synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus
Ostwald ripening. Langmuir 2011, 27 , 11098-105.
16. Wu, H. L.; Kuo, C. H.; Huang, M. H., Seed-mediated synthesis of gold nanocrystals
with systematic shape evolution from cubic to trisoctahedral and rhombic
dodecahedral structures. Langmuir 2010, 26, 12307-13.
17. Link, S.; El-Sayed, M. A., Optical properties and ultrafast dynamics of metallic
nanocrystals. Annu Rev Phys Chem 2003, 54, 331-66.
18. Lai, Y.-C.; Lin, C.-Y.; Chung, M.-R.; Hung, P.-Y.; Horng, J.-C.; Chen, I. C.; Chu, L.-K.,
Distance-Dependent Excited-State Electron Transfer from Tryptophan to Gold
Nanoparticles through Polyproline Helices. J. Phys. Chem. C 2017, 121, 4882-4890.
19. 林幸慧博士論文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用色胺酸作為螢光溫度計 定量金奈米粒子之光熱轉換效率
2. 利用步進式時域解析霍氏轉換紅外光譜法研究鹵化物之光分解反應
3. 以交叉分子束方法研究雙重態氮原子及三重態碳原子與矽甲烷之反應動力學
4. 環硫丙烷在波長範圍206-230 nm之雷射誘發螢光光譜及熱解反應
5. 利用飛秒瞬態吸收光譜技術研究鍵結於金奈米粒子表面上的2-苯硫醇基,5-苯基,3-丁基呋喃之光學特性及三核鎳系、鈷系與鉻系金屬串錯合物之電子激發態動態學
6. 巴豆醛分子解離及異構化途徑之理論研究
7. 苯基-異喹啉與苯基-咪唑銥金屬錯合物之光物理性質研究
8. 4-甲基砒碇與苯胺在氬氣間質下之雷射光解光譜
9. 以矽烷基為間隔之芳香基高分子之能量轉移途徑
10. 以同步輻射光源結合雷射技術研究1D能態硫原子的自游離態、光解有機硫化物產物硫原子的分支比以及氙分子的高激發雷德堡能態
11. 利用螢光上轉換光譜技術研究光收成共聚物之能量轉移過程
12. 拉曼光譜系統架設與應用:在三-(2-苯基吡啶)銥金屬錯合物之振動模式研究與直線形三核金屬串錯合物之振動模式研究
13. 異配位甲基萘喹啉-三氟甲基吡啶吡唑與氟取代苯基吡啶-吡啶基三氮二烯五圜金屬銥錯合物之凝態光譜動力學研究
14. 奈米微粒間的靜電斥力對偵測靈敏度之影響:利用十五冠五醚修飾之金奈米微粒偵測水溶液中的鉀離子
15. 含芳香環側鏈取代之聚苯胺共聚合物之螢光與電子傳遞途徑研究
 
* *