帳號:guest(18.117.8.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃少澎
作者(外文):Huang, Shao-Peng
論文名稱(中文):以中孔洞二氧化矽模板製備金奈米結構之合成與鑑定研究
論文名稱(外文):Templated Synthesis and Characterization of Gold Nanostructures in Mesoporous Silica
指導教授(中文):楊家銘
指導教授(外文):Yang, Chia-Min
口試委員(中文):朱立岡
劉靜萍
口試委員(外文):Chu, Li-Kang
Liu, Ching-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023528
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:105
中文關鍵詞:中孔洞二氧化矽模板合成法金奈米結構
外文關鍵詞:mesoporous silicatemplated synthesisgold nanostructure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用中孔洞二氧化矽作為模板,以含浸法將金屬鹽與金氯酸填入孔道,藉由陰陽離子間電荷作用力,並使用氫氣還原,可製備出高含量金奈米結構於中孔洞二氧化矽。第一部分我們選擇不同種類的金屬鹽與金氯酸共含浸於SBA-15薄片,以X光粉末繞射、掃描式電子顯微鏡、穿透式電子顯微術與X光吸收光譜證實具高電荷密度的金屬陽離子 (例如:Fe3+、Ga3+等) 可協助金氯酸進入孔道內,且於氫氣反應後仍可侷限還原態金於孔洞內。此外,藉由調控帶正電金屬鹽與金氯酸之比例與含量,可製備出高含量且高分散的金奈米顆粒或金奈米棒於SBA-15薄片,改善以往合成金奈米結構於中孔洞二氧化矽時需引入表面特定官能基 (例如:胺基或巰基) 等步驟。第二部分我們使用相同製備法於不同結構與孔徑之中孔洞二氧化矽 (MCM-41、MMT-1與MCM-48),研究此法的適用性,以及不同中孔洞材料所對應的金奈米顆粒之形貌與結構。
We utilized electrostatic interactions between metal salts and chloroauric acid to fabricate high gold loading nanostructure in mesoporous silica. In the first part of the thesis, we incorporated different kinds of metal salts and chloroauric acid into SBA-15 platelet via impregnation. We postulated that metal cations with high charge density (e.g. Fe3+, Ga3+ ) could confine chloroauric acid in the channel during hydrogen reduction, and prevent sintering of gold nanostructures. The idea is evidenced by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray absorption spectroscopy. Moreover, we could obtain high loading and high dispersion gold nanoparticles and gold nanorods in SBA-15 platelet by altering the ratio of metal salts to chloroauric acid or the quantity of metal species. This strategy is superior to the conventional one, which requires the modification of mesoporous silica with the specific functional group (e.g. –NH2, -SH) prior to loading gold precursor onto silica support. In the second part of the thesis, we extend this idea to mesoporous silica nanoparticles with different mesopore topologies (e.g. MCM-41, MMT-1, MCM-48).
謝誌 I
摘要 III
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1金奈米結構製備方法 1
1-1-1 直接合成法 2
1-1-2 模板合成法 4
1-2 金奈米結構性質與應用 7
1-2-1 表面電漿共振效應 8
1-2-2 奈米金觸媒 13
1-3 中孔洞二氧化矽材料簡介 15
1-4 研究動機 28
第二章 實驗部分 30
2-1 實驗藥品 30
2-2 樣品製備 32
2-2-1 中孔洞二氧化矽之製備 32
2-2-1-1 SBA-15 platelet的合成92 32
2-2-1-2 MCM-41及MMT-1的合成77 32
2-2-1-3 MCM-48的合成93 33
2-2-2 以中孔洞二氧化矽為模板製備金奈米結構 34
2-3 樣品命名 34
2-4 材料鑑定分析技術簡介 37
2-4-1 結構分析技術 37
2-4-1-1 X光粉末繞射 37
2-4-1-2 X光吸收光譜 40
2-4-2 成分分析技術 44
2-4-2-1 能量散射光譜 44
2-4-3 電子顯微術 46
2-4-3-1 掃描式電子顯微術 46
2-4-3-2 穿透式電子微術 47
2-4-4 氮氣物理吸附 48
第三章 結果與討論 54
3-1中孔洞二氧化矽之分析與鑑定 54
3-1-1 SBA-15 platelet 54
3-1-2 MCM-41 56
3-1-3 MMT-1 57
3-1-4 MCM-48 59
3-2 以 SBA-15 為模板製備之金奈米結構 61
3-2-1 金屬硝酸鹽種類的影響 61
3-2-2 鐵價數與陰離子種類的影響 67
3-2-3 X光吸收光譜鑑定 70
3-2-4 後處理方式的影響 77
3-2-5 金屬含量的影響 83
3-3 以 MCM-41 為模板製備之金奈米結構 89
3-4 以 MMT-1 為模板製備之金奈米結構 90
3-5 以 MCM-48 為模板製備之金奈米結構 91
第四章 結論及未來展望 93
第五章 參考文獻 94
(1) Faraday, M., The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philosophical Transactions of the Royal Society of London 1857, 147, 145-181.
(2) Torimoto, T.; Okazaki, K.; Kiyama, T.; Hirahara, K.; Tanaka, N.; Kuwabata, S., Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Applied Physics Letters 2006, 89.
(3) Mafune, F.; Kohno, J.; Takeda, Y.; Kondow, T.; Sawabe, H., Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 2001, 105, 5114-5120.
(4) Turkevich, J.; Stevenson, P. C.; Hillier, J., A STUDY OF THE NUCLEATION AND GROWTH PROCESSES IN THE SYNTHESIS OF COLLOIDAL GOLD. Discussions of the Faraday Society 1951, 55-75.
(5) Jana, N. R.; Gearheart, L.; Murphy, C. J., Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mat. 2001, 13, 2313-2322.
(6) Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065-4067.
(7) Busbee, B. D.; Obare, S. O.; Murphy, C. J., An improved synthesis of high-aspect-ratio gold nanorods. Advanced Materials 2003, 15, 414-416.
(8) Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials 2001, 13, 1389-1393.
(9) Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P., Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews 2005, 249, 1870-1901.
(10) Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F., Gold nanorods and their plasmonic properties. Chemical Society Reviews 2013, 42, 2679-2724.
(11) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem.-Int. Edit. 2009, 48, 60-103.
(12) Malgras, V.; Ataee-Esfahani, H.; Wang, H. J.; Jiang, B.; Li, C. L.; Wu, K. C. W.; Kim, J. H.; Yamauchi, Y., Nanoarchitectures for Mesoporous Metals. Advanced Materials 2016, 28, 993-1010.
(13) Selvan, S. T.; Spatz, J. P.; Klok, H. A.; Moller, M., Gold-polypyrrole core-shell particles in diblock copolymer micelles. Advanced Materials 1998, 10, 132-134.
(14) Bronstein, L.; Kramer, E.; Berton, B.; Burger, C.; Forster, S.; Antonietti, M., Successive use of amphiphilic block copolymers as nanoreactors and templates: Preparation of porous silica with metal nanoparticles. Chem. Mat. 1999, 11, 1402-1405.
(15) Pileni, M. P., Fabrication and physical properties of self-organized silver nanocrystals. Pure and Applied Chemistry 2000, 72, 53-65.
(16) Xie, J. P.; Zheng, Y. G.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
(17) Bender, F.; Mankelow, R. K.; Hibbert, D. B.; Gooding, J. J., Lyotropic liquid crystal templating of groups 11 and 12 metal films. Electroanalysis 2006, 18, 1558-1563.
(18) Sasaki, M.; Osada, M.; Sugimoto, N.; Inagaki, S.; Fukushima, Y.; Fukuoka, A.; Ichikawa, M., Novel templating fabrication of nano-structured Pt clusters and wires in the ordered cylindrical mesopores of FSM-16 and their unique properties in catalysis and magnetism. Microporous Mesoporous Mat. 1998, 21, 597-606.
(19) Sasaki, M.; Osada, M.; Higashimoto, N.; Yamamoto, T.; Fukuoka, A.; Ichikawa, M., Templating fabrication of platinum nanoparticles and nanowires using the confined mesoporous channels of FSM-16 - their structural characterization and catalytic performances in water gas shift reaction. Journal of Molecular Catalysis a-Chemical 1999, 141, 223-240.
(20) Han, Y. J.; Kim, J. M.; Stucky, G. D., Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem. Mat. 2000, 12, 2068-2069.
(21) Liu, Z.; Sakamoto, Y.; Ohsuna, T.; Hiraga, K.; Terasaki, O.; Ko, C. H.; Shin, H. J.; Ryoo, R., TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41. Angew. Chem.-Int. Edit. 2000, 39, 3107-3110.
(22) Shin, H. J.; Ryoo, R.; Liu, Z.; Terasaki, O., Template synthesis of asymmetrically mesostructured platinum networks. J. Am. Chem. Soc. 2001, 123, 1246-1247.
(23) Tsung, C. K.; Hong, W. B.; Shi, Q. H.; Kou, X. S.; Yeung, M. H.; Wang, J. F.; Stucky, G. D., Shape- and orientation-controlled gold nanoparticles formed within mesoporous silica nanofibers. Advanced Functional Materials 2006, 16, 2225-2230.
(24) Brumlik, C. J.; Martin, C. R., TEMPLATE SYNTHESIS OF METAL MICROTUBULES. J. Am. Chem. Soc. 1991, 113, 3174-3175.
(25) Whitney, T. M.; Jiang, J. S.; Searson, P. C.; Chien, C. L., FABRICATION AND MAGNETIC-PROPERTIES OF ARRAYS OF METALLIC NANOWIRES. Science 1993, 261, 1316-1319.
(26) Martin, C. R., NANOMATERIALS - A MEMBRANE-BASED SYNTHETIC APPROACH. Science 1994, 266, 1961-1966.
(27) Zhang, Z. B.; Ying, J. Y.; Dresselhaus, M. S., Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process. Journal of Materials Research 1998, 13, 1745-1748.
(28) Zhang, Z. B.; Gekhtman, D.; Dresselhaus, M. S.; Ying, J. Y., Processing and characterization of single-crystalline ultrafine bismuth nanowires. Chem. Mat. 1999, 11, 1659-1665.
(29) Martin, B. R.; Dermody, D. J.; Reiss, B. D.; Fang, M. M.; Lyon, L. A.; Natan, M. J.; Mallouk, T. E., Orthogonal self-assembly on colloidal gold-platinum nanorods. Advanced Materials 1999, 11, 1021-1025.
(30) Sloan, J.; Dunin-Borkowski, R. E.; Hutchison, J. L.; Coleman, K. S.; Williams, V. C.; Claridge, J. B.; York, A. P. E.; Xu, C. G.; Bailey, S. R.; Brown, G.; Friedrichs, S.; Green, M. L. H., The size distribution, imaging and obstructing properties of C-60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chemical Physics Letters 2000, 316, 191-198.
(31) Govindaraj, A.; Satishkumar, B. C.; Nath, M.; Rao, C. N. R., Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mat. 2000, 12, 202-205.
(32) Fukuoka, A.; Higashimoto, N.; Sakamoto, Y.; Inagaki, S.; Fukushima, Y.; Ichikawa, M., Preparation, XAFS characterization, and catalysis of platinum nanowires and nanoparticles in mesoporous silica FSM-16. Topics in Catalysis 2002, 18, 73-78.
(33) Araki, H.; Fukuoka, A.; Sakamoto, Y.; Inagaki, S.; Sugimoto, N.; Fukushima, Y.; Ichikawa, M., Template synthesis and characterization of gold nano-wires and -particles in mesoporous channels of FSM-16. Journal of Molecular Catalysis a-Chemical 2003, 199, 95-102.
(34) Fukuoka, A.; Araki, H.; Sakamoto, Y.; Inagaki, S.; Fukushima, Y.; Ichikawa, M., Palladium nanowires and nanoparticles in mesoporous silica templates. Inorganica Chimica Acta 2003, 350, 371-378.
(35) Sakamoto, Y.; Fukuoka, A.; Higuchi, T.; Shimomura, N.; Inagaki, S.; Ichikawa, M., Synthesis of platinum nanowires in organic-inorganic mesoporous silica templates by photoreduction: Formation mechanism and isolation. J. Phys. Chem. B 2004, 108, 853-858.
(36) Ghosh, A.; Patra, C. R.; Mukherjee, P.; Sastry, M.; Kumar, R., Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica. Microporous Mesoporous Mat. 2003, 58, 201-211.
(37) Yang, C. M.; Sheu, H. S.; Chao, K. J., Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48. Advanced Functional Materials 2002, 12, 143-148.
(38) Sareen, S.; Mutreja, V.; Pal, B.; Singh, S., Homogeneous dispersion of Au nanoparticles into mesoporous SBA-15 exhibiting improved catalytic activity for nitroaromatic reduction. Microporous Mesoporous Mat. 2015, 202, 219-225.
(39) Gutierrez, L. F.; Hamoudi, S.; Belkacemi, K., Synthesis of Gold Catalysts Supported on Mesoporous Silica Materials: Recent Developments. Catalysts 2011, 1, 97-154.
(40) Takai, A.; Doi, Y.; Yamauchi, Y.; Kuroda, K., Soft-Chemical Approach of Noble Metal Nanowires Templated from Mesoporous Silica (SBA-15) through Vapor Infiltration of a Reducing Agent. Journal of Physical Chemistry C 2010, 114, 7586-7593.
(41) Schatz, G. C., Using theory and computation to model nanoscale properties. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 6885-6892.
(42) Lal, S.; Link, S.; Halas, N. J., Nano-optics from sensing to waveguiding. Nature Photonics 2007, 1, 641-648.
(43) Bardhan, R.; Lal, S.; Joshi, A.; Halas, N. J., Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer. Accounts of Chemical Research 2011, 44, 936-946.
(44) Chen, C. F.; Tzeng, S. D.; Chen, H. Y.; Lin, K. J.; Gwo, S., Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling. J. Am. Chem. Soc. 2008, 130, 824-826.
(45) Jain, P. K.; El-Sayed, M. A., Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Letters 2008, 8, 4347-4352.
(46) Bond, G. C.; Sermon, P. A., Gold catalysts for olefin hydrogenation. Gold Bulletin 1973, 6, 102-105.
(47) Galvagno, S.; Parravano, G., CHEMICAL REACTIVITY OF SUPPORTED GOLD .4. REDUCTION OF NO BY H-2. Journal of Catalysis 1978, 55, 178-190.
(48) Haruta, M., When Gold Is Not Noble: Catalysis by Nanoparticles. The Chemical Record 2003, 3, 75-87.
(49) Corma, A.; Serna, P., Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332-334.
(50) Hashmi, A. S. K.; Hutchings, G. J., Gold catalysis. Angew. Chem.-Int. Edit. 2006, 45, 7896-7936.
(51) Min, B. K.; Friend, C. M., Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chemical Reviews 2007, 107, 2709-2724.
(52) Dimitratos, N.; Lopez-Sanchez, J. A.; Hutchings, G. J., Slective liquid phase oxidation with supported metal nanoparticles. Chemical Science 2012, 3, 20-44.
(53) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N., NOVEL GOLD CATALYSTS FOR THE OXIDATION OF CARBON-MONOXIDE AT A TEMPERATURE FAR BELOW 0-DEGREES-C. Chemistry Letters 1987, 405-408.
(54) Ishida, T.; Koga, H.; Okumura, M.; Haruta, M., Advances in Gold Catalysis and Understanding the Catalytic Mechanism. Chemical Record 2016, 16, 2278-2293.
(55) Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Au nanoparticles target cancer. Nano Today 2007, 2, 18-29.
(56) Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G., Treating metastatic cancer with nanotechnology. Nature Reviews Cancer 2012, 12, 39-50.
(57) Sperling, R. A.; Rivera gil, P.; Zhang, F.; Zanella, M.; Parak, W. J., Biological applications of gold nanoparticles. Chemical Society Reviews 2008, 37, 1896-1908.
(58) Saha, K.; Agasti, S. S.; Kim, C.; Li, X. N.; Rotello, V. M., Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews 2012, 112, 2739-2779.
(59) Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry 2007, 58, 267-297.
(60) Link, S.; El-Sayed, M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.
(61) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668-677.
(62) Nehl, C. L.; Hafner, J. H., Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 2008, 18, 2415-2419.
(63) Hua, Y.; Chandra, K.; Dam, D. H. M.; Wiederrecht, G. P.; Odom, T. W., Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles. Journal of Physical Chemistry Letters 2015, 6, 4904-4908.
(64) Nath, N.; Chilkoti, A., A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Analytical Chemistry 2002, 74, 504-509.
(65) Ciesla, U.; Schuth, F., Ordered mesoporous materials. Microporous Mesoporous Mat. 1999, 27, 131-149.
(66) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.
(67) Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024-6036.
(68) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES. J. Am. Chem. Soc. 1992, 114, 10834-10843.
(69) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM. Nature 1992, 359, 710-712.
(70) Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem. Mat. 1996, 8, 1682-1701.
(71) Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem.-Int. Edit. 2006, 45, 3216-3251.
(72) Ciesla, U.; Schuth, F., Ordered mesoporous materials. Micropor. Mesopor. Mater. 1999, 27, 131-149.
(73) Israelachvili, J. N.; Marcelja, S.; Horn, R. G., Physical principles of membrane organization. Q. Rev. Biophys. 1980, 13, 121-200.
(74) Gustafsson, S.; Quist, P. O.; Halle, B., MOLECULAR SEGREGATION AND AGGREGATE SHAPE IN A LYOTROPIC RECTANGULAR PHASE. Liquid Crystals 1995, 18, 545-553.
(75) Hagslatt, H.; Soderman, O.; Jonsson, B., THE STRUCTURE OF INTERMEDIATE RIBBON PHASES IN SURFACTANT SYSTEMS. Liquid Crystals 1992, 12, 667-688.
(76) El Haskouri, J.; Cabrera, S.; Caldes, M.; Guillem, C.; Latorre, J.; Beltran, A.; Beltran, D.; Marcos, M. D.; Amoros, P., Surfactant-assisted synthesis of the SBA-8 mesoporous silica by using nonrigid commercial alkyltrimethyl ammonium surfactants. Chem. Mat. 2002, 14, 2637-2643.
(77) Yang, C. M.; Lin, C. Y.; Sakamoto, Y.; Huang, W. C.; Chang, L. L., 2D-Rectangular c2mm mesoporous silica nanoparticles with tunable elliptical channels and lattice dimensions. Chem. Commun. 2008, 5969-5971.
(78) Qiu, H. B.; Sakamoto, Y.; Terasaki, O.; Che, S. N., A 2D-rectangular p2gg silica mesoporous crystal with elliptical mesopores: An intermediate phase of chiral and lamellar mesostructures. Advanced Materials 2008, 20, 425-+.
(79) Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Kim, J. M.; Han, Y. J.; Stucky, G. D., Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants. Chem. Mat. 1999, 11, 2668-2672.
(80) Alperine, S.; Hendrikx, Y.; Charvolin, J., INTERNAL STRUCTURE OF AGGREGATES OF 2 AMPHIPHILIC SPECIES IN A LYOTROPIC LIQUID-CRYSTAL. Journal De Physique Lettres 1985, 46, L27-L31.
(81) Kekicheff, P.; Cabane, B., BETWEEN CYLINDERS AND BILAYERS - STRUCTURES OF INTERMEDIATE MESOPHASES OF THE SDS/WATER SYSTEM. Journal De Physique 1987, 48, 1571-1583.
(82) Galarneau, A.; Cambon, N.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F., Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J. Chem. 2003, 27, 73-79.
(83) Soler-Illia, G.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci. 2003, 8, 109-126.
(84) Yu, C. Z.; Fan, J.; Tian, B. Z.; Zhao, D. Y.; Stucky, G. D., High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Advanced Materials 2002, 14, 1742-1745.
(85) Ji, X. L.; Lee, K. T.; Monjauze, M.; Nazar, L. F., Strategic synthesis of SBA-15 nanorods. Chem. Commun. 2008, 4288-4290.
(86) Chen, S. Y.; Jang, L. Y.; Cheng, S. F., Synthesis of Zr-incorporated SBA-15 mesoporous materials in a self-generated acidic environment. Chem. Mat. 2004, 16, 4174-4180.
(87) Chen, S. Y.; Tang, C. Y.; Chuang, W. T.; Lee, J. J.; Tsai, Y. L.; Chan, J. C. C.; Lin, C. Y.; Liu, Y. C.; Cheng, S. F., A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels. Chem. Mat. 2008, 20, 3906-3916.
(88) Johansson, E. M.; Ballem, M. A.; Cordoba, J. M.; Oden, M., Rapid Synthesis of SBA-15 Rods with Variable Lengths, Widths, and Tunable Large Pores. Langmuir 2011, 27, 4994-4999.
(89) Bjork, E. M.; Soderlind, F.; Oden, M., Tuning the Shape of Mesoporous Silica Particles by Alterations in Parameter Space: From Rods to Platelets. Langmuir 2013, 29, 13551-13561.
(90) Celik, O.; Dag, O., A new lyotropic liquid crystalline system: Oligo(ethylene oxide) surfactants with M(H2On)X-m transition metal complexes. Angew. Chem.-Int. Edit. 2001, 40, 3800-3804.
(91) He, Q. J.; Shi, J. L.; Zhao, J. J.; Chen, Y.; Chen, F., Bottom-up tailoring of nonionic surfactant-templated mesoporous silica nanomaterials by a novel composite liquid crystal templating mechanism. J. Mater. Chem. 2009, 19, 6498-6503.
(92) Liu, C. H.; Lin, C. Y.; Chen, J. L.; Lai, N. C.; Yang, C. M.; Chen, J. M.; Lu, K. T., Metal oxide-containing SBA-15-supported gold catalysts for base-free aerobic homocoupling of phenylboronic acid in water. Journal of Catalysis 2016, 336, 49-57.
(93) Lai, N. C.; Lin, C. H.; Ku, P. H.; Chang, L. L.; Liao, K. W.; Lin, W. T.; Yang, C. M., Hollow mesoporous Ia3d silica nanospheres with singleunit-cell-thick shell: Spontaneous formation and drug delivery application. Nano Research 2014, 7, 1439-1448.
(94) Reuveni, T.; Motiei, M.; Romman, Z.; Popovtzer, A.; Popovtzer, R., Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 2011, 6, 2859-2864.
(95) Yuvaraj, S.; Lin, F. Y.; Chang, T. H.; Yeh, C. T., Thermal decomposition of metal nitrates in air and hydrogen environments. J. Phys. Chem. B 2003, 107, 1044-1047.
(96) Shannon, R. D., REVISED EFFECTIVE IONIC-RADII AND SYSTEMATIC STUDIES OF INTERATOMIC DISTANCES IN HALIDES AND CHALCOGENIDES. Acta Crystallographica Section A 1976, 32, 751-767.
(97) Wilke, M.; Farges, F.; Petit, P. E.; Brown, G. E.; Martin, F., Oxidation state and coordination of Fe in minerals: An FeK-XANES spectroscopic study. American Mineralogist 2001, 86, 714-730.
(98) Fu, D.; Keech, P. G.; Sun, X. L.; Wren, J. C., Iron oxyhydroxide nanoparticles formed by forced hydrolysis: dependence of phase composition on solution concentration. Physical Chemistry Chemical Physics 2011, 13, 18523-18529.
(99) Piquer, C.; Laguna-Marco, M. A.; Roca, A. G.; Boada, R.; Guglieri, C.; Chaboy, J., Fe K-Edge X-ray Absorption Spectroscopy Study of Nanosized Nominal Magnetite. Journal of Physical Chemistry C 2014, 118, 1332-1346.
(100) Song, Z.; Kenney, J. P. L.; Fein, J. B.; Bunker, B. A., An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species. Geochimica Et Cosmochimica Acta 2012, 86, 103-117.
(101) Miller, J. T.; Kropf, A. J.; Zha, Y.; Regalbuto, J. R.; Delannoy, L.; Louis, C.; Bus, E.; van Bokhoven, J. A., The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. Journal of Catalysis 2006, 240, 222-234.
(102) Jentys, A., Estimation of mean size and shape of small metal particles by EXAFS. Physical Chemistry Chemical Physics 1999, 1, 4059-4063.
(103) Sacaliuc, E.; Beale, A. M.; Weckhuysen, B. M.; Nijhuis, T. A., Propene epoxidation over Au/Ti-SBA-15 catalysts. Journal of Catalysis 2007, 248, 235-248.
(104) Lee, B.; Ma, Z.; Zhang, Z. T.; Park, C.; Dai, S., Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts. Microporous Mesoporous Mat. 2009, 122, 160-167.
(105) Kleitz, F.; Choi, S. H.; Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 2136-2137.
(106) Guo, X. J.; Yang, C. M.; Liu, P. H.; Cheng, M. H.; Chao, K. J., Formation and growth of platinum nanostructures in cubic mesoporous silica. Crystal Growth & Design 2005, 5, 33-36.
(107) Chao, K. J.; Chang, Y. P.; Chen, Y. C.; Lo, A. S.; Phan, T. H., Morphology of nanostructured platinum in mesoporous materials - Effect of solvent and intrachannel surface. J. Phys. Chem. B 2006, 110, 1638-1646.
(108) Shi, Y. F.; Wan, Y.; Zhao, D. Y., Ordered mesoporous non-oxide materials. Chemical Society Reviews 2011, 40, 3854-3878.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *