帳號:guest(3.145.183.205)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝孟芹
作者(外文):Xie, Meng-Qin
論文名稱(中文):探討從鈷催化自由基聚合銜接至原子轉移自由基聚合的鍊增長機制
論文名稱(外文):The Study of Mechanism in the Chain Extension from CMRP to ATRP
指導教授(中文):彭之皓
指導教授(外文):Peng, Chi-How
口試委員(中文):王潔
陳俊太
口試委員(外文):Wang, Jane
Chen, Jiun-Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023536
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:73
中文關鍵詞:鈷催化自由基聚合原子轉移自由基聚合鍊增長機制甲基丙烯酸甲酯苯乙烯醋酸乙烯酯
外文關鍵詞:CMRPATRPMethyl methacrylateStyreneVAcChain extension
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
利用CoII(acac)2進行鈷催化自由基聚合反應(CMRP)以合成出聚醋酸乙烯酯(PVAc),並利用PVAc- CoIII(acac)2作為原子轉移自由基聚合反應(ATRP)的巨起始劑來進行甲基丙烯酸甲酯(Methyl methacrylate)和苯乙烯(Styrene)的聚合反應,可以成功合成出PVAc-b-PMMA與PVAc-b-PSt嵌段共聚物。
此合成方式藉由CMRP與ATRP的結合可以更直接地進行不同機制的可控自由基聚合反應,不需要利用一些特殊的化合物或是額外的合成步驟。
在結合CMRP與ATRP機制合成PVAc-b-PMMA時,在ATRP聚合反應中發現使用不同活性配位基聚合MMA單體,配位基效應呈現反轉結果,故在CMRP與ATRP結合的聚合反應動力學速率進行更深入的探討。
銅線加入於ATRP系統中,可以加速聚合反應速率與增加聚合反應的耐氧性,但也會影響ATRP中銅一價金屬錯合物與銅二價錯合物的平衡,故也影響到配位基的效應。若將銅線在聚合反應中去除,聚合反應速率與配位基效應則會與文獻相符。
We successfully used the method of cobalt-mediated radical polymerization (CMRP) to prepare the well-defined poly(vinyl acetate) (PVAc) as the macro-initiator used in the reverse atom transfer radical polymerization (ATRP) of styrene (Sty) and methyl methacrylate (MMA) to synthesize the block copolymers of PVAc-b-PMMA and PVAc-b-PSty. The chain extension from PVAc to PMMA or PSty via the hybridization of CMRP and ATRP required neither a difunctional initiator nor further chain-end modification.
But we found out a special phenomenon in the kinetic plot of using ATRP to polymerize MMA with three different active ligands. The results showed that the ligand effect was reversed. So we did a more in-depth discussion on that.
In the ATRP polymerization, we added the copper wire as reducing agent to speed up the rate of polymerization and positively affect the equilibrium of Cu(I) and Cu(II) species and thus enhance the control efficiency of ATRP. Later, we demonstrated that the copper wire in the reverse ATRP would interfere the equilibrium of ATRP and weaken the ligand effect on the polymerization. Without adding the copper wire in the homogeneous reverse ATRP system could be succeed and showed the ligand effect on them.
摘要 I
Abstract II
謝誌 III
圖目錄 VII
表目錄 XIV
式目錄 XV
第一章 緒論 1
1-1 高分子聚合物的發展 1
1-2 自由基聚合反應的發展 4
1-2-1 傳統自由基聚合反應 4
1-2-2活性聚合反應的原理 6
1-3 主流的活性自由基聚合反應技術 9
1-3-1 原子轉移自由基聚合反應(Atom Transfer Radical Polymerization, ATRP) 9
1-3-2 鈷催化自由基聚合(Cobalt-Mediated Radical Polymerization, CMRP) 17
1-4 研究動機 26
第二章 實驗藥品與方法設計 30
2-1 化學藥品 30
2-2 儀器設備與鑑定方法 31
2-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 31
2-2-2 THF凝膠滲透層析儀 (Gel Permeation Chromatography) 31
2-2-3熱分析儀 (Thermal Analyzers ) 32
2-2-4紫外光-可見光光譜儀 (Ultraviolet-visible Spectrophotometry;UV-vis ) 32
2-3 合成步驟 33
2-3-1 利用CoII(acac)2 進行鈷催化自由基聚合反應合成巨起劑(PVAc-CoIII(acac)2) 33
2-3-2 使用起始劑AIBN做反向原子轉移自由基聚合 36
2-3-3 純化 PVAc-CoIII(acac)2 36
2-3-4 利用(PVAc-CoIII(acac)2)當巨起始劑結合原子轉移自由基聚合反應聚合甲基丙烯酸甲酯形成嵌段共聚物(PVAc-b-PMMA) 37
2-3-5利用 (PVAc-CoIII(acac)2)當巨起始劑結合原子轉移自由基聚合反應聚合苯乙烯形成嵌段共聚物(PVAc-b-PSt) 37
2-3-6 PVAc-b-PMMA 的水解 37
2-3-7 PVAc-b-PSt 的水解 38
第三章 結合CMRP與ATRP合成聚醋酸乙烯酯類的嵌段共聚物 39
3-1 銅零價金屬線對結合原子轉移自由基聚合反應的影響 39
3-2 不同純化巨起始劑 (PVAc-CoIII(acac)2)的方法對巨起始劑結合原子轉移自由基聚合反應的影響 49
3-3 PVAc-b-PMMA 的合成與機理 54
3-4 利用(PVAc-CoIII(acac)2)當巨起始劑結合原子轉移自由基聚合反應聚合苯乙烯形成嵌段共聚物(PVAc-b-PSt) 61
3-5 利用TGA鑑定利用(PVAc-CoIII(acac)2)當巨起始劑結合原子轉移自由基聚合反應形成嵌段共聚物(PVAc-b-PMMA、PVAc-b-PSt) 64
3-6 結論 68
第四章 參考文獻 70
(1) Muzzarelli, R.; Boudrant, J.; Meyer, D.; Manno, N.; DeMarchis, M.; Paoletti, M. Carbohydr. Polym. 2012, 87, 995–1012.
(2) Wadelin, C. W.; Morris, M. C. Anal. Chem. 1977, 39, 239R-247R.
(3) C. Everton, The Story of Billiards and Snooker. Ed. Cassell, London, Great Britain, 1979.
(4) Baekeland, L. H. J. Ind. Eng. Chem. 1909, 1, 149-161.
(5) H. Morawetz, Polymers: The origins and growth of a science. Dover Publications Inc, New York, 1995.
(6) Davidson, G. F.; Barkas, W. W.; Miles.; Staudinger, H.; Katz, J. R. J. Chem. Soc.-Faraday Trans. 1933, 29, 298-300.
(7) Billmeyer, F. W. J. Polym. Sci. Pt. B-Polym. Phys. 1972, 10, 485-486.
(8) Kauffman, G. B. J. Chem. Educ. 1988, 65, 803-808.
(9) Carothers, W. Chem. Rev. 1931, 8, 353–426.
(10) Ziegler, K. Angew. Chem. 1952, 64, 323–329.
(11) Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708–1710.
(12) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem., Int. Ed. 1955, 67, 541–547.
(13) Pecora, R. Phys. Today 1986, 39, 116–117.
(14) Dhib, R.; Al-Nidawy, N. Chem. Eng. Sci. 2002, 57, 2735–2746.
(15) Ishihara, N.; Seimiya, T.; Kuramoto, M.; Uoi, M. Macromolecules 1986, 19, 2464–2465.
(16) Winkler, D. J. Polym. Sci. 1959, 35, 3–16.
(17) Abraham, R. J.; Melville, H, W.; Ovenall, D, W.; Whiffen, D, H. Trans. Faraday Soc. 1958, 54, 1133-1139.
(18) Gupta, A.; Paliwal, D.; Bajaj, P. J. Appl. Polym. Sci. 1998, 70, 2703–2709.
(19) Gajria, A.; Davé, V.; Gross, R.; McCarthy, S. Polymer 1996, 37, 437–444.
(20) Zhang, L.; Wang, Y.; Wang, Y.; Sui, Y.; Yu, D. J. Appl. Polym. Sci. 2000, 78, 1873–1878.
(21) Gao, H.; Matyjaszewski, K. Prog. Polym. Sci. 2009, 34, 317–350.
(22) Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Chem. Rev. 2001, 101, 3747–3792.
(23) Crivello, J.; Lam, J. Macromolecules 1977, 10, 1307–1315.
(24) Aoshima, S.; Kanaoka, S. Chem. Rev. 2009, 109, 5245–5287.
(25) Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev. 2004, 104, 6147–76.
(26) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721–1723.
(27) Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614–5615.
(28) Braunecker, W.; Matyjaszewski, K. Prog. Polym. Sci. 2007, 32, 93–146.
(29) Hawker, C.; Barclay, G.; Orellana, A.; Dao, J.; Devonport, W. Macromolecules 1996, 29, 5245–5254.
(30) Hawker, C.; Bosman, A.; Harth, E. Chem. Rev. 2001, 101, 3661–3688.
(31) Chiefari, J.; Chong, (Bill); Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.; Mayadunne, R.; Meijs, G.; Moad, C.; Moad, G.; Rizzardo, E.; Thang, S. Macromolecules 1998, 31, 5559–5562.
(32) Moad, G.; Chiefari, J.; Chong, (Bill); Krstina, J.; Mayadunne, R.; Postma, A.; Rizzardo, E.; Thang, S. Polym. Int. 2000, 49, 993–1001.
(33) Coessens, V.; Pintauer, T.; Matyjaszewski, K. Prog. Polym. Sci. 2001, 26, 337–377.
(34) Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921–2990.
(35) Perrier, S.; Takolpuckdee, P. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5347–5393.
(36) Stenzel, M.; Cummins, L.; Roberts, G.; Davis, T.; Vana, P.; Barner‐Kowollik, C. Macromol. Chem. Phys. 2003, 204, 1160–1168.
(37) Boyer, C.; Lacroix-Desmazes, P.; Robin, J.-J.; Boutevin, B. Macromolecules 2006, 39, 4044–4053.
(38) Koumura, K.; Satoh, K.; Kamigaito, M.; Okamoto, Y. Macromolecules 2006, 39, 4054–4061.
(39) Yamago, J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 1–12.
(40) Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 13666–13667.
(41) Wayland, B.; Basickes, L.; Mukerjee, S.; Wei, M.; Fryd, M. Macromolecules 1997, 30, 8109–8112.
(42) Debuigne, A.; Caille, J.; Jérôme, R. Angew. Chem. 2005, 117, 1125–1128.
(43) Tang, W.; Tsarevsky, N.; Matyjaszewski, K. J. Am. Chem. Soc. 2006, 128, 1598–1604.
(44) David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B. Chem. Rev. 2006, 106, 3936–3962.
(45) Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N.; Coote, M.; Matyjaszewski, K. J. Am. Chem. Soc. 2008, 130, 10702–10713.
(46) Seeliger, F.; Matyjaszewski, K. Macromolecules 2009, 42, 6050–6055.
(47) Zhong, M.; Matyjaszewski, K. Macromolecules 2011, 44, 2668–2677.
(48) Jakubowski, W.; Min, K.; Matyjaszewski, K. Macromolecules 2006, 39, 39–45.
(49) Jakubowski, W.; Matyjaszewski, K. Angew. Chem., Int. Ed. 2006, 118, 4594–4598.
(50) Min, K.; Gao, H.; Matyjaszewski, K. Macromolecules 2007, 40, 1789–1791.
(51) Dong, H.; Tang, W.; Matyjaszewski, K. Macromolecules 2007, 40, 2974–2977.
(52) Zhang, Y.; Wang, Y.; Matyjaszewski, K. Macromolecules 2011, 44, 683–685.
(53) Kwak, Y.; Matyjaszewski, K. Polym. Int. 2009, 58, 242–247.
(54) Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W.; Tsarevsky, N. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15309–15314.
(55) Wayland, B.; Poszmik, G.; Mukerjee, S.; Fryd, M. J. Am. Chem. Soc.1994, 116, 7943–7944.
(56) Arvanitopoulos, L. D.; Greuel, M. P.; Harwood, H. J., Polym. Prepr. 1994, 35, 549.
(57) Wayland, B.; Peng, C.-H.; Fu, X.; Lu, Z.; Fryd, M. Macromolecules 2006, 39, 8219–8222.
(58) Li, S.; Bruin, B.; Peng, C.-H.; Fryd, M.; Wayland, B. J. Am. Chem. Soc. 2008, 130, 13373–13381.
(59) Debuigne, A.; Michaux, C.; Jérôme, C.; Jérôme, R.; Poli, R.; Detrembleur, C. Chem.-Eur. J. 2008, 14, 7623–7637.
(60) Debuigne, A.; Morin, A.; Kermagoret, A.; Piette, Y.; Detrembleur, C.; Jérôme, C.; Poli, R. Chem.-Eur. J. 2012, 18, 12834–12844.
(61) Hsu, C.-S.; Yang, T.-Y.; Peng, C.-H. Polym. Chem. 2014, 5, 3867–3875.
(62) Kermagoret, A.; Debuigne, A.; Jérôme, C.; Detrembleur, C. Nat. Chem. 2014, 6, 179–187.
(63) Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. Macromolecules 2008, 41, 2368–2373.
(64) Zhao, Y.; Dong, H.; Li, Y.; Fu, X. Chem. Commun. 2012, 48, 3506–3508.
(65) Peng, C.-H.; Fryd, M.; Wayland, B. Macromolecules 2007, 40, 6814–6819.
(66) Tokunaga, M.; Larrow, J.; Kakiuchi, F.; Jacobsen, E. Science 1997, 277, 936–938.
(67) Sherwood, R.; Kent, C.; Patrick, B.; McNeil, W. Chem. Commun. 2010, 46, 2456–2458.
(68) Debuigne, A.; Caille, J.-R.; Willet, N.; Jérôme, R. Macromolecules 2005, 38, 9488–9496.
(69) Nicolaÿ, R.; Kwak, Y.; Matyjaszewski, K. Chem. Commun. 2008, 0, 5336–5338.
(70) Kermagoret, A.; Nakamura, Y.; Bourguignon, M.; Detrembleur, C.; Jérôme, C.; Yamago, S.; Debuigne, A. ACS Macro Lett. 2014, 3, 114–118.
(71) Mazzotti, G.; Benelli, T.; Lanzi, M.; Mazzocchetti, L.; Giorgini, L. European Polymer Journal 2016, 77, 75-87.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *