|
1. Branden, C.; Tooze, J., Introduction to protein structure. Garland Publishing, Inc., 1991; p 3-19. 2. Caughey, B.; Lansbury, P. T., Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003, 26, 267-98. 3. β摺板. https://zh.wikipedia.org/wiki/%CE%92%E6%8A%98%E5%8F%A0 (retrieved from 22 Jun, 2018). 4. Nomenclature, I.-I. C. o. B., Iupac-iub commission on biochemical nomenclature. Abbreviations and symbols for the description of the conformation of polypeptide chains. Tentative rules (1969). Biochemistry 1970, 9, 3471-3479. 5. Shi, L.; Holliday, A. E.; Shi, H.; Zhu, F.; Ewing, M. A.; Russell, D. H.; Clemmer, D. E., Characterizing intermediates along the transition from polyproline I to polyproline II using ion mobility spectrometry-mass spectrometry. J Am Chem Soc 2014, 136, 12702-11. 6. Di Lullo, G. A.; Sweeney, S. M.; Korkko, J.; Ala-Kokko, L.; San Antonio, J. D., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 2002, 277, 4223-31. 7. Cowan, P. M.; McGavin, S.; North, A. C. T., The polypeptide chain configuration of collagen. Nature 1955, 176, 1062. 8. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biology 1997, 15, 545-554. 9. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967. 10. Makareeva, E.; Mertz, E. L.; Kuznetsova, N. V.; Sutter, M. B.; DeRidder, A. M.; Cabral, W. A.; Barnes, A. M.; McBride, D. J.; Marini, J. C.; Leikin, S., Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J Biol Chem 2008, 283, 4787-98. 11. Nuytinck, L.; Freund, M.; Lagae, L.; Pierard, G. E.; Hermanns-Le, T.; De Paepe, A., Classical Ehlers-Danlos syndrome caused by a mutation in type i collagen. Am J Hum Genet 2000, 66, 1398-402. 12. Ottl, J.; Battistuta, R.; Pieper, M.; Tschesche, H.; Bode, W.; Kühn, K.; Moroder, L., Design and synthesis of heterotrimeric collagen peptides with a built‐in cystine‐knot models for collagen catabolism by matrix‐metalloproteases. FEBS Lett 1996, 398, 31-36. 13. Gauba, V.; Hartgerink, J. D., Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J Am Chem Soc 2007, 129, 2683-2690. 14. Chiang, C. H.; Horng, J. C., Cation-π interaction induced folding of AAB-type collagen heterotrimers. J Phys Chem B 2016, 120, 1205-11. 15. Chiang, C. H.; Fu, Y. H.; Horng, J. C., Formation of AAB-type collagen heterotrimers from designed cationic and aromatic collagen-mimetic peptides: Evaluation of the c-terminal cation-π interactions. Biomacromolecules 2017, 18, 985-993. 16. Ma, J. C.; Dougherty, D. A., The cation−π interaction. Chem Rev 1997, 97, 1303-1324. 17. Dennis, G. R.; Ritchie, G. L. D., Dilute-solution field gradient-induced birefringence and molecular quadrupole moment of benzene. J Phys Chem 1991, 95, 656-660. 18. Cation–π interaction. https://en.wikipedia.org/wiki/Cation%E2%80%93pi_interaction (retrieved from 22 Jun, 2018). 19. https://www.sigmaaldrich.com/life-science/metabolomics/learning-center/ amino-acid-reference-chart.html (retrieved from 22 Jun, 2018). 20. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation-π interactions in aromatics of biological and medicinal interest: Electrostatic potential surfaces as a useful qualitative guide. Proc Natl Acad Sci USA 1996, 93, 10566. 21. Burley, S. K.; Petsko, G. A., Amino-aromatic interactions in proteins. FEBS Lett 1986, 203, 139-143. 22. Singh, J.; Thornton, J. M., Sirius: An automated method for the analysis of the preferred packing arrangements between protein groups. J Mol Biol 1990, 211, 595-615. 23. Bruice, T. C.; Schmir, G. L., Imidazole catalysis. I. The catalysis of the hydrolysis of phenyl acetates by imidazole. J Am Chem Soc 1957, 79, 1663-1667. 24. Gold, D. H.; Gregor, H. P., Metal—polyelectrolyte complexes. VIII. The poly-n-vinylimidazole—copper(II) complex. J Phys Chem 1960, 64, 1464-1467. 25. Bezer, S.; Matsumoto, M.; Lodewyk, M. W.; Lee, S. J.; Tantillo, D. J.; Gagne, M. R.; Waters, M. L., Identification and optimization of short helical peptides with novel reactive functionality as catalysts for acyl transfer by reactive tagging. Org Biomol Chem 2014, 12, 1488-94. 26. Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stohr, J.; Smith, T. A.; Hu, X.; DeGrado, W. F.; Korendovych, I. V., Short peptides self-assemble to produce catalytic amyloids. Nat Chem 2014, 6, 303-9. 27. Zastrow, M. L.; Pecoraro, V. L., Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes. J Am Chem Soc 2013, 135, 5895-903. 28. Jalan, A. A.; Demeler, B.; Hartgerink, J. D., Hydroxyproline-free single composition ABC collagen heterotrimer. J Am Chem Soc 2013, 135, 6014-7. 29. Parmar, A. S.; James, J. K.; Grisham, D. R.; Pike, D. H.; Nanda, V., Dissecting electrostatic contributions to folding and self-assembly using designed multicomponent peptide systems. J Am Chem Soc 2016, 138, 4362-7. 30. Chen, C. C.; Hsu, W.; Hwang, K. C.; Hwu, J. R.; Lin, C. C.; Horng, J. C., Contributions of cation-π interactions to the collagen triple helix stability. Arch Biochem Biophys 2011, 508, 46-53. 31. 丁翊涵. 金屬誘導膠原蛋白模擬胜肽自組裝與其結構對酯類水解反應之催化活性探討. 碩士學位論文, 國立清華大學, 2016. 32. 洪珮瑜. 含組胺酸之聚脯胺酸短胜肽與類膠原蛋白胜肽對酯類水解反應的催化效率探討. 碩士學位論文, 國立清華大學, 2017. 33. 圓偏光二色光譜. http://highscope.ch.ntu.edu.tw/wordpress/?p=46556 (retrieved from 22 Jun, 2018). 34. Whitmore, L.; Wallace, B. A., Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89, 392-400. 35. L. Michaelis , M. M. L. M., Die kinetik der invertinwirkung. Biochem Z 1913, 49, 333-369.
|