帳號:guest(3.136.233.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林則學
作者(外文):Lin, Tse-Hsueh
論文名稱(中文):開發以脯胺酸多肽為骨架的全氟烷微陣列晶片
論文名稱(外文):The Developement of Polyproline-based Fluorous Microarray
指導教授(中文):王聖凱
指導教授(外文):Wang, Sheng-Kai
口試委員(中文):林俊成
梁碧惠
口試委員(外文):Lin, Chun-Cheng
Liang, Pi-Hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023521
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:123
中文關鍵詞:微陣列晶片醣複合物聚脯胺酸多肽多價性氟作用力
外文關鍵詞:MicroarraysGlycoconjugatesPolyprolineMultivalentFluorous interaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:462
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
傳統微陣列晶片技術不適合用來分析具有多個結合位之蛋白質,因為晶片表面的配基密度和間距沒有辦法被有效控制與確定。因此近年來許多團隊引進了輔助性分子到微陣列晶片上希望藉此控制配基的密度和分布狀況;但由於大多被使用的是具彈性的骨架,配基間距沒有辦法被有效控制。在這篇論文中引進了脯胺酸多肽PPII的結構來作為分子骨架,使得配基間的距離能夠控制在9 Å、18 Å以及27 Å。另一方面,我們也引進了全氟烷基到脯胺酸多肽骨架上,一方面利用氟與氟之間的作用力連接到微陣列晶片上,一方面控制PPII螺旋結構在表面的位相。本論文中對LecA、WGA以及2G12抗體做測試,分別以半乳醣、N-乙醯葡萄糖胺以及Man4作為配基接到骨架上。LecA以及2G12對27 Å的骨架具有較高的專一性,這個結果對應到了LecA結合位置的間距26 Å以及2G12的35 Å;而WGA則對三種骨架都有不錯的專一性,9 Å以及18 Å的骨架應到了13-14 Å的結合位置間距,27 Å的骨架則對應到29 Å的結合位置間距。最後,我們針對2G12抗體,做出同樣以脯胺酸多肽為骨架的2G12抑制劑,並藉由表面電漿共振實驗得到解離常數。結果發現以27 Å骨架所做的抑制劑的解離常數最小,此結果與微陣列晶片實驗的結論相符。這些實驗結果證明此種新的微陣列晶片設計可以初步但精確地得到多價性蛋白質的結合位置資訊,相信配合著微陣列晶片的優點,能夠對於多價性蛋白質抑制劑的開發有相當大的幫助。
Conventional microarray systems are not suitable for analyzing the multivalent binding properties of proteins, due to the uncertainty of the distances between the distributed ligands on the surface. Recently, many groups introduced supportive molecules to control the distribution of the ligands on the surface. However, flexible scaffolds are often used, causing the distances between ligands not precisely controlled. Here we introduced PPII structure as supportive scaffold to adjust the distance between glycan ligands attachment sites at 9 Å, 18 Å and 27 Å on the peptide scaffold. Also, perfluoroalkyl groups were introduced to the scaffold for immobilization to the microarray surface via fluorous interaction to control the orientation of the helical scaffolds. Using LecA, WGA and 2G12 antibody as model protein, LecA and 2G12 showed binding preference to the 27 Å scaffold which match the binding distance of 26 Å between two galactose binding sites of LecA and 35 Å between two high-mannose binding sites of 2G12 antibody. On the other hand, WGA has indistinguishable binding affinity to three of the scaffold due to the multi-distances of 13-14 Å and 29 Å between GlcNAc binding sites. Finally, surface plasmon resonance assay of 2G12 to Man4 conjugated polyproline inhibitors were also done to confirm the result of microarray, which exactly matched the result of SPR. This novel strategy could provide a preliminary but precise information of the distance between binding sites of multivalent binding proteins, which is essential to the development of multivalent inhibitor to these proteins.
摘要 1
Abstract 2
目錄 4
圖目錄 6
表目錄 8
式目錄 8
流程目錄 8
縮寫表 9
第一章、緒論
1.1. 前言 12
1.2. 醣類與蛋白質之交互作用 13
1.2.1. LecA 13
1.2.2. WGA 14
1.2.3. HIV中和抗體─2G12 16
1.3. 多價交互作用 18
1.4. 微陣列晶片 20
1.4.1. 表面官能基化 21
1.4.1.1. 非共價性固定 21
1.4.1.2. 共價性固定 22
1.4.2. 全氟烷微陣列 23
1.5. 脯胺酸多肽的特性及應用 25
1.5.1. 脯胺酸多肽的結構與特性 25
1.5.2. 脯胺酸多肽在生物研究上的應用 26
1.6. 研究動機 27
1.7. 實驗設計 30

第二章、結果與討論
2.1. 固相多肽合成構築單元合成 34
2.2. 氟脯胺酸多肽合成 37
2.3. 全氟烷晶片製備 39
2.4. Cy3標記之氟脯胺酸多肽在氟晶片上的測試 41
2.5. 氟脯胺酸多肽在氟微珠上的測試 45
2.5.1. 全氟烷微珠製備 45
2.6. 全氟烷醣脯胺酸多肽合成 48
2.6.1. 炔基氟脯胺酸多肽合成 48
2.6.2. 醣類配基合成 50
2.6.3. 氟脯胺酸多肽與醣簇之銅催化疊氮─炔環化加成 50
2.7. 醣基化氟脯胺酸多肽在氟晶片上測試凝集素與配基的選擇性結合 52
2.7.1. Cy3-LecA與多肽24-26之專一性測試 53
2.7.2. Cy3-WGA與多肽27-29之專一性測試 56
2.7.3. Cy3-2G12與多肽30-32之專一性測試 58
2.8. 以表面電漿共振測試2G12對多肽33-36之解離常數 60
2.9. 結論 63

第三章、實驗材料與方法
3.1. Synthesis of Peptide Building Blocks 65
3.2. Peptide Synthesis 81
3.3. Cy3 Coupling and Glycan Conjugation 84
3.4. Flourous Quartz Beads Preparation 93
3.5. CD Measurement and Assay 94
3.6. Fluorous Slide Preparation 95
3.7. Microarray Printing 95
3.8. Micaoarray: Cy3-Peptide Washing Test 96
3.9. Protein Labelling 98
3.10. Micaoarray: Protein Binding Test to Glycopeptide 99
3.10.1. LecA 101
3.10.2. WGA 104
3.10.3. Antibody 2G12 107
3.11. Microarray Scanning and Data Processing 109
3.12. Surface Plasmon Resonance 110

第四章、參考文獻 113
1 . Blanchard, B.; Nurisso, A.; Hollville, E.; Tétaud, C.; Wiels, J.; Pokorná, M.; Wimmerová, M.; Varrot, A.; Imberty, A., Structural basis of the preferential binding for globo-series glycosphingolipids displayed by pseudomonas aeruginosa lectin I. J. Mol. Biol. 2008, 383, 837-853.
2 . Costerton, J. W.; Stewart, P. S.; Greenberg, E. P., Bacterial biofilms: a common cause of persistent infections. Science 1999, 284, 1318-1322.
3 . Cioci, G.; Mitchell, E. P.; Gautier, C.; Wimmerová, M.; Sudakevitz, D.; Pérez, S.; Gilboa-Garber, N.; Imberty, A., Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Letters 2003, 555, 297-301.
4 . Schwefel, D.; Maierhofer, C.; Beck, J. G.; Seeberger, S.; Diederichs, K.; Möller, H. M.; Welte, W.; Wittmann, V., Structural basis of multivalent binding to wheat germ agglutinin. J. Am. Chem. Soc. 2010, 132, 8704–8719.
5 . Wang, L. X., Synthetic carbohydrate antigens for HIV vaccine design. Curr. Opin. Chem. Biol. 2013, 17, 997-1005.
6 . Based on the X-Ray structure with pdb code1OP5.
7 . Calarese, D.A.; Scanlan, C.N.; Zwick, M.B.; Deechongkit, S.; Mimura, Y.; Kunert, R.; Zhu, P.; Wormald, M. R.; Stanfield, R. L.; Roux, K. H.; Kelly, J. W.; Rudd, P. M.; Dwek, R. A.; Katinger, H.; Burton, D. R.; Wilson, I. A., Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 2003, 300, 2065-2071.
8 . Wang, S. K.; Liang, P. H.; Astronomo, R. D.; Hsu, T. L.; Hsieh, S. L.; Burton, D. R.; Wong, C. H., Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci USA 2008, 105, 3690-3695.
9 . Mammen, M.; Choi, S. K; Whitesides, G. M., Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754-2794.
10 . Boukerb, A. M.; Rousset, A.; Galanos, N.; Méar, J. B.; Thépaut, M.; Grandjean, T.; Gillon, E.; Cecioni, S.; Abderrahmen, C.; Faure, K.; Redelberger, D.; Kipnis, E.; Dessein, R.; Havet, S.; Darblade, B.; Matthews, S. E.; de Bentzmann, S.; Guéry, B.; Cournoyer, B.; Imberty, A.; Vidal, S., Antiadhesive Properties of Glycoclusters against Pseudomonas aeruginosa Lung Infection. J. Med. Chem. 2014, 57, 10275–10289.
11 . Kottari, N.; Chabre, Y. M.; Shiao, T. C.; Rej, R.; Roy, R., Efficient and accelerated growth of multifunctional dendrimers using orthogonal thiol–ene and SN2 reactions. Chem. Commun. 2014, 50, 1983-1985.
12 . Kadam, R. U; Bergmann, M.; Hurley, M.; Garg, D.; Cacciarini, M.; Swiderska, M. A.; Nativi, C.; Sattler, M.; Smyth, A. R.; Williams, P.; Cµmara, M. Stocker, A.; Darbre, T.; Reymond, J. L., A Glycopeptide Dendrimer Inhibitor of the Galactose-Specific LectinLecA and of Pseudomonas aeruginosa Biofilms. Angew. Chem. Int . Ed. 2011, 50, 10631-10635.
13 . Uttamchandani, M.; Walsh, D. P.; Yao, S. Q.; Chang, Y. T., Small molecule microarrays: recent advances and applications. Curr. Opin. Chem. Biol. 2005, 9, 4-13.
14 . Park, S.; Gildersleeve, J. C.; Blixt, O.; Shin, I., Carbohydrate microarrays. Chem. Soc. Rev. 2013, 42, 4310-4326.
15 . Galanina, O. E.; Mecklenburg, M.; Nifantiev, N. E.; Pazyninaa, G. V.; Bovin, N. V., GlycoChip: multiarray for the study of carbohydrate-binding proteins. Lab Chip 2003, 3, 260-265.
16 . Chevolot, Y.; Bouillon, C.; Vidal, S.; Morvan, F.; Meyer, A.; Cloarec, J. P.; Jochum, A.; Praly, J. P.; Vasseur, J. J.; Souteyrand, E., DNA-based carbohydrate biochips: A platform for surface glyco-engineering. Angew. Chem. Int. Ed. 2007, 46, 2398-2402.
17 . Blixt, O.; Head, S; Mondala, T.; Scanlan, C.; Huflejt, M. E.; Alvarez, R.; Bryan, M. C.; Fazio, F.; Calarese, D.; Stevens, J.; Razi, H.; Stevens, D. J.; Skehel, J. J.; Die, I. Burton, D. R.; Wilson, I. A.; Cummings, R.; Bovin, N.; Wong, C. H.; Paulson, J. C., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 2004, 101, 17033-17038.
18 . Zhang, Y.; Campbell, C.; Li, Q.; Gildersleeve, J. C., Multidimensional glycan arrays for enhanced antibody profiling. Mol. BioSyst. 2010, 6, 1583-1591.
19 . Cametti, M.; Crousse, B.; Metrangolo, P.; Milanicd, R.; Resnati, G., The fluorous effect in biomolecular applications. Chem. Soc. Rev. 2012, 41, 31-42.
20 . Ko, K. S.; Jaipuri, F. A.; Pohl, N. L., Fluorous-Based Carbohydrate Microarrays. J. Am. Chem. Soc. 2005, 127, 13162-13163.
21 . Mamidyala, S. K,; Ko, K. S.; Jaipuri, F, A.; Park, G.; Pohl, N. L., Noncovalent fluorous interactions for the synthesis of carbohydrate microarrays. J. Fluor. Chem. 2006, 127, 571-579.
22 . Tang, S. L.; Linz, L. B.; Bonning, B. C.; Pohl, N. L., Automated solution-phase synthesis of insect glycans to probe the binding affinity of pea enation mosaic virus. J. Org. Chem. 2015, 80, 10482-10489.
23 . Chen, G. S.; Pohl, N. L., Synthesis of fluorous tags for incorporation of reducing sugars into a quantitative microarray platform. Org. Lett. 2008, 10, 785-788.
24 . Jaipuri, F. A.; Collet, B. Y. M.; Pohl, N. L., Synthesis and quantitative evaluation of glycero-d-manno-heptose binding to concanavalin a by fluorous-tag assistance. Angew. Chem. Int. Ed. 2008, 47, 1707-1710.
25 . Collet, B. Y. M.; Nagashima, T.; Yu, M. S.; Pohl, N. L., Fluorous-based peptide microarrays for protease screening. J. Fluor. Chem. 2009, 130, 1042-1048.
26 . Nicholson, R. L.; Ladlow, M. L.; Spring, D. R., Fluorous tagged small molecule microarrays. Chem. Commun. 2007, 3906-3908.
27 . (a) Ruggiero, M. T.; Sibik, J; Orlando, R.; Zeitler, J. A.; Korter, T. M., Measuring the elasticity of poly-l-proline helices with terahertz spectroscopy. Angew. Chem. Int. Ed. 2016, 55, 6877-6881. (b) Kümin, M.; Sonntag, L.; Wennemers, H., Azidoproline containing helices: Stabilization of the polyproline ii structure by a functionalizable group. J. Am. Soc. Chem. 2007, 129, 466-467.
28 . Kroll, C.; Mansi, R.; Braun, F.; Dobitz, S.; Maecke, H. R.; Wennemers, H. Hybrid Bombesin Analogues: Combining an Agonist and an Antagonist in Defined Distances for Optimized Tumor Targeting. J. Am. Chem. Soc. 2013, 135, 16793−16796.
29 . Godula, K.; Bertozzi, C. R., Density variant glycan microarray for evaluating cross-linking of mucin-like glycoconjugates by lectins. J. Am. Chem. Soc. 2012, 134, 15732-15742.
30 . Zhang, Y.; Li, Q.; Rodriguez, L. G.; Gildersleeve, J. C., An array-based method to identify multivalent inhibitors. J. Am. Chem. Soc. 2010, 132, 9653-9662.
31 . Zhou, X.; Turchi, C.; Wang, D., Carbohydrate cluster microarrays fabricated on three-dimensional dendrimeric platforms for functional glycomics exploration. J. Proteome Res. 2009, 8, 5031-5040.
32 . Zhang, J.; Pourceau, G.; Meyer, A.; Vidal, S.; Praly, J.; Souteyrand, E.; Vasseur, J.; Morvan, F.; Chevolot, Y., Specific recognition of lectins by oligonucleotide glycoconjugates and sorting on a DNA microarray. Chem. Commun. 2009, 6795-6797.
33 . Ma, Y.; Sobkiv, I.; Gruzdys, V.; Zhang, H.; Sun, X. L., Liposomal glyco-microarray for studying glycolipid–protein interactions. Anal. Bioanal. Chem. 2012, 404, 51-58.
34 . Zhu, X. Y.; Holtz, B.; Wang, Y.; Wang, L. X.; Orndorff, P. E.; Guo, A., Quantitative glycomics from fluidic glycan microarrays. J. Am. Chem. Soc. 2009, 131, 13646-13650.
35 . Mihali, V.; Foschi, F.; Penso, M.; Pozzi, G., Chemoselective synthesis of n-protected alkoxyprolines under specific solvation conditions. Eur. J. Org. Chem. 2014, 5351-5355.
36 . Tanaka, K.; Sawanishi, H., An efficient and stereospecific synthesis of (2S,4S)-2,4-diaminoglutaric acid. Tetrahedron: Asymmetry 1998, 9, 71-77.
37 . Koskinen, A. M. P.; Helaja, J.; Kumpulainen, E. T. T.; Koivisto, J.; Mansikkamäki, H.; Rissanen, K., Locked conformations for proline pyrrolidine ring:  synthesis and conformational analysis of cis- and trans-4-tert-butylprolines. J. Org. Chem. 2005, 70, 6447-6453.
38 . Roy, R.; Kim, J. M., Cu(II)-Self-assembling bipyridyl-glycoclusters and dendrimers bearing the Tn-antigen cancer marker: syntheses and lectin binding properties. Tetrahedron 2003, 59, 3881-3893.
39 . Mihali, V.; Foschi, F.; penso, m.; pozzi, g., chemoselective synthesis of n-protected alkoxyprolines under specific solvation conditions. Eur. J. Org. Chem. 2014, 24, 5351–5355.
40 . Northfield, S. E.; Mountford, S.; Wielens, J.; Liu, M.; Zhang, L.; Herzog, H.; Holliday, N.; Scanlon, M. J.; Parker, M. W.; Chalmers, D. K.; Thompson, P. E., Propargyloxyproline regio- and stereoisomers for click-conjugation of peptides: synthesis and application in linear and cyclic peptides. Aust. J. Chem. 2015, 68, 1365-1372.
41 . Zhou, Z.; Fahrni, C. J., A fluorogenic probe for the copper(i)-catalyzed azide-alkyne ligation reaction: Modulation of the fluorescence emission via 3(n,ð*)-1(ð,ð*) inversion. J. Am. Chem. Soc. 2004, 126, 8862-8863.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *