帳號:guest(18.225.72.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝孟珊
作者(外文):Hsieh, Meng Shan
論文名稱(中文):合成具形狀控制的磷酸銀晶體並探討晶面效應對其光催化活性及導電性的影響
論文名稱(外文):Synthesis of Shape-Controlled Ag3PO4 Crystals and Their Facet-Dependent Photocatalytic and Electrical Conductivity Properties
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):呂明諺
徐雍鎣
口試委員(外文):Lu, Ming-Yen
Hsu, Yung-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023522
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:58
中文關鍵詞:磷酸光催化
外文關鍵詞:phosphatesilverphotocatalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
磷酸銀 (Ag3PO4)屬於體心立方堆積的晶格結構,與氧化亞銅及氧化銀具有相同的堆積方式。本研究致力於合成低指數晶面的磷酸銀晶體,探討晶面效應在光學、光催化及電性上的影響。我們藉由調控硝酸銨、氫氧化鈉、硝酸銀以及磷酸氫二鉀試劑的莫爾比,成功地合成出立方體、菱形十二面體、截角菱形十二面體、四面體及四足體,並改變氨水的劑量來控制晶體形狀。粉末式X光繞射儀 (X-ray diffraction patterns, XRD)的鑑定顯示不同晶面之磷酸銀晶體都有其晶面組成的主要特徵峰,而反射式紫外光/可見光光譜儀 (UV-vis diffusive reflectance spectra, UV-DRS)的量測結果推測289奈米的菱形十二面體之紅位移現象是來自於晶面效應的貢獻。此外,我們固定立方體、菱形十二面體及四面體的總表面積進行甲基橙的光降解實驗,發現立方體具有較高的光催化活性,菱形十二面體次之,而四面體不具有光催化活性。為了驗證光催化的結果,進一步利用電子順磁共振儀 (Electron paramagnetic resonance, EPR)分析不同形狀之磷酸銀產生的自由基訊號,根據圖譜分析,氫氧自由基產生的相對含量與光催化的趨勢完全符合,由於立方體產生的氫氧自由基最多使得其光催化效率最高,而四面體不具有光催化效果是因為沒有氫氧自由基的產生,由此可證明晶面效應對於磷酸銀之光催化效果具有很大的影響。在單顆晶體的導電性分析中,發現{110}晶面擁有最好的導電性,{111}晶面次之,而{100}晶面是不導電的。
We have developed a simple aqueous phase method to make Ag3PO4 crystals with various morphologies. Ag3PO4 cubes, rhombic dodecahedra, {100}-truncated rhombic dodecahedra, tetrahedra, and tetrapods have been quickly synthesized by tuning the molar ratios of NH4NO3, NaOH, AgNO3, and K2HPO4 solutions. Increasing the concentration of NH3 in the solution enables shape control. X-ray diffraction (XRD) patterns show the preferred orientation of each shape. The 289 nm rhombic dodecahedra present slightly red-shifted absorption possibly due to the facet effect. In the photodegradation of methyl orange (MO), Ag3PO4 cubes, rhombic dodecahedra and tetrahedra having the same total surface area were used as the photocatalysts. Ag3PO4 cubes with {100} facets are comparably highly active with 90 min of photoirradiation, while {110}-bound rhombic dodecahedra gives a moderate catalytic activity. Remarkably, Ag3PO4 tetrahedra with {111} faces cannot decompose MO. Electron paramagnetic resonance (EPR) measurements show the same activity order as that of photocatalysis. No EPR signals have been detected for Ag3PO4 tetrahedra, indicating that no radicals are generated from the {111} surface. Additionally, the Ag3PO4 crystals have been measured for their electrical conductivity behaviors. All samples showed extremely low electrical current. The Ag3PO4 {111} faces are comparably most conductive at high applied voltages. The {111} faces are moderately conductive, and the {100} faces are non-conductive.
論文摘要 I
ABSTRACT II
ACKNOWLEDGEMENT IV
TABLE OF CONTENTS V
LIST OF FIGURES VII
LIST OF SCHEMES XIV
LIST OF TABLES XV

1. Introduction 1
1.1 Semiconductor Photocatalysts 1
1.2 Previous Methods of Synthesis of Ag3PO4 Crystals 4
1.2.1 Inconsistent Conditions for Shape Tuning 4
1.2.2 Addition of Organic Surfactants or Capping Agents 5
1.2.3 Ag3PO4 Preparation in Aqueous Solution and Ethanol 8
1.3 Photocatalytic Activities of Ag3PO4 Crystals, Ag3PO4/Ag, and Ag3PO4/Graphene Composites 10
1.4 Facet-Dependent Photocatalytic and Electrical Conductivity Properties of Cu2O, Ag2O and PbS Crystals 13
1-4-1 Photocatalysis 13
1-4-2 Electrical Conductivity 15
1.5 Research Summary 18
2. Experimental Section 19
2.1 Chemicals 19
2.2 Synthesis of Ag3PO4 Crystals with Various Shapes 19
2.3 Photocatalytic Experiments of Ag3PO4 Crystals 22
2.4 Electron Paramagnetic Resonance Spectrometer (EPR) Analysis 24
2.5 Electrical Conductivity Measurements on Ag3PO4 Crystals 25
2.6 Instrumentation 27
3. Results and Discussion 28
3-1 Characterizations of Ag3PO4 Crystals 28
3-2 Photocatalytic Properties of Ag3PO4 Crystals 40
3-3 Electrical Conductivity Measurements of Ag3PO4 Crystals 50
4. Conclusion 54
5. References 56
1. Dong, P.; Hou, G.; Liu, C.; Zhang, X.; Tian, H.; Xu, F.; Xi, X.; Shao, R.Materials 2016, 9, 968.
2. Huang, G.-F.; Ma, Z.-L.; Huang, W.-Q.; Tian, Y.; Jiao, C.; Yang, Z.-M.; Wan, Z.; Pan, A. J. Nanomater. 2013, 2013, 371356.
3. Liu, Y.; Fang, L.; Lu, H.; Liu, L.; Wang, H.; Hu, C. Catal. Commun. 2012, 17, 200‒204.
4. Martin, D. J.; Liu, G.; Moniz, S. J. A.; Bi, Y.; Beale, A. M.; Ye, J.; Tang, J. Chem. Soc. Rev. 2015, 44, 7808‒7828.
5. Dai, Y.; Cobley, C. M.; Zeng, J.; Sun, Y.; Xia, Y. Nano Lett. 2009, 9, 2455‒2459.
6. Liu, S.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2010, 132, 11914‒11916.
7. Xi, G.; Ye, J. Chem. Commun. 2010, 46, 1893‒1895.
8. Zhang, N.; Chen, C.; Mei, Z.; Liu, X.; Qu, X.; Li, Y.; Li, S.; Qi, W.; Zhang, Y.; Ye, J.; Roy, V. A. L.; Ma, R. ACS Appl. Mater. Interfaces 2016, 8, 10367‒10374.
9. Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159‒14164.
10. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261‒1267.
11. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 19672‒19679.
12. Harn, Y.-W.; Yang, T.-H.; Tang, T.-Y.; Chen, M.-C.; Wu, J.-M. ChemCatChem 2015, 7, 80‒86.
13. Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J. J. Am. Chem. Soc. 2011, 133, 6490‒6492.
14. Helmholz, L. J. Chem. Phys. 1936, 4, 316‒322.
15. Botelho, G.; Andres, J.; Gracia, L.; Matos, L. S.; Longo, E. ChemPlusChem 2016, 81, 202‒212.
16. Zheng, B.; Wang, X.; Liu, C.; Tan, K.; Xie, Z.; Zheng, L. J. Mater. Chem. A 2013, 1, 12635‒12640.
17. Hu, H.; Jiao, Z.; Yu, H.; Lu, G.; Ye, J.; Bi, Y. J. Mater. Chem. A 2013, 1, 2387‒2390.
18. Dong, C.; Wang, J.; Wu, K.-L.; Ling, M.; Xia, S.-H.; Hu, Y.; Li, X.; Ye, Y.; Wei, X.-W. CrystEngComm 2016, 18, 1618‒1624.
19. Yeo, B.-E.; Seo, Y.; Park, H.; Huh, Y.-D. Bull. Korean Chem. Soc. 2015, 36, 1904‒1907.
20. Martin, D. J.; Umezawa, N.; Chen, X.; Ye, J.; Tang, J. Energy Environ. Sci. 2013, 6, 3380‒3386.
21. Huang, K.; Lv, Y.; Zhang, W.; Sun, S.; Yang, B.; Chi, F.; Ran, S.; Liu, X. Mat. Res. 2015, 18, 939‒945.
22. Yang, X.; Cui, H.; Li, Y.; Qin, J.; Zhang, R.; Tang, H. ACS Catal. 2013, 3, 363‒369.
23. Huang, M. H.; Rej, S.; Hsu, S.-C. Chem. Commun. 2014, 50, 1634‒1644.
24. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155‒2160.
25. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H., Chem. Asian J. 2017, 12, 293‒297.
26. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Chem. Mater. 2016, 28, 1574‒1580.
27. Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo, W.; Li, Z.; Liu, Y.; Withers, R. L. Nat. Mater. 2010, 9, 559‒564.
28. Jańczyk, A.; Wolnicka-Głubisz, A.; Urbanska, K.; Kisch, H.; Stochel, G.; Macyk, W. Free Radical Biol. Med. 2008, 44, 1120‒1130.
29. Lawrence, A.; Jones, C. M.; Wardman, P.; Burkitt, M. J. J. Biol. Chem. 2003, 278, 29410‒29419.
30. Yang, X.; Tang, H.; Xu, J.; Antonietti, M.; Shalom, M. ChemSusChem 2015, 8, 1350‒1358.
31. Abroushan, E.; Farhadi, S.; Zabardasti, A. RSC Adv. 2017, 7, 18293‒18304.
32. Chen, Z.; Wang, W.; Zhang, Z.; Fang, X. J. Phys. Chem. C 2013, 117, 19346‒19352.
33. Yao, W.; Zhang, B.; Huang, C.; Ma, C.; Song, X.; Xu, Q. J. Mater. Chem. 2012, 22, 4050‒4055.
34. Yan, T.; Zhang, H.; Liu, Y.; Guan, W.; Long, J.; Li, W.; You, J., RSC Adv. 2014, 4, 37220-37230.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 合成二氧化矽/銀核殼結構及其表面電漿子共振引發之光催化效應研究
2. 以原子層沉積法製備陣列式多層二氧化鈦奈米管及其銀之改質與光催化性質研究
3. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
4. 氧化鋅與氧化鎘奈米線的合成
5. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
6. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
7. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
8. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
9. 水溶液加熱還原法合成二維金奈米晶體
10. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
11. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
12. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
13. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
14. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
15. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
 
* *