帳號:guest(13.59.1.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王宣期
作者(外文):Wang, Hsuan-Chi
論文名稱(中文):雙亞硝基鐵錯合物催化水裂解之研究
論文名稱(外文):Overall water splitting Catalyzed by Dinitrosyl Iron Complex
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen-Feng
口試委員(中文):李位仁
李建明
魯才德
口試委員(外文):Lee, Way-Zen
Lee, Chien-Ming
Lu, Tsai-Te
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023530
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:雙亞硝基鐵錯合物催化水水裂解
外文關鍵詞:overallwatersplittingdinitrosylironcomplex
相關次數:
  • 推薦推薦:0
  • 點閱點閱:216
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
由於近年來石化燃料的耗盡,全球科學家開始找尋零碳的可再生能源來代替非再生能源。在眾多研究方向中,主要以電、光催化水的裂解為最具展望性及經濟效益的方法,因為所產生的氫氣燃燒後伴隨而生的副產物為無污染的水,因此被視為一乾淨、零碳的再生能源。本研究希望可以提高電裂解水的效率,設計並合成出了一個穩定性高且具經濟效益的雙亞硝基鐵錯合物催化劑 [(μ-N,N-BADI)Fe2(NO)4] (1),同時也能進一步將complex 1電沉積在石墨電極上,形成一個效率良好且穩定的固態材料。將complex 1分別在三種電解液下電沉積於石墨板上時,這些電沉積石墨板同時展現了不錯的HER、OER催化活性,甚至也能進行水電裂解的全反應。為了進一步了解complex 1電沉積在石墨碳板表面的沉積結構以及組成,使用了一系列表面化學分析儀器鑑定電沉積後的石墨板表面,希望能夠藉此得知,不同表面沉積結構與組成對於催化活性的影響。
Since the awareness of the issues about the global climatic change and the demand on carbon-free energy stimulates the intense research for the utilization of renewable energy, it suggests that electro- and photo-catalytic water splitting is the most promising and cost-effective approach to produce clean and carbon-free fuel. In order to investigate the electrocatalytic H2 and O2 evolution from water using economical, efficient and robust catalyst, dinitrosyl iron complex (DNIC) [{Fe(NO)2}10]2 [(μ-N,N-BADI)Fe2(NO)4] (1) was synthesized and characterized by FT-IR spectroscopy, cyclic voltammogram (CV) and single-crystal X-ray diffraction. In comparison with the homogeneous complex 1 showing compromised HER/OER activity, it is noticed that heterogeneous DNIC-deposit electrodes (AFe, CFeO, CFeP and CFeS) prepared from the facile electrodeposition on the graphite electrode in three different electrolytes (1 M NaOH, 1 M phosphate buffer and 1 M Na2SO4), exhibit long-term stability and good electrocatalytic activity with low overpotential and low Tafel slope. In addition, the electrode-pair setting, CFeCoP-CFeCoP, display superior electrocatalytic actvivity for overall water splitting with overpotential close to that of IrO2-Pt electrode-pair setting. With regard to the enhanced HER and OER activity, SEM, EDX and XPS measurements were conducted to probe the morphology and composition of theses DNIC-deposit electrodes.
摘要 i
Abstract ii
目錄 iii
Figure List v
Table List ix
第一章 緒論 1
1-1 一氧化氮(Nitric oxide, NO) 1
1-2 一氧化氮在生物體內的作用 4
1-3 一氧化氮在生物體內的儲存與傳遞 7
1-4 氫能 12
1-5 光反應 18
1-5-1 勻相催化(homogeneous) 20
1-5-2 異相催化(heterogeneous) 24
1-6 研究方向 27
第二章 實驗部分 28
2-1 一般實驗 28
2-2 儀器 29
2-3 藥品 31
2-4 化合物之合成及鑑定 32
2-4-1 2-N,3-N-bis[2-(dimethylamino)ethyl]butane-2,3-diimine (N,N-BADI) 32
2-4-2 [(μ-N,N-BADI)Fe2(NO)4]的合成 32
2-5 電化學 33
2-6 晶體結構解析(Crystallography) 34
第三章 結果與討論 36
3-1 化合物[(μ-N,N-BADI)Fe2(NO)4]的合成、結構與光譜分析 36
3-2 勻相催化(homogeneous electrocatalysis) 39
3-3 異相催化(heterogeneous electrocatalysis) 41
3-4 水的電裂解(electrocatalytic water splitting) 49
第四章 結論 61
參考文獻 63
(1) Furchgott, R. F.; Zawadski, J. V. Nature. 1980, 288, 373.
(2) Palmer, R. M. J.; Ferrige, A. G.; Moncada, S. Nature. 1987, 327,524.
(3) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Proc. Natl. Acad. Sci. U.S.A. 1987,84, 9265.
(4) Stamler, J. S. Cell. 1994, 78, 931.
(5) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science. 1992, 258, 1898.
(6) Ueno, T.; Susuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63, 485.
(7) Lee, J.; Chen, L.; West, A. H.; Richter-Addo, G. B. Chem. Rev. 2002, 102, 1019.
(8) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091.
(9) Koshland, D. E. Science. 1992, 258, 1861.
(10) Bogdan, C. Trends Cell Biol. 2001, 11, 66.
(11) Gary, L. M.; Donald, A. T.: Prentice Hall International, Inc. Inorganic Chemistry2nd , 44.
(12) Enemark, J. H.; Feltham, T. D. Coord. Chem. Rev. 1974, 13, 339.
(13) Marletta, M. A. Cell. 1994, 78, 927.
(14) Henry, Y.; Ducrocq, C.; Drapier, J. C.; Servent, D.; Pellat, C.; Guissani, A. Eur. Biophys. J. 1991, 20, 1.
(15) Davis, K. L.; Martin, E.; Turko, I. V.; Murad, F. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 203.
(16) Posen, G. M.; Tsai, P.; Pou, S. Chem. Rev. 2002, 102, 1191.
(17) Bogdan, C. Trends Cell Biol. 2001, 11, 66.
(18) Lundberg, J. O.; Weitzberg, E.; Cole, J. A.; Benjamin, N. Nat. Rev. Microbiol. 2004, 2, 593.
(19) Lundberg, J. O.; Weitzberg, E.; Gladwin M. T. Nat. Rev. Drug Discovery. 2008, 7, 156.
(20) Beckman, J. S.; Beckamn, T. W.; Chen, J.; Marshall, P. A.; Freeman, B. A. Proc.Natl. Acad. Sci. U.S.A. 1990, 87, 1620.
(21) Williams, D. L. H. Acc. Chem. Res. 1999, 32, 869.
(22) Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Mülsch, A. J. Biol. Chem. 1995, 270, 29244.
(23) Brosworth, C. A.; Toledo, J.C., Jr.; Zmijewski, J. W.; Li, Q.; Lancaster, J. R., Jr.Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 4671.
(24) McDonald, C. C.; Phillips, W. D.; Mower, H. F. J. Am. Chem. Soc. 1965, 87, 3319.
(25) Tsai-Te Lu, Szu-Hsueh Lai, Ya-Wen Li, I-Jui Hsu, Ling-Yun Jang, Jyh-Fu Lee, I-Chia Chen, Wen-Feng Liaw, Inorg. Chem. 2011, 50, 5396–5406.
(26) Gwost, D.; Caulton, K. D. Inorg. Chem. 1973, 12, 2095.
(27) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J.Inorg. Chem. 1980, 19, 2627.
(28) Tsai,M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I.-J.; Lee, J.-F.; Liaw, W.-F. Inorg.Chem. 2009, 48, 9579.
(29) Wang, X.; Sundberg, E. B.; Li, L.; Kantardjieff, K. A.; Herron, S. R.; Lim, M.; Ford, P.C. Chem. Commum. 2005, 477.
(30) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041.
(31) Tsai, F.-T.; Kuo T.-S.; Liaw, W.-F. J. Am. Chem. Soc. 2009, 131, 3426.
(32) Peck, H. D.; Pietro, A. S.; Gest, H. Proc. Natl. Acad. Sci. 1956, 42, 13.
(33) Casalot, L.; Rousset, M. TRENDS in Microbiol. 2001, 9, 228.
(34) Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Nature. 1995, 373, 580.
(35) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure. 1999, 7, 557.
(36) Mulder, D. W.; Shepard, E. M.; Meuser, J. E.; Joshi, N.; King, P. W.; Posewitz, M. C.; Broderick, J. B.; Peters, J. W. Structure. 2011, 19, 1038.
(37) Ogo, S.; Ichikawa, K.; Kishima, T.; Matsumoto, T.; Nakai, H.; Kusaka, K.; Ohhara, T. Science. 2013, 339, 682.
(38) Felton, G. A. N.; Glass, R. S.; Lichtenberger, D. L.; Evans, D. H. Inorg. Chem. 2006, 45, 9181.
(39) Jian, J.-X.; Liu, Q.; Li, Z.-J.; Wang, F.; Li, X.-B.; Li, C.-B.; Liu, B.; Meng, Q.-Y.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. Nat. comms. 2013, 4, 2695
(40) Thoi, V. S.; Sun, Y.; Long, J. R.; Chang, C. J. Chem. Soc. Rev. 2013, 42, 2388.
(41) Fang, T.; Fu,L. Z.;Zhou, L. L.;Zhan,S. Z.;Chen,S. Electrochimica Acta. 2015, 178, 368–373
(42) Su, C.-H, J. C.Inst. Tech. 2003, 28,4
(43) Shi L. X.; W. P. Biochimica et Biophysica Acta. 2004, 1608, 75
(44) Nocera, D. G., J. Am. Chem. Soc. 2016, 138, 4229−4236
(45) Lu, T.-B., Angew. Chem. Int. Ed. 2014, 53, 13042 –13048
(46) Okamura. M., Nature. 2016, 530,465
(47) Nocera, D. G.,J. Am. Chem. Soc. 2010, 132, 16501-16509
(48) Kitchin, J. R., J. Am. Chem. Soc. 2014, 136, 5603−5606
(49) Zhao, C., ACS Catal. 2017, 7, 2535−2541
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 前驅化合物雙亞硝基鐵錯合物之電沉積觸媒電催化水裂解之研究
2. 雙亞硝基鐵錯合物經水解及歧化反應生成低零價鐵含量之Fe@FexOy暨呫噸衍生物光誘發還原組成Fe@Fe3O4複合材料之研究
3. Study on the Multifunctional Dinitrosyl Iron Complexes Containing Redox-Activated Nitric Oxide, Iron and Reducing Thiolate Ligand
4. 雙亞硝基鐵錯合物之新衍生物:合成與反應性的探討
5. 雙-亞硝鐵化合物(Dinitrosyl Iron Complexes):[2Fe2S] cluster降解(degradation)及修復(repair)之生化模型化合物研究
6. 含鎳/鐵金屬之生化擬態模型化合物的研究:鎳/鐵氫化酵素和鐵醯腈水解酵素
7. 鎳/鐵氫化酵素和鐵醯腈水解酵素活化中心之小分子模型化合物研究
8. 雙-亞硝鐵化合物(Dinitrosyl Iron Complexes)[PPN][(NO)2FeSe5]:轉化與反應性
9. 鐵-硫-亞硝基化合物:合成、反應性及其在生化擬態雙亞硝基鐵化合物之應用
10. Dinitrosyl Iron Complexes in Chemistry and Biochemistry
11. 雙核鐵亞硝基化合物之合成與反應性:腈水解酶及雙亞硝基鐵化合物之模型研究
12. 細胞表面硫酸乙醯肝素寡醣的合成及其生物活性的測試
13. 鎳-硫化合物之合成與反應性:鎳/鐵氫化酵素之鎳活化中心之生化擬態模型化合物
14. 肝素寡醣體晶片的製備及其應用
15. [S,S]/[S,N]/[S,O]鍵結模式之雙亞硝鐵化合物(Dinitrosyl Iron Complexes):合成及{Fe(NO)2}電子結構之分析
 
* *