|
Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods. J. Phys. Chem. C 2013, 117, 10636-10642. 2. Green, N. M., Avidin. 3. The nature of the biotin-binding site. Biochem. J. 1963, 89, 599-609. 3. Ray, K.; Badugu, R.; Lakowicz, J. R., Polyelectrolyte Layer-by-Layer Assembly to Control the Distance between Fluorophores and Plasmonic Nanostructures. Chem. Mat. 2007, 19, 5902-5909. 4. Anger, P.; Bharadwaj, P.; Novotny, L., Enhancement and Quenching of Single- Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002. 5. Zhang, Y.; Dragan, A.; Geddes, C. D., Wavelength Dependence of Metal-Enhanced Fluorescence. J. Phys. Chem. C 2009, 113, 12095-12100. 6. Xie, F.; Baker, M. S.; Goldys, E. M., Enhanced Fluorescence Detection on Homogeneous Gold Colloid Self-Assembled Monolayer Substrates. Chem. Mat. 2008, 20 , 1788-1797. 7. Aslan, K.; Malyn, S. N.; Geddes, C. D., Metal-Enhanced Fluorescence from Gold Surfaces: Angular Dependent Emission. J. Fluoresc. 2007, 17 , 7-13. 8. Geddes, C. D.; Lakowicz, J. R., Metal-Enhanced Fluorescence. J. Fluoresc. 2002, 12 , 121-129. 9. Chowdhury, M. H.; Aslan, K.; Malyn, S. N.; Lakowicz, J. R.; Geddes, C. D., Metal- Enhanced Chemiluminescence: Radiating Plasmons Generated from Chemically Induced Electronic Excited States. Appl. Phys. Lett. 2006, 88. 10. Lin, H.-H.; Chen, I. C., Study of the Interaction between Gold Nanoparticles and Rose Bengal Fluorophores with Silica Spacers by Time-Resolved Fluorescence Spectroscopy. J. Phys. Chem. C 2015, 119, 26663-26671. 11. Fu, B.; Flynn, J. D.; Isaacoff, B. P.; Rowland, D. J.; Biteen, J. S., Super-Resolving the Distance-Dependent Plasmon-Enhanced Fluorescence of Single Dye and Fluorescent Protein Molecules. J. Phys. Chem. C 2015, 119, 19350-19358. 12. Hu, M.; Hartland, G. V., Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size. J. Phys. Chem. B 2002, 106, 7029-7033. 13. (a) Wang, J. T.; Moore, J.; Laulhe, S.; Nantz, M.; Achilefu, S.; Kang, K. A., Fluorophore-Gold Nanoparticle Complex for Sensitive Optical Biosensing and Imaging. Nanot 2012, 23, 095501; (b) Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J., Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods. Acs Nano 2014, 8, 8392-8406. 91 14. (a) Bharadwaj, P.; Novotny, L., Spectral Dependence of Single Molecule Fluorescence Enhancement. Opt. Express 2007, 15 , 14266-14274; (b) Guzatov, D. V.; Vaschenko, S. V.; Stankevich, V. V.; Lunevich, A. Y.; Glukhov, Y. F.; Gaponenko, S. V., Plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory, Modeling, and Experiment. J. Phys. Chem. C 2012, 116, 10723-10733; (c) Khatua, S.; Paulo, P. M. R.; Yuan, H.; Gupta, A.; Zijlstra, P.; Orrit, M., Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods. ACS Nano 2014, 8, 4440-4449. 15. Bastus, N. G.; Comenge, J.; Puntes, V., Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 2011, 27 , 11098-105. 16. Wu, H. L.; Kuo, C. H.; Huang, M. H., Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 2010, 26, 12307-13. 17. Link, S.; El-Sayed, M. A., Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 2003, 54, 331-66. 18. Lai, Y.-C.; Lin, C.-Y.; Chung, M.-R.; Hung, P.-Y.; Horng, J.-C.; Chen, I. C.; Chu, L.-K., Distance-Dependent Excited-State Electron Transfer from Tryptophan to Gold Nanoparticles through Polyproline Helices. J. Phys. Chem. C 2017, 121, 4882-4890. 19. 林幸慧博士論文 |