帳號:guest(3.139.98.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱婕瑜
作者(外文):Chu, Chieh-Yu
論文名稱(中文):利用電子、電洞和自由基捕捉劑探討氧化亞銅晶體於光催化的晶面效應
論文名稱(外文):Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Electron, Hole and Radical Scavengers
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):段興宇
劉學儒
口試委員(外文):Tuan, Hsing-Yu
Liu, Hsueh-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023539
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:50
中文關鍵詞:晶面效應氧化亞銅光催化
外文關鍵詞:facet-dependent effectcuprous oxidephotodegradation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:134
  • 評分評分:*****
  • 下載下載:47
  • 收藏收藏:0
氧化亞銅的晶面效應已經藉由光催化實驗被證實,具有單一晶面之氧化亞銅立方體在甲基橙光降解中沒有光催化活性,而氧化亞銅菱形十二面體的催化活性遠遠優於八面體和立方體。為了更進一步去探討不同晶面之氧化亞銅,其光降解速率為何具有如此大的差異性,本篇研究藉由添加電子、電洞、氫氧自由基以及超氧自由基捕捉劑於光催化實驗中,並比較各種活性物種的光降解速率。當添加電子捕捉劑於光催化實驗中,其結果顯示立方體、八面體以及菱形十二面體的光降解速率分別為1%、13%和65%;而添加電洞捕捉劑時,立方體、八面體以及菱形十二面體的光降解速率分別為3%、69%和97%,根據此實驗數據,認為氧化亞銅立方體不具光催化活性是由於電子及電洞沒有轉移至表面層,所以無法產生自由基進行光催化反應;氧化亞銅菱形十二面體因為同時具有電子及電洞轉移至表面層產生自由基,因此光催化活性較好;而氧化亞銅八面體主要藉由電子產生自由基進行光降解,此結果輔助我們建構出三種晶面之氧化亞銅具有不同程度的能帶彎曲。此外,為了量測不同晶面之氧化亞銅的能帶,利用紫外光光電子能譜(Ultraviolet photoelectron spectroscopy , UPS)以及反射式紫外線/可見光光譜儀計算氧化亞銅的價帶及導帶,並進一步模擬出氧化亞銅三種晶面的能帶圖。然而,三種晶面所得到的能帶圖結果非常相近,這也解釋了半導體的晶面效應被忽略是因為光譜方法無法完整解釋光催化晶面效應的實驗結果,那就是說從光譜實驗所呈現的氧化亞銅立方體能帶圖無法說明為何它無光催化活性。
The significant difference between photocatalytically inactive Cu2O cubes and the high photocatalytic performance of Cu2O rhombic dodecahedra (RD) in methyl orange (MO) photodegradation has been demonstrated previously, and we have further introduced various chemical scavengers to probe the facet-dependent photocatalytic mechanisms of Cu2O cubes, octahedra, and RD in order to reveal the contribution of different catalytic species in photodegradation of MO. With the addition of electron scavenger, the conversions of MO are 1%, 13%, and 65% after 90 min of irradiation using Cu2O cubes, octahedra and RD as photocatalysts, respectively. With the addition of hole scavenger under same conditions, the conversions of MO are 3%, 69%, and 97% using Cu2O cubes, octahedra and RD respectively as photocatalysts. Cubes remain inactive with and without the introduction of electron and hole scavengers, matching out previous assumption that the photogenerated electrons and holes do not reach the surface of Cu2O cubes. RD preserve relatively independent activity upon introduction of electron and hole scavengers, implying that both photogenerated electrons and holes could efficiently produce radicals, thus maintaining its activity when scavengers capture either electrons or holes. Interestingly, the photocatalytic activity of Cu2O octahedra is significantly quenched by electron scavenger but not hole scavenger, suggesting their activity mostly comes from photogenerated electrons. This could be interpreted as photogenerated electrons travel to surface to yield radical species, while holes are largely unavailable for photooxidation reaction.
Based on these experimental results, a modified band diagram with different degrees of band bending for Cu2O crystals is constructed to explain the photocatalytic performance of differently exposed crystal facets. Ultraviolet photoelectron spectroscopy (UPS) was also used to analyze the energy level at the surface. However, it was not able to give sufficient degrees of surface bend bending to explain why Cu2O cubes should be photocatalytically inactive. Semiconductor facet effects have largely been missed because the measured band energies do not explain or predict extremely different photocatalytic ability exhibited by the same material with different exposing crystal facets.
論文摘要 i
ABSTRACT iii
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi
LIST OF FIGURES vii
LIST OF SCHEMES xiii
LIST OF TABLES xiii
1. Introduction 1
1.1 Cuprous oxide and its photocatalytic properties with specific facets 1
1.2 The influence of chemical scavengers in photocatalytic degradation 5
1.3 Photoelectron spectroscopy (PES) and X-ray absorption technique 8
2. Goals and accomplishment of this thesis study 12
3. Experimental section 14
3.1 Chemicals 14
3.2 Synthesis of Cu2O crystals 14
3.3 Reactive species trapping experiments 17
4. Instrumentation 19
5. Results and discussion 20
6. Conclusion 47
7. References 48

1. Chen, K.; Sun, C.; Song, S.; Xue, D. CrystEngComm 2014, 16, 5257‒5267.
2. Chen, K.; Sun, C.; Xue, D. Phys. Chem. Chem. Phys. 2015, 17, 732‒750.
3. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261‒1267.
4. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155‒2160.
5. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 19672‒19679.
6. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Chem. Mater. 2016, 28, 1574‒1580.
7. Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J. J. Am. Chem. Soc. 2011, 133, 6490‒6492.
8. Shoaib, A.; Ji, M.; Qian, H.; Liu, J.; Xu, M.; Zhang, J. Nano Res 2016, 9, 1763‒1774.
9. Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Chem. Eur. J. 2016, 22, 12548‒12556.
10. Wu, S.-C.; Tan, C.-S.; Huang, M. H. Adv. Funct. Mater. 2017, 27, 1604635.
11. Muduli, S.-K.; Wang, S.; Chen, S.; Ng, C.-F.; Huan, C.-H.; Sum, T.-C.; Soo, H.-S. Beilstein J. Nanotechnol. 2014, 5, 517‒523.
12. Farsinezhad, S.; Sharma, H.; Shankar, K. Phys. Chem. Chem. Phys. 2015, 17,
29723-29733.
13. Amati, M.; Dalmiglio, M.; Abyaneh, M.-K.; Gregoratti, L. J. Electron Spectrosc. Relat. Phenom. 2013, 189, 30‒34.
14. Grunwaldt, J.-D.; Baiker, A. Phys. Chem. Chem. Phys. 2005, 7, 3526‒3539.
15. Kuo, C.-H.; Huang, M. H. Nano Today 2010, 5, 106‒116.
16. Yang, W.; Chen, D.; Quan, H.; Wu, S.; Luo, X.; Guo, L. RSC Adv. 2016, 6, 83012‒83019.
17. Liu, J.; An, T.; Chen, Z.; Wang, Z.; Zhou, H.; Fan, T.; Zhang, D.; Antonietti, M. J. Mater. Chem. A 2017, 5, 8933‒8938.
18. Chen, Y.; Li, F.; Cao, W.; Li, T. J. Mater. Chem. A 2015, 3, 16934‒16940.
19. Wang, Y.; Zheng, M.; Liu, S.; Wang, Z. Nanoscale Res. Lett. 2016, 11, 390.
20. Zhang, J.; Zhang, T. J. Nanomater. 2013 , 565074.
21. Yang, M.-Q.; Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Sci. Rep. 2013, 3, 3314.
22. Sun, S.; Yang, Z. RSC Adv. 2014, 4, 3804‒3822.
23. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Small 2016, 12, 3530‒3534.
24. Zhao, N.; Qi, L. Adv. Mater. 2006, 18, 359‒362.
25. Chiu, M.-H.; Tseng, W.-H.; Tang, H.-L.; Chang, Y.-H.; Chen, C.-H.; Hsu, W.-T.; Chang, W.-H.; Wu, C.-I.; Li, L.-J. Adv Funct Mater 2017, 27, 1603756.
26. Yoo, I.-H.; Kalanur, S.-S.; Lee, S.-Y.; Eom, K.; Jeon, H.; Seo, H. RSC Adv. 2016, 6, 82900‒82906.
27. Hu, J.-P.; Payne, D.-J.; Egdell, R.-G.; Glans, P.-A.; Learmonth, T.; Smith, K.-E.; Guo, J.; Harrison, N.-M. Phys. Rev. B 2008, 77, 155115.
28. Cantoni, M.; Petti, D.; Bertacco, R.; Pallecchi, I.; Marré, D.; Colizzi, G.; Filippetti, A.; Fiorentini, V. Appl. Phys. Lett. 2010, 97, 032115.
29. Martin, L.; Martinez, H.; Poinot, D.; Pecquenard, B.; Le Cras, F. J. Phys. Chem. C 2013, 117, 4421‒4430.
30. McIntyre, N.-S.; Cook, M.-G. Anal. Chem. 1975, 47, 2208‒2213.
31. Henzler, K.; Heilemann, A.; Kneer, J.; Guttmann, P.; Jia, H.; Bartsch, E.; Lu, Y.; Palzer, S. Sci. Rep. 2015, 5, 17729.
32. Lin, S.-W.; Chang, C.-F.; Lee, R.; Huang, C.-Y.; Ma, C.-I.; Fan, L.-J.; Fung, H.-S. J. Phys. Conf. Ser. 2013, 425, 122002.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Facet-Dependent Organocatalytic Activities of Au and Cu2O Nanocrystals and Facet-Dependent Optical Properties of Pd-Cu2O Core-Shell Nanocrystals
2. 合成金修飾的氧化亞銅探討高度晶面相關的光催化性質
3. 氧化亞銅奈米晶體其具晶面效應的導電性質及金-氧化亞銅、金@銀-氧化亞銅核殼奈米晶體其具晶面效應的光學性質
4. 氧化亞銅奈米粒子之光學性質與能帶結構探討與氧化亞銅與硫化鎘之異質介面所造成的光催化活性的抑制
5. 密度泛函理論佐證因能帶及電荷分佈改變使得4-硝基苯乙炔修飾的氧化亞銅粒子其染料光降解活性大幅增強
6. 多面體氧化亞銅奈米晶體光催化芳基硼酸分子羥基化反應
7. 4-硝基苯乙炔修飾之氧化亞銅奈米粒子在水相進行光催化芳基硫醚氧化反應
8. 於氧化亞銅立方體表面修飾含腈基或鹵素的乙炔基苯分子以增強其光催化活性
9. 以4-硝基苯乙炔修飾的氧化亞銅多面體進行光催化氧化伯胺耦聯反應
10. 氧化亞銅奈米晶體之晶面對電化學催化氧氣還原反應的影響
11. 利用氧化亞銅粒子進行光催化硫醇氧化反應
12. 利用SrTiO3奈米晶體光催化氧化伯胺分子的耦合反應
13. 鈣鈦礦立方體和長方體的合成及其光催化性能的研究
14. 一、立方體型態演繹至六足體之氧化銀奈米晶體的合成及其表面特性 二、研究多截面金奈米晶粒核的形狀以及表面晶面對於形成氧化亞銅包金核殼異質結構的影響
15. 藉由化學性蝕刻形成具截邊立方體和截角菱形十二面體結構的氧化亞銅奈米骨架;超小顆氧化亞銅立方體和八面體以及八足體的合成及其光催化活性的探討
 
* *