|
1. Middleton, C. T.; de La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernandez, C. E.; Kohler, B., DNA Excited-State Dynamics: From Single Bases to the Double Helix. Annu. Rev. Phys. Chem. 2009, Vol. 60, pp 217-239. 2. Callis, P. R., Electronic States and Luminescence of Nucleic-Acid Systems. Annu. Rev. Phys. Chem. 1983, 34, 329-357. 3. Gustavsson, T.; Improta, R.; Markovitsi, D., DNA/RNA: Building Blocks of Life Under UV Irradiation. J. Phys. Chem. Lett. 2010, 1 (13), 2025-2030. 4. Kohler, B., Nonradiative Decay Mechanisms in DNA Model Systems. J. Phys. Chem. Lett. 2010, 1 (13), 2047-2053. 5. (a) Kang, H.; Lee, K. T.; Jung, B.; Ko, Y. J.; Kim, S. K., Intrinsic Lifetimes of the Excited State of DNA and RNA Bases. J. Am. Chem. Soc. 2002, 124 (44), 12958-12959; (b) Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A., Electronic Relaxation Dynamics in DNA and RNA Bases Studied by Time-Resolved Photoelectron Spectroscopy. Phys. Chem. Chem. Phys. 2004, 6 (10), 2796-2801; (c) Canuel, C.; Mons, M.; Piuzzi, F.; Tardivel, B.; Dimicoli, I.; Elhanine, M., Excited States Dynamics of DNA and RNA Bases: Characterization of a Stepwise Deactivation Pathway in the Gas Phase. J. Chem. Phys. 2005, 122 (7). 6. (a) Tomic, K.; Tatchen, J.; Marian, C. M., Quantum Chemical Investigation of the Electronic Spectra of the Keto, Enol, and Keto-Imine Tautomers of Cytosine. J. Phys. Chem. A 2005, 109 (37), 8410-8418; (b) Kistler, K. A.; Matsika, S., Radiationless Decay Mechanism of Cytosine: An ab Initio Study with Comparisons to the Fluorescent Analogue 5-Methyl-2-Pyrimidinone. J. Phys. Chem. A 2007, 111 (14), 2650-2661. 7. (a) Diau, E. W. G.; De Feyter, S.; Zewail, A. H., Direct Observation of the Femtosecond Nonradiative Dynamics of Azulene in a Molecular Beam: The Anomalous Behavior in the Isolated Molecule. J. Chem. Phys. 1999, 110 (20), 9785-9788; (b) Wurzer, A. J.; Wilhelm, T.; Piel, J.; Riedle, E., Comprehensive Measurement of the S-1 Azulene Relaxation Dynamics and Observation of Vibrational Wavepacket Motion. Chem. Phys. Lett. 1999, 299 (3-4), 296-302. 8. Crespo-Hernandez, C. E.; Cohen, B.; Hare, P. M.; Kohler, B., Ultrafast Excited-State Dynamics in Nucleic Acids. Chem. Rev. 2004, 104 (4), 1977-2019. 9. Kosma, K.; Schroter, C.; Samoylova, E.; Hertel, I. V.; Schultz, T., Excited-State Dynamics of Cytosine Tautomers. J. Am. Chem. Soc. 2009, 131 (46), 16939-16943. 10. (a) Feyer, V.; Plekan, O.; Richter, R.; Coreno, M.; Vall-Ilosera, G.; Prince, K. C.; Trofimov, A. B.; Zaytseva, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J., Tautomerism in Cytosine and Uracil: An Experimental and Theoretical Core Level Spectroscopic Study. J. Phys. Chem. A 2009, 113 (19), 5736-5742; (b) Szczesniak, M.; Szczepaniak, K.; Kwiatkowski, J. S.; Kubulat, K.; Person, W. B., Matrix-Isolation Infrared Studies of Nucleic-Acid Constituent. 5. Experimental Matrix-Isolation and Theoretical ab Initio SCF Molecular-Orbital Studies of the Infrared Spectra of Cytosine Monomers. J. Am. Chem. Soc. 1988, 110 (25), 8319-8330; (c) Brown, R. D.; Godfrey, P. D.; McNaughton, D.; Pierlot, A. P., Tautomers of Cytosine by Microwave Spectroscopy. J. Am. Chem. Soc. 1989, 111 (6), 2308-2310; (d) Kostko, O.; Bravaya, K.; Krylov, A.; Ahmed, M., Ionization of Cytosine Monomer and Dimer Studied by UV Photoionization and Electronic Structure Calculations. Phys. Chem. Chem. Phys. 2010, 12 (12), 2860-2872; (e) Bazso, G.; Tarczay, G.; Fogarasi, G.; Szalay, P. G., Tautomers of Cytosine and Their Excited Electronic States: a Matrix Isolation Spectroscopic and Quantum Chemical Study. Phys. Chem. Chem. Phys. 2011, 13 (15), 6799-6807; (f) Feyer, V.; Plekan, O.; Richter, R.; Coreno, M.; de Simone, M.; Prince, K. C.; Trofimov, A. B.; Zaytseva, I. L.; Schirmer, J., Tautomerism in Cytosine and Uracil: A Theoretical and Experimental X-ray Absorption and Resonant Auger Study. J. Phys. Chem. A 2010, 114 (37), 10270-10276. 11. Ho, J. W.; Yen, H. C.; Chou, W. K.; Weng, C. N.; Cheng, L. H.; Shi, H. Q.; Lai, S. H.; Cheng, P. Y., Disentangling Intrinsic Ultrafast Excited-State Dynamics of Cytosine Tautomers. J. Phy. Chem. A 2011, 115 (30), 8406-8418. 12. (a) Nir, E.; Muller, M.; Grace, L. I.; de Vries, M. S., REMPI Spectroscopy of Cytosine. Chem. Phys. Lett. 2002, 355 (1-2), 59-64; (b) Nir, E.; Hunig, I.; Kleinermanns, K.; de Vries, M. S., The Nucleobase Cytosine and the Cytosine Dimer Investigated by Double Resonance Laser Spectroscopy and ab Initio Calculations. Phys. Chem. Chem. Phys. 2003, 5 (21), 4780-4785. 13. Ho, J. W.; Yen, H. C.; Shi, H. Q.; Cheng, L. H.; Weng, C. N.; Chou, W. K.; Chiu, C. C.; Cheng, P. Y., Microhydration Effects on the Ultrafast Photodynamics of Cytosine: Evidences for a Possible Hydration-Site Dependence. Angew. Chem. Int. Ed. 2015, 54 (49), 14772-14776. 14. Ma, C. S.; Cheng, C. C. W.; Chan, C. T. L.; Chan, R. C. T.; Kwok, W. M., Remarkable Effects of Solvent and Substitution on the Photo-Dynamics of Cytosine: a Femtosecond Broadband Time-Resolved Fluorescence and Transient Absorption Study. Phys. Chem. Chem. Phys. 2015, 17 (29), 19045-19057. 15. 周威銧, 胞嘧啶之氣相超快激發態動力學研究:激發態衰減時間與激發能量的依存性. 2008. 16. 蔡宗廷, 超快光游離誘發酚–氨錯合物陽離子內之質子轉移動態學研究. 2015. 17. 陳依微, 酚–氨陽離子錯合物中之超快質子轉移反應動態學研究. 2011. 18. 何智偉, 氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反 應動態學 2.偶氮苯陽離子在異構化途徑之同調振動. 2008. 19. Eldredge, B. A. A. P., General Chemistry: Principles, Patterns, and Applications, v. 1.0 (2 volume set) 20. Smalley, R. E.; Wharton, L.; Levy, D. H., Molecular Optical Spectroscopy with Supersonic Beams and Jets. Accounts Chem. Res. 1977, 10 (4), 139-145. 21. 顏弘建, 胞嘧啶及其水合團簇之氣相超快激發態動態學研究. 2007. 22. Fogarasi, G.; Szalay, P. G., Quantum Chemical MP2 Results on Some Hydrates of Cytosine: Binding Sites, Energies and the First Hydration Shell. Phys. Chem. Chem. Phys. 2015, 17 (44), 29880-29890. 23. Kim, S.; Schaefer, H. F., Microhydration of Cytosine and its Radical Anion: Cytosine Center Dot (H2O)(n) (n=1-5). J. Chem. Phys. 2007, 126 (6). 24. Thicoipe, S.; Carbonniere, P.; Pouchan, C., The Use of the GSAM Approach for the Structural Investigation of Low-Lying Isomers of Molecular Clusters from Density-Functional-Theory-Based Potential Energy Surfaces: The Structures of Microhydrated Nucleic Acid Bases. J. Phy. Chem. A 2013, 117 (32), 7236-7245. 25. Amirav, A.; Even, U., Isotope-Separation in Supersonic Molecular-Beams Using RF Spectroscopy. J. Appl. Phys. 1980, 51 (1), 1-6. 26. Nakayama, A.; Harabuchi, Y.; Yamazaki, S.; Taketsugu, T., Photophysics of Cytosine Tautomers: New Insights into the Nonradiative Decay Mechanisms from MS-CASPT2 Potential Energy Calculations and Excited-State Molecular Dynamics Simulations. Phys. Chem. Chem. Phys., 2013, 15 (29), 12322-12339. 27. Blancafort, L.; Migani, A., Water Effect on the Excited-State Decay Paths of Singlet Excited Cytosine. J. Photochem. Photobiol. A 2007, 190 (2-3), 283-289. 28. Das, T.; Ghosh, D., Ionization-Induced Tautomerization in Cytosine and Effect of Solvation. J. Phys. Chem. A 2014, 118 (28), 5323-5332. 29. Fogarasi, G., Water-Mediated Tautomerization of Cytosine to the Rare Imino Form: An ab Initio Dynamics Study. Chem. Phys. 2008, 349 (1-3), 204-209. 30. Furmanchuk, A.; Isayev, O.; Gorb, L.; Shishkin, O. V.; Hovorun, D. M.; Leszczynski, J., Novel View on the Mechanism of Water-Assisted Proton Transfer in the DNA Bases: Bulk Water Hydration. Phys. Chem. Chem. Phys. 2011, 13 (10), 4311-4317. 31. Clarkson, J. R.; Baquero, E.; Shubert, V. A.; Myshakin, E. M.; Jordan, K. D.; Zwier, T. S., Laser-Initiated Shuttling of a Water Molecule between H-Bonding Sites. Science 2005, 307 (5714), 1443-1446. 32. Szalay, P. G.; Watson, T.; Perera, A.; Lotrich, V.; Fogarasi, G.; Bartlett, R. J., Benchmark Studies on the Building Blocks of DNA. 2. Effect of Biological Environment on the Electronic Excitation Spectrum of Nucleobases. J. Phys. Chem. A 2012, 116 (35), 8851-8860. 33. Shterev, I. G.; Delchev, V. B., Theoretical Investigation of the Intermolecular H-Bonding and Proton Transfer in Cytosine Assisted by Water and Methanol. Mon. Chem. 2009, 140 (11), 1381-1394.
|