|
(1) Ciesla, U.; Schüth, F.Ordered Mesoporous Materials. Microporous Mesoporous Mater. 1999, 27 (2–3), 131–149. (2) Zhao, D.Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998, 279 (5350), 548–552. (3) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D.Nonionic Triblock and Star Diblock Copolymer and Oligomeric Sufactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120 (24), 6024–6036. (4) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359 (6397), 710–712. (5) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; et al.A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114 (27), 10834–10843. (6) Raman, N. K.; Anderson, M. T.; Brinker, C. J.Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater. 1996, 8 (8), 1682–1701. (7) Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M.Silica-Based Mesoporous Organic-Inorganic Hybrid Materials. Angew. Chemie Int. Ed. 2006, 45 (20), 3216–3251. (8) Palmqvist, A. E. C.Block Copolymer-Templated Mesoporous Oxides. Curr. Opin. Colloid Interface Sci. 2003, 8, 109–126. (9) Galarneau, A.; Cambon, H.; DiRenzo, F.; Ryoo, R.; Choi, M.; Fajula, F.Microporosity and Connections between Pores in SBA-15 Mesostructured Silicas as a Function of the Temperature of Synthesis. New J. Chem. 2003, 27 (1), 73–79. (10) Zhao, D.; Yu, C.; Fan, J.; Tian, B.; Stucky, G. D.High-Yield Synthesis of Periodic Mesoporous Silica Rods and Their Replication to Mesoporous Carbon Rods. Adv. Mater. 2002, 14 (23), 1742–1745. (11) Ji, X.; Lee, K. T.; Monjauze, M.; Nazar, L. F.Strategic Synthesis of SBA-15 Nanorods. Chem. Commun. 2008, 7345 (36), 4288–4290. (12) Chen, S. Y.; Jang, L. Y.; Cheng, S.Synthesis of Zr-Incorporated SBA-15 Mesoporous Materials in a Self-Generated Acidic Environment. Chem. Mater. 2004, 16 (21), 4174–4180. (13) Chen, S. Y.; Tang, C. Y.; Chuang, W. T.; Lee, J. J.; Tsai, Y. L.; Chan, J. C.; Lin, C. Y.; Liu, Y. C.; Cheng, S.A Facile Route to Synthesizing Functionalized Mesoporous SBA-15 Materials with Platelet Morphology and Short Mesochannels. Chem. Mater. 2008, 20 (12), 3906–3916. (14) Johansson, E. M.; Ballem, M. A.; Córdoba, J. M.; Odén, M.Rapid Synthesis of SBA-15 Rods with Variable Lengths, Widths, and Tunable Large Pores. Langmuir 2011, 27 (8), 4994–4999. (15) Björk, E. M.; Söderlind, F.; Odén, M.Tuning the Shape of Mesoporous Silica Particles by Alterations in Parameter Space: From Rods to Platelets. Langmuir 2013, 29 (44), 13551–13561. (16) Çelik, Ö.; Dag, Ö.A New Lyotropic Liquid Crystalline System: Oligo(Ethylene Oxide) Surfactants with [M(H2O)n]Xm Transition Metal Complexes. Angew. Chemie 2001, 113 (20), 3915–3919. (17) He, Q.; Shi, J.; Zhao, J.; Chen, Y.; Chen, F.Bottom-up Tailoring of Nonionic Surfactant-Templated Mesoporous Silica Nanomaterials by a Novel Composite Liquid Crystal Templating Mechanism. J. Mater. Chem. 2009, 19 (36), 6498–6503. (18) Prieto, G.; Martínez, A.; Murciano, R.; Arribas, M. A.Cobalt Supported on Morphologically Tailored SBA-15 Mesostructures: The Impact of Pore Length on Metal Dispersion and Catalytic Activity in the Fischer-Tropsch Synthesis. Appl. Catal. A Gen. 2009, 367 (1–2), 146–156. (19) Singh, S.; Kumar, R.; Setiabudi, H. D.; Nanda, S.; Vo, D. V. N.Advanced Synthesis Strategies of Mesoporous SBA-15 Supported Catalysts for Catalytic Reforming Applications: A State-of-the-Art Review. Appl. Catal. A Gen. 2018, 559 (March), 57–74. (20) Chen, F.; Jiang, X.; Zhang, L.; Lang, R.; Qiao, B.Single-Atom Catalysis: Bridging the Homo- and Heterogeneous Catalysis. Chinese J. Catal. 2018, 39 (5), 893–898. (21) Ross, J. R. H.Chapter 4 Catalyst Preparation; Elsevier B.V., 2012. (22) Taguchi, A.; Schüth, F.Ordered Mesoporous Materials in Catalysis. Microporous Mesoporous Mater. 2005, 77 (1), 1–45. (23) White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; MacQuarrie, D. J.Supported Metal Nanoparticles on Porous Materials. Methods and Applications. Chem. Soc. Rev. 2009, 38 (2), 481–494. (24) Munnik, P.; DeJongh, P. E.; DeJong, K. P.Recent Developments in the Synthesis of Supported Catalysts. Chem. Rev. 2015, 115 (14), 6687–6718. (25) Behrens, M.; Brennecke, D.; Girgsdies, F.; Kißner, S.; Trunschke, A.; Nasrudin, N.; Zakaria, S.; Fadilah, N.; Bee, S.; Hamid, A.; et al. Understanding the Complexity of a Catalyst Synthesis : Co-Precipitation of Mixed Cu, Zn, Al Hydroxycarbonate Precursors for Cu/ZnO/Al2O3 Catalysts Investigated by Titration Experiments. Appl. Catal. A, Gen. 2011, 392 (1–2), 93–102. (26) Baltes, C.; Vukojević, S.; Schüth, F.Correlations between Synthesis, Precursor, and Catalyst Structure and Activity of a Large Set of CuO/ZnO/Al2O3 Catalysts for Methanol Synthesis. J. Catal. 2008, 258 (2), 334–344. (27) Yang, C. M.; Lin, H. A.; Zibrowius, B.; Spliethoff, B.; Schüth, F.; Liou, S. C.; Chu, M. W.; Chen, C. H.Selective Surface Functionalization and Metal Deposition in the Micropores of Mesoporous Silica SBA-15. Chem. Mater. 2007, 19 (13), 3205–3211. (28) Hahn, C.; Morvillo, P.; Vitagliano, A.Olefins Coordinated at a Highly Electrophilic Site - Dicationic Palladium(II) Complexes and Their Equilibrium Reactions with Nucleophiles. Eur. J. Inorg. Chem. 2001, No. 2, 419–429. (29) Burattin, P.; Che, M.; Louis, C.Molecular Approach to the Mechanism of Deposition−Precipitation of the Ni(II) Phase on Silica. J. Phys. Chem. B 1998, 102 (15), 2722–2732. (30) Hugon, A.; Kolli, N.El; Louis, C.Advances in the Preparation of Supported Gold Catalysts: Mechanism of Deposition, Simplification of the Procedures and Relevance of the Elimination of Chlorine. J. Catal. 2010, 274 (2), 239–250. (31) Murzin, D. Y.; Simakova, O. A.; Simakova, I. L.; Parmon, V. N.Thermodynamic Analysis of the Cluster Size Evolution in Catalyst Preparation by Deposition-Precipitation. React. Kinet. Mech. Catal. 2011, 104 (2), 259–266. (32) Anastas, P.; Eghbali, N.Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39 (1), 301–312. (33) Cortright, R. D.; Dumesic, J. A.Microcalorimetric, Spectroscopic, and Kinetic Studies of Silica Supported Pt and Pt/Sn Catalysts for Isobutane Dehydrogenation. J. of Catal. 1994, pp 771–778. (34) Yao, N.; Pinckney, C.; Lim, S.; Pak, C.; Haller, G. L.Synthesis and Characterization of Pt/MCM-41 Catalysts. Microporous Mesoporous Mater. 2001, 44–45, 377–384. (35) Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S.Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116 (6), 3722–3811. (36) Takezawa, N.; Iwasa, N.Steam Reforming and Dehydrogenation of Methanol: Difference in the Catalytic Functions of Copper and Group VIII Metals. Catal. Today 1997, 36 (1), 45–56. (37) Hader, R. N.; Wallace, R. D.; McKinney, R. W.Formaldehyde From Methanol. Ind. Eng. Chem. 1952, 44 (7), 1508–1518. (38) Kowatsch, S.Phenolic Resins: A Century of Progress; Louis Pilato, Ed.; Springer Heidelberg Dordrecht London New York: New Jersey, 2010. (39) Qian, M.; Liauw, M. A.; Emig, G.Formaldehyde Synthesis from Methanol over Silver Catalysts. Appl. Catal. A Gen. 2003, 238 (2), 211–222. (40) He, J.; Li, Y.; An, D.; Zhang, Q.; Wang, Y.Selective Oxidation of Methane to Formaldehyde by Oxygen over Silica-Supported Iron Catalysts. J. Nat. Gas Chem. 2009, 18 (3), 288–294. (41) Florek-Milewska, J.; Decyk, P.; Ziolek, M.Catalytic Properties of Cu/SBA-3 in Oxidative Dehydrogenation of Methanol - The Effect of the Support Composition. Appl. Catal. A Gen. 2011, 393 (1–2), 215–224. (42) Pestryakov, A.; Lunin, V.; Temkin, O.; Derusova, D.; Bogdanchikova, N.; Petranovskii, V.Formation of Active Surface of Copper Catalysts in Methanol Oxidation. 2012 7th Int. Forum Strateg. Technol. 2012, 1–5. (43) Tatibougt, J. M.Methanol Oxidation as a Catalytic Surface Probe; Appl. Catal. A: Gen. 1997, 148. 213-252. (44) Mistry, C. R.; Mewada, R. K.; Srivastava, V. K.; Jasra, R.V.Characteristics of Oxidation and Oxidative Dehydrogenation Catalysts for Gas Phase Reactions : A Review. Int. Conf. Curr. Trends Technol. 2011, 1–6. (45) Parera, J. M.; Figoli, X. S.Active Sites and Mechanisms of Dehydration and Methylation of Methylaniline Alumina and on Silica-Alumina of Methanol on of Alcohols and the Heterogeneous Catalysis , Using Solid Acids The Dehydration of Alcohols Has Been Studied for Many Years . The Two. J. Catal. 1969, 310, 303–310. (46) Ai, M.Catalytic Activity for the Oxidation of Methanol and the Acid-Base Properties of Metal Oxides. J. Catal. 1978, 435, 426–435. (47) Machiels, C. J.; Sleight, A. W.Kinetic Isotope Effect in the Selective Oxidation of Methanol to Formaldehyde over Some Molybdate Catalysts. J. Catal. 1982, 76 (1), 238–239. (48) Farneth, W. E.; Ohuchi, F.; Staley, R. H.; Chowdhry, U.; Sleight, A. W.Mechanism of Partial Oxidation of Methanol over Molybdenum(VI) Oxide as Studied by Temperature-Programmed Desorption. J. Phys. Chem. 1985, 89 (12), 2493–2497. (49) Busca, G.Infrared Studies of the Reactive Adsorption of Organic Molecules over Metal Oxides and of the Mechanisms of Their Heterogeneously-Catalyzed Oxidation. Catal. Today 1996, 27 (3–4), 457–496. (50) Bracey, C. L.; Carley, A. F.; Edwards, J. K.; Ellis, P. R.; Hutchings, G. J.Understanding the Effect of Thermal Treatments on the Structure of CuAu/SiO2 Catalysts and Their Performance in Propene Oxidation. Catal. Sci. Technol. 2011, 1 (1), 76–85. (51) Liu, L.; Ye, X. P.; Bozell, J. J.A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production. ChemSusChem. 2012, pp 1162–1180. (52) BETTAHAR, M.; COSTENTIN, G.; SAVARY, L.; LAVALLEY, J.On the Partial Oxidation of Propane and Propylene on Mixed Metal Oxide Catalysts. Appl. Catal. A Gen. 1996, 145 (1–2), 1–48. (53) ADAMS, C.Mechanism Studies of the Catalytic Oxidation of Propylene. J. Catal. 1964, 3 (6), 549–558. (54) Yu, J. S.; Kevan, L.Effects of Reoxidation and Water Vapor on Selective Partial Oxidation of Propylene to Acrolein in Copper(II)-Exchanged X and Y Zeolites. J. Phys. Chem. 1991, 95 (17), 6648–6653. (55) Yu, J.-S.; Kevan, L.Catalytic Partial Oxidation of Propylene to Acrolein over Copper(II)-Exchanged M-X and M-Y Zeolites Where M = Mg2+, Ca2+, Li+, Na+, K+, and H+: Evidence for Separate Pathways for Partial An. J. Phys. Chem. 1991, 95 (8), 3262–3271. (56) Lai, N. C.; Tsai, M. C.; Liu, C. H.; Chen, C. S.; Yang, C. M.Efficient Selective Oxidation of Propylene by Dioxygen on Mesoporous-Silica-Nanoparticle-Supported Nanosized Copper. J. Catal. 2018, 365, 411–419. (57) Reitz, J. B.; Solomon, E. I.Propylene Oxidation on Copper Oxide Surfaces: Electronic and Geometric Contributions to Reactivity and Selectivity. J. Am. Chem. Soc. 1998, 120 (44), 11467–11478. (58) Haber, J.; Turek, W.Kinetic Studies as a Method to Differentiate between Oxygen Species Involved in the Oxidation of Propene. J. Catal. 2000, 190 (2), 320–326. (59) Belin, S.; Bracey, C. L.; Briois, V.; Ellis, P. R.; Hutchings, G. J.; Hyde, T. I.; Sankar, G.CuAu/SiO2 Catalysts for the Selective Oxidation of Propene to Acrolein: The Impact of Catalyst Preparation Variables on Material Structure and Catalytic Performance. Catal. Sci. Technol. 2013, 3 (11), 2944–2957. (60) Bøyesen, K. L.; Kristiansen, T.; Mathisen, K.Identification of Synergistic Cu/V Redox Pair in VCu: AlPO-5; a Comparison with VCu: ZSM-5. Phys. Chem. Chem. Phys. 2014, 16 (38), 20451–20463. (61) Bøyesen, K. L.; Mathisen, K.Exposing the Synergistic Effect between Copper and Vanadium in AlPO-5 during the Selective Oxidation of Propene. Catal. Today 2014, 229, 14–22. (62) Bøyesen, K. L.; Kristiansen, T.; Mathisen, K.Dynamic Redox Properties of Vanadium and Copper in Microporous Supports during the Selective Oxidation of Propene. Catal. Today 2015, 254, 21–28. (63) Yu, J.Chapter 3 Synthesis of Zeolites; Elsevier B.V., 2007; Vol. 168. (64) Garcia Vargas, N.; Stevenson, S.; Shantz, D. F.Simultaneous Isomorphous Incorporation of Boron and Germanium in MFI Zeolites. Microporous Mesoporous Mater. 2013, 170, 131–140. (65) Chu, C. T. W.; Chang, C. D.Isomorphous Substitution in Zeolite Frameworks .1. Acidity of Surface Hydroxyls in B-Zsm-5, Fe-Zsm-5, Ga-Zsm-5, and Al-Zsm-5. J. Phys. Chem. 1985, 89 (9), 1569–1571. (66) Takeshige Takahashi, K. U. and T. K.Vapor Phase Reaction of Cyclohexanone Oxime over Boria Modified HSZM-5 Zeolites. Can. J. Chem. Eng. 1991, 69, 1096–1099. (67) Zhang, D.; Wang, R.; Wang, L.; Yang, X.Coking and Deactivation of Boron Modified Al-MCM-41 for Vapor-Phase Beckmann Rearrangement Reaction. J. Mol. Catal. A Chem. 2013, 366, 179–185. (68) Wieland, W. S.; Davis, R. J.; Garces, J. M.Solid Base Catalysts for Side-Chain Alkylation of Toluene with Methanol. Catal. Today 1996, 28 (4), 443–450. (69) Stranick, A.; Houalla, M.; Hercules, D. M.The Effect of Boron on the State and Dispersion Catalysts of Co/A12O3. J. Catal. 1987, 412, 396–412. (70) Li, J.; Coville, N. J.The Effect of Boron on the Catalyst Reducibility and Activity of Co/TiO2 Fischer-Tropsch Catalysts. Appl. Catal. A Gen. 1999, 181 (1), 201–208. (71) He, Z.; Lin, H.; He, P.; Yuan, Y.Effect of Boric Oxide Doping on the Stability and Activity of a Cu-SiO2 catalyst for Vapor-Phase Hydrogenation of Dimethyl Oxalate to Ethylene Glycol. J. Catal. 2011, 277 (1), 54–63. (72) Zheng, J.; Xia, Z.; Li, J.; Lai, W.; Yi, X.; Chen, B.; Fang, W.; Wan, H.Promoting Effect of Boron with High Loading on Ni-Based Catalyst for Hydrogenation of Thiophene-Containing Ethylbenzene. Catal. Commun. 2012, 21, 18–21. (73) Zhao, S.; Yue, H.; Zhao, Y.; Wang, B.; Geng, Y.; Lv, J.; Wang, S.; Gong, J.; Ma, X.Chemoselective Synthesis of Ethanol via Hydrogenation of Dimethyl Oxalate on Cu/SiO2: Enhanced Stability with Boron Dopant. J. Catal. 2013, 297, 142–150. (74) Zhu, S.; Gao, X.; Zhu, Y.; Zhu, Y.; Zheng, H.; Li, Y.Promoting Effect of Boron Oxide on Cu/SiO2 catalyst for Glycerol Hydrogenolysis to 1,2-Propanediol. J. Catal. 2013, 303, 70–79. (75) Coville, N. J.; Li, J.Effect of Boron Source on the Catalyst Reducibility and Fischer – Tropsch Synthesis Activity of Co/TiO2 Catalysts. Catal. Today 2002, 71, 403–410. (76) Tupabut, P.; Jongsomjit, B.; Praserthdam, P.Impact of Boron Modification on MCM-41-Supported Cobalt Catalysts for Hydrogenation of Carbon Monoxide. Catal. Lett. 2007, 118 (3–4), 195–202. (77) Yang, S. F.; Zhang, Q. H.; Wang, Y.Boron-Modified Chlorine-Free K+-FeOx/SBA-15 as Highly Effective Catalyst for Propylene Epoxidation by Nitrous Oxide. Chem. Lett. 2007, 36 (6), 786–787. (78) Yang, S.; Zhu, W.; Zhang, Q.; Wang, Y.Iron-Catalyzed Propylene Epoxidation by Nitrous Oxide: Effect of Boron on Structure and Catalytic Behavior of Alkali Metal Ion-Modified FeOx/SBA-15. J. Catal. 2008, 254 (2), 251–262. (79) Xu, J.; Chen, L.; Tan, K. F.; Borgna, A.; Saeys, M.Effect of Boron on the Stability of Ni Catalysts during Steam Methane Reforming. J. Catal. 2009, 261 (2), 158–165. (80) Chitpong, N.; Praserthdam, P.; Jongsomjit, B.A Study on Characteristics and Catalytic Properties of Co/ZrO2-B Catalysts towards Methanation. Catal. Lett. 2009, 128 (1–2), 119–126. (81) Yin, A.; Qu, J.; Guo, X.; Dai, W. L.; Fan, K.The Influence of B-Doping on the Catalytic Performance of Cu/HMS Catalyst for the Hydrogenation of Dimethyloxalate. Appl. Catal. A Gen. 2011, 400 (1–2), 39–47. (82) Tan, K. F.; Chang, J.; Borgna, A.; Saeys, M.Effect of Boron Promotion on the Stability of Cobalt Fischer-Tropsch Catalysts. J. Catal. 2011, 280 (1), 50–59. (83) Li, C.The Effect of Boron Modification of Pt/Al2O3 on Hydrogen Chemisorption. Appl. Surf. Sci. 1994, 74, 171–174. (84) Chatterjee, M.; Ishizaka, T.; Suzuki, T.; Suzuki, A.; Kawanami, H.In Situ Synthesized Pd Nanoparticles Supported on B-MCM-41: An Efficient Catalyst for Hydrogenation of Nitroaromatics in Supercritical Carbon Dioxide. Green Chem. 2012, 14 (12), 3415. (85) Chen, H.; Tan, J.; Cui, J.; Yang, X.; Zheng, H.; Zhu, Y.; Li, Y.Promoting Effect of Boron Oxide on Ag/SiO2 Catalyst for the Hydrogenation of Dimethyl Oxalate to Methyl Glycolate MG. Mol. Catal. 2017, 433, 346–353. (86) Yang, Y.; Sun, C.; Du, J.; Yue, Y.; Hua, W.; Zhang, C.; Shen, W.; Xu, H.The Synthesis of Endurable B-Al-ZSM-5 Catalysts with Tunable Acidity for Methanol to Propylene Reaction. Catal. Commun. 2012, 24, 44–47. (87) vanGrieken, R.; Escola, J. M.; Moreno, J.; Rodríguez, R.Direct Synthesis of Mesoporous M-SBA-15 (M=Al, Fe, B, Cr) and Application to 1-Hexene Oligomerization. Chem. Eng. J. 2009, 155 (1–2), 442–450. (88) Holmgren, J. S.A.D. Irwin, J. S. Holmgren, T. W. Z. and J. J.Spectroscopic Investigations of Borosiloxane Bond Formation in the Sol-Gel Process. J. Non. Cryst. Solids 1987, 89, 191–205. (89) Yaripour, F.; Shariatinia, Z.; Sahebdelfar, S.; Irandoukht, A.Effect of Boron Incorporation on the Structure, Products Selectivities and Lifetime of H-ZSM-5 Nanocatalyst Designed for Application in Methanol-to-Olefins (MTO) Reaction. Microporous Mesoporous Mater. 2015, 203 (C), 41–53. (90) Adam W. Franz, Helmut Kronemayer, Daniel Pfeiffer, Roman D. Pilz, Ganther Reuss, Walter Disteldorf, Armin Otto Gamer, A. H.Formaldehyde. Ullmann’s Encycl. Ind. Chem. 1969, 6, 155–160. (91) Gervasini, A.; Fenyvesi, J.; Auroux, A.Study Ofthe Acidic Character Ofmodified Metal Oxide Surfaces Using the Test of Isopropanol Decomposition. Catal. Lett. 1997, 43, 219–228. (92) Zaki, M. I.; Hasan, M. a.; Al-Sagheer, F. a.; Pasupulety, L.In Situ FTIR Spectra of Pyridine Adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: General Considerations for the Identification of Acid Sites on Surfaces of Finely Divided Metal Oxides. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 190 (3), 261–274. (93) C. A. Emeis.Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. J. Catal. 1993, 141, 347–354. (94) Ku, P. H.; Hsiao, C. Y.; Chen, M. J.; Lin, T. H.; Li, Y. T.; Liu, S. C.; Tang, K. T.; Yao, D. J.; Yang, C. M.Polymer/Ordered Mesoporous Carbon Nanocomposite Platelets as Superior Sensing Materials for Gas Detection with Surface Acoustic Wave Devices. Langmuir 2012, 28 (31), 11639–11645. (95) Liu, C.; Lai, N.; Lee, J.; Chen, C.; Yang, C.SBA-15-Supported Highly Dispersed Copper Catalysts : Vacuum – Thermal Preparation and Catalytic Studies in Propylene Partial Oxidation to Acrolein. J. Catal. 2014, 316, 231–239. (96) Villarroel-Rocha, J.; Barrera, D.; Sapag, K.Introducing a Self-Consistent Test and the Corresponding Modification in the Barrett, Joyner and Halenda Method for Pore-Size Determination. Microporous Mesoporous Mater. 2014, 200, 68–78. (97) Villarroel Rocha, J.; Barrera, D.; Sapag, K.Improvement in the Pore Size Distribution for Ordered Mesoporous Materials with Cylindrical and Spherical Pores Using the Kelvin Equation. Top. Catal. 2011, 54 (1–4), 121–134. (98) Balci, S.; Sezgi, N. A.; Eren, E.Boron Oxide Production Kinetics Using Boric Acid as Raw Material. Ind. Eng. Chem. Res. 2012, 51 (34), 11091–11096. (99) Avgouropoulos, G.; Ioannides, T.; Matralis, H.Influence of the Preparation Method on the Performance of CuO-CeO2 catalysts for the Selective Oxidation of CO. Appl. Catal. B Environ. 2005, 56, 87–93. (100) Tsoncheva, T.; Issa, G.; Blasco, T.; Dimitrov, M.; Popova, M.; Hernández, S.; Kovacheva, D.; Atanasova, G.; Nieto, J. M. L.Catalytic VOCs Elimination over Copper and Cerium Oxide Modified Mesoporous SBA-15 Silica. Appl. Catal. A Gen. 2013, 453, 1–12. (101) Czaplinska, J.; Sobczak, I.; Ziolek, M.Bimetallic AgCu/SBA-15 System: The Effect of Metal Loading and Treatment of Catalyst on Surface Properties. J. Phys. Chem. C 2014, 118 (24), 12796–12810. (102) Huo, C.; Ouyang, J.; Yang, H.CuO Nanoparticles Encapsulated inside Al-MCM-41 Mesoporous Materials via Direct Synthetic Route. Sci. Rep. 2015, 4, 1–9. (103) Gaudin, P.; Fioux, P.; Dorge, S.; Nouali, H.; Vierling, M.; Fiani, E.; Molière, M.; Brilhac, J. F.; Patarin, J.Formation and Role of Cu+ Species on Highly Dispersed CuO/SBA-15 Mesoporous Materials for SOx Removal: An XPS Study. Fuel Process. Technol. 2016, 153, 129–136. (104) Chirieac, A.; Dragoi, B.; Ungureanu, A.; Ciotonea, C.; Mazilu, I.; Royer, S.; Mamede, A. S.; Rombi, E.; Ferino, I.; Dumitriu, E.Facile Synthesis of Highly Dispersed and Thermally Stable Copper-Based Nanoparticles Supported on SBA-15 Occluded with P123 Surfactant for Catalytic Applications. J. Catal. 2016, 339, 270–283. (105) Yu, J.; Cao, J.; Du, L.; Wei, Y.; Wang, T.; Tian, H.Enhancement of Diethyl Malonate Hydrogenation to 1,3-Propanediol Using Mesoporous Cu/SBA-15 as Catalyst. Appl. Catal. A Gen. 2018, 555, 161–170. (106) Chary, K. V. R.; Sagar, G. V.; Naresh, D.; Seela, K. K.; Sridhar, B.Characterization and Reactivity of Copper Oxide Catalysts Supported on TiO2−ZrO2. J. Phys. Chem. B 2005, 109 (19), 9437–9444. (107) Ramakrishna Prasad, M.; Kamalakar, G.; Kulkarni, S. J.; Raghavan, K.V.Synthesis of Binaphthols over Mesoporous Molecular Sieves. J. Mol. Catal. A Chem. 2002, 180 (1–2), 109–123. (108) Velu, S.; Suzuki, K.; Okazaki, M.; Kapoor, M. P.; Osaki, T.; Ohashi, F.Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation. J. Catal. 2000, 194 (2), 373–384. (109) Lu Gang, J. van Grondelle, B. G. Anderson, and R. A. Van S.Selective Low Temperature NH3 Oxidation to N2 on Copper-Based Catalysts. J. Catal. 1999, 186, 100–109. (110)Marion, M. C.; Garbowski, E.; Primet, M.Physicochemical Properties of Copper Oxide Loaded Alumina in Methane Combustion. J. Chem. Soc. Faraday Trans. 1990, 86 (17), 3027. (111) Armaroli, T.; Bevilacqua, M.; Trombetta, M.; Milella, F.; Alejandre, A. G.; Ramírez, J.; Notari, B.; Willey, R. J.; Busca, G.A Study of the External and Internal Sites of MFI-Type Zeolitic Materials through the FT-IR Investigation of the Adsorption of Nitriles. Appl. Catal. A Gen. 2001, 216 (1–2), 59–71. (112) Blomfield, G. A.; Little, L. H.Adsorption of Ammonia Oxide Surfaces. J. Catal. 1971, 158 (21), 149–158. (113) Richardson, H. W.Copper Compounds; Wiley‐VCH Verlag GmbH & Co. KGaA.: United States, 2000. (114) Morozov, I.V; Znamenkov, K. O.; Korenev, Y. M.; Shlyakhtin, O. A.Thermal Decomposition of Cu(NO3)2·3H2O on Activated Carbon Fibers. Carbon Sci. 2003, 403 (3), 173–179. (115) Niu, H.; Yang, Q.; Tang, K.A New Route to Copper Nitrate Hydroxide Microcrystals. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2006, 135 (2), 172–175. (116) Sun, J.; Ma, D.; Zhang, H.; Liu, X.; Han, X.; Bao, X.; Weinberg, G.; Pfänder, N.; Su, D.Toward Monodispersed Silver Nanoparticles with Unusual Thermal Stability. J. Am. Chem. Soc. 2006, 128 (49), 15756–15764. (117) Chen, C. S.; Lai, Y. T.; Lai, T. W.; Wu, J. H.; Chen, C. H.; Lee, J. F.; Kao, H. M.Formation of Cu Nanoparticles in SBA-15 Functionalized with Carboxylic Acid Groups and Their Application in the Water-Gas Shift Reaction. ACS Catal. 2013, 3 (4), 667–677. (118) Lahousse, C.; Bachelier, J.; Lavalley, J.-C.; Lauron-Pernot, H.; LeGovic, A.-M.Validity of Using Isopropanol Decomposition as a Test-Reaction for the Caracterization of Metal Oxides Basicity; Comparison with Results Obtained from MBOH Decomposition. J. Mol. Catal. A 1994, 87, 329–332. (119) Haffad, D.; Chambellan, A.; Lavalley, J. C.Propan-2-ol Transformation on Simple Metal Oxides TiO2, ZrO2and CeO2. J. Mol. Catal. A Chem. 2001, 168 (1–2), 153–164. (120) Gervasini, A.; Auroux, A.Acidity and Basicity of Metal Oxide Surfaces 1 II. Determination by Catalytic Decomposition of Isopropanol. J. Catal. 1991, 131, 190–198. (121) Youssef, A. M.; Khalil, L. B.; Girgis, B. S.Decomposition of Isopropanol on Magnesium-Oxide Silica in Relation to Texture, Acidity and Chemical-Composition. Appl. Catal. A Gen. 1992, 81 (1), 1–13. (122) Bedia, J.; Rosas, J. M.; Vera, D.; Rodríguez-Mirasol, J.; Cordero, T.Isopropanol Decomposition on Carbon Based Acid and Basic Catalysts. Catal. Today 2010, 158 (1–2), 89–96. (123) Turek, W.; Krowiak, A.Evaluation of Oxide Catalysts’ Properties Based on Isopropyl Alcohol Conversion. Appl. Catal. A Gen. 2012, 417–418, 102–110. (124) Peil, K. P.; Galya, L. G.; Marcelin, G.Acid and Catalytic Properties of Nonstoichiometric Aluminum Borates. J. Catal. 1989, 115 (2), 441–451. (125) Of, S.; Surface, T. H. E.; Copper, O. F.FT-IR Study of the Surface of Copper Oxide. J. Mol. Catal. A 1987, 43, 225–236. (126) Karge, H. G.Catalysis and Adsorption by Zeolites; G. Ohlmann et al., Ed.; Elsevier Science Publishers: Amsterdam, 1991. (127) Trong On, D.; Joshi, P. N.; Lemay, G.; Kaliaguine, S.Acidity and Structural State of Boron in Mesoporous Boron Silicate MCM-41. Stud. Surf. Sci. Catal. 1995, 97 (C), 543–549. (128) Conesa, T. D.; Hidalgo, J. M.; Luque, R.; Campelo, J. M.; Romero, A. A.Influence of the Acid-Base Properties in Si-MCM-41 and B-MCM-41 Mesoporous Materials on the Activity and Selectivity of ε-Caprolactam Synthesis. Appl. Catal. A Gen. 2006, 299 (1–2), 224–234. (129) Ward, J. W.A Spectroscopic Study of the Surface of Zeolite Y: The Adsorption of Pyridine. J. Colloid Interface Sci. 1968, 28 (2), 269–278. (130) Palomino, G. T.; Pascual, J. J. C.; Delgado, M. R.; Parra, J. B.; Areán, C. O.FT-IR Studies on the Acidity of Gallium-Substituted Mesoporous MCM-41 Silica. Mater. Chem. Phys. 2004, 85 (1), 145–150. (131) Wolski, L.; Sobczak, I.; Ziolek, M.Development of Multifunctional Gold, Copper, Zinc, Niobium Containing MCF Catalysts – Surface Properties and Activity in Methanol Oxidation. Microporous Mesoporous Mater. 2017, 243, 339–350. (132) Bilkova, I.; Sobczak, I.; Decyk, P.; Ziolek, M.; Whitten, J. E.The Effect of Zinc and Copper in Gold Catalysts Supported on MCF Cellular Foams on Surface Properties and Catalytic Activity in Methanol Oxidation. Microporous Mesoporous Mater. 2016, 232, 97–108.
|