帳號:guest(3.141.7.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):傅懿萲
作者(外文):Fu, Yi-Hsuan
論文名稱(中文):Cation-π作用力及甘胺酸變異對AAB型膠原蛋白異源三股螺旋穩定性之探討
論文名稱(外文):Effects of cation-π interactions and mutation of glycine residues on the stability of AAB-type collagen heterotrimers
指導教授(中文):洪嘉呈
指導教授(外文):Horng, Jia-Cherng
口試委員(中文):江昀緯
許馨云
口試委員(外文):Chiang, Yun-Wei
Hsu, Hsin-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023508
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:Cation-π作用力甘胺酸變異膠原蛋白AAB型異源三股螺旋
外文關鍵詞:Cation-π interactionsmutation of glycinecollagenAAB-type heterotrimers
相關次數:
  • 推薦推薦:0
  • 點閱點閱:239
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
膠原蛋白是由三條聚脯胺酸第二型結構(PPII)所形成之三股螺旋,可依照纏繞的胜肽種類分為AAA型同源三股螺旋及AAB、ABC型異源三股螺旋;天然的膠原蛋白一般為異源三股螺旋,人體中含量最多的蛋白質:第一型膠原蛋白即為AAB型異源三股螺旋。穩定三股螺旋結構的作用力有許多種,其中一種由正電荷與芳香環四極矩間的非共價鍵作用力:cation-π作用力,在我們過去的研究中也發現有重要的貢獻。
本研究以(POG)9為基底,將帶正電荷(Lys)及芳香環胺基酸(Phe)置於胜肽的碳端,合成胜肽CK3與CF3,藉由Lys-Phe間的 cation-π作用力來促進AAB型異源三股螺旋之形成,並與含Arg胺基酸之CR3/CF3系列比較,探討不同的帶正電胺基酸對異源三股螺旋穩定性的影響。由CD與DSC實驗結果發現CK3與CF3混合後可藉由cation-π作用力形成(CK3)2(CF3)1異源三股螺旋,且經2D-NMR證實Lys-Phe間cation-π作用力的存在。與CR3/CF3系列比較後發現:由於Arg側鏈的胍團較疏水,使得Arg-Phe間cation-π作用力較強,形成的AAB型異源三股螺旋也較穩定。
我們更進一步將CR3及CK3中間位置POG重複序列中的一個甘胺酸(Gly)置換成肌胺酸(Sar),合成出胜肽CR3_Sar與CK3_Sar,同樣與CF3進行混合,探討將Gly置換成Sar後能否藉由cation-π作用力形成AAB型異源三股螺旋。實驗結果發現CR3_Sar/CF3系列仍能形成(CR3_Sar)3同源三股螺旋及(CR3_Sar)2(CF3)1異源三股螺旋,且經2D-NMR證實Arg-Phe間cation-π作用力的存在;而CK3_Sar/CF3系列則因Lys-Phe間cation-π作用力較弱,而無法形成穩定的三股螺旋。
Collagen is a right-handed triple helix, and each helix is a left-handed polyproline type II structure containing many (X-Y-Gly) repeats. Many natural collagens consist of two or three different peptide chains. Type I collagen, the most abundant protein in the human body, is an AAB-type heterotrimer. Many forces were shown to have great contributions to collagen triple helix stability. Cation-π interaction, one of the forces, was found to be important in our previous studies.
In this work, we prepared the collagen-mimetic peptides containing cationic or aromatic residues by incorporating Lys or Phe into the C-terminal end of the peptide chains. We attempted to use cation-π interactions to assist the folding of heterotrimers. Circular dichroism (CD), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR) measurements showed that the cation-π interactions could effectively induced the formation of AAB-type heterotrimers. Compared to the results of Arg-containing CR3/CF3 series, (CK3)2(CF3)1 heterotrimers were less stable due to the weaker cation-π interactions between Lys and Phe.
In addition, we prepared CR3_Sar and CK3_Sar in which a Gly residue near the center of CR3 and CK3 was substituted to sarcosine (Sar). Our results revealed that CR3_Sar could form homotrimers and AAB-type heterotrimers with CF3. The existence of cation-π interactions between chains has been confirmed by NMR measurements. Due to the weaker cation-π interactions between Lys and Phe, CK3_Sar, by contrast, could form neither homotrimers nor AAB-type heterotrimers with CF3.
序言....................................................................................................I
中文摘要.............................................................................................II
Abstract............................................................................................III
第一章、緒論...............................................................................................................1
1.1 膠原蛋白................................................................................................................1
1.1.1 膠原蛋白.............................................................................................................1
1.1.2 膠原蛋白結構......................................................................................................2
1.1.3 穩定膠原蛋白的作用力..........................................................................................2
1.1.4 異源三股螺旋(heterotrimers)................................................................................4
1.1.5 膠原蛋白中胺基酸的置換.......................................................................................5
1.2 Cation-π作用力(Cation-π interactions).................................................................7
1.2.1 影響cation-π作用力的因素..................................................................................8
1.2.3 苯環的四極矩(quadrupole moment).....................................................................9
1.2.4 Cation-π作用力在水溶液中的研究......................................................................10
1.3 生物系統中的cation-π作用力................................................................................12
1.3.1 帶電荷與芳香環側鏈的胺基酸..............................................................................12
1.3.2 胺基與芳香環間作用力........................................................................................14
1-4 研究動機.............................................................................................................17
第二章、實驗步驟.......................................................................................................18
2.1實驗儀器...............................................................................................................18
2.2 實驗藥品..............................................................................................................19
2.3 實驗流程..............................................................................................................21
2.4 固相胜肽合成法(Solid-phase peptide synthesis, SPPS)............................................22
2.4.1 酯化反應(Esterification)或醯胺化反應(Amidation)................................................24
2.4.2 去保護(Deprotection)........................................................................................24
2.4.3 活化(Activation)................................................................................................25
2.4.4 耦合(Coupling).................................................................................................26
2.4.5 切除(Cleavage).................................................................................................26
2.5 圓二色光譜儀(Circular dichroism spectroscopy, CD)..............................................27
2.6 Fmoc-Pro-Hyp-Gly-OH之合成.............................................................................31
2.6.1 Boc-(2S,4R)-hydroxyproline (1)之合成..............................................................31
2.6.2 Boc-Hyp-Gly-OBn (2)之合成.............................................................................32
2.6.3 Fmoc-Pro-Hyp-Gly-OBn (3)之合成...................................................................32
2.6.4 Fmoc-Pro-Hyp-Gly-OH (4)之合成.....................................................................33
2.7 胜肽之合成、純化與鑑定........................................................................................34
2.7.1 胜肽合成...........................................................................................................35
2.7.2 胜肽純化與鑑定.................................................................................................35
2.8 CD光譜實驗.........................................................................................................36
2.8.1 far-UV CD光譜 (Wavelength scans)...................................................................36
2.8.2 變溫CD光譜量測 (Thermal denaturation)...........................................................37
2.8.3 測量摺疊速率 (Refolding kinetics).....................................................................37
2.8.4 變溫實驗資料處理.............................................................................................37
2.8.5 動力學實驗資料處理..........................................................................................39
2.9 摺疊熱力學之測量(DSC)........................................................................................39
2.9.1 熱力學實驗資料處理..........................................................................................40
2.10 2D-NMR光譜測量..............................................................................................41
2.10.1 1H, 15N-HSQC光譜........................................................................................41
2.10.2 1H, 1H-TOCSY和1H, 1H-NOESY光譜...............................................................42
第三章、結果與討論....................................................................................................43
第一部分 (POG)6(PYG)3系列胜肽之探討........................................................................43
3.1 胜肽序列之設計....................................................................................................43
3.2 CD光譜探討.........................................................................................................44
3.2.1 Far-UV CD光譜.................................................................................................44
3.2.2 變溫實驗...........................................................................................................45
3.3 由2D-NMR驗證異源三股螺旋的形成.......................................................................47
3.3.1 1H,15N-HSQC光譜...........................................................................................47
3.3.2 1H,1H-TOCSY及1H,1H-NOESY光譜..................................................................50
3.4 熱力學性質之探討.................................................................................................51
3.5 胜肽摺疊速率.......................................................................................................53
3.6 三股螺旋在不同離子強度與pH值下穩定性之變化.......................................................55
3.6.1 離子強度對三股螺旋穩定性之影響........................................................................55
3.6.2 pH值對三股螺旋穩定性之影響.............................................................................56
第二部分 (POG)6(PYG)3系列胜肽中Sar置換之探討..........................................................59
3.7 置換位置之設計....................................................................................................59
3.8 CD光譜探討.........................................................................................................59
3.8.1 Far-UV CD光譜.................................................................................................59
3.8.2 變溫實驗...........................................................................................................60
3.9由2D-NMR驗證異源三股螺旋的形成........................................................................63
3.9.1 1H,15N-HSQC光譜...........................................................................................64
3.9.2 1H,1H-TOCSY及1H,1H-NOESY光譜...................................................................66
3.10 熱力學性質之探討...............................................................................................67
3.11 胜肽摺疊速率.....................................................................................................69
第四章、結論.............................................................................................................71
參考文獻....................................................................................................................74
附錄..........................................................................................................................79
1. Ramshaw, J. A. M.; Shah, N. K.; Brodsky, B., Gly-X-Y Tripeptide Frequencies in Collagen: A Context for Host–Guest Triple-Helical Peptides. J. Struct. Biol. 1998, 122, 86-91.
2. Ramachandran, G. N.; Kartha, G., Structure of Collagen. Nature 1954, 174,269-270.
3. Shoulders, M. D.; Raines, R. T., Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929-958.
4. Makareeva, E.; Mertz, E. L.; Kuznetsova, N. V.; Sutter, M. B.; DeRidder, A. M.; Cabral, W. A.; Barnes, A. M.; McBride, D. J.; Marini, J. C.; Leikin, S., Structural Heterogeneity of Type I Collagen Triple Helix and Its Role in Osteogenesis Imperfecta. J. Biol. Chem. 2008, 283, 4787-4798.
5. Nuytinck, L.; Freund, M.; Lagae, L.; Pierard, G. E.; Hermanns-Le, T.; De Paepe, A., Classical Ehlers-Danlos Syndrome Caused by a Mutation in Type I Collagen. Am. J. Hum. Genet. 2000, 66, 1398-1402.
6. Brodsky, B.; Ramshaw, J. A. M., The Collagen Triple-Helix Structure. Matrix. Biol. 1997, 15, 545-554.
7. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M., Crystal and Molecular Structure of a Collagen-Like Peptide at 1.9 Å Resolution. Science 1994, 266, 75.
8. Gauba, V.; Hartgerink, J. D., Self-Assembled Heterotrimeric Collagen Triple Helices Directed through Electrostatic Interactions. J. Am. Chem. Soc. 2007, 129, 2683-2690.
9. Ottl, J.; Battistuta, R.; Pieper, M.; Tschesche, H.; Bode, W.; Kühn, K.; Moroder, L., Design and Synthesis of Heterotrimeric Collagen Peptides with a Built-in Cystine-Knot Models for Collagen Catabolism by Matrix-Metalloproteases. FEBS Lett. 1996, 398, 31-36.
10. Koide, T.; Homma, D. L.; Asada, S.; Kitagawa, K., Self-Complementary Peptides for the Formation of Collagen-Like Triple Helical Supramolecules. Bioorg. Med. Chem. Lett. 2005, 15, 5230-5233.
11. Gauba, V.; Hartgerink, J. D., Surprisingly High Stability of Collagen ABC Heterotrimer:  Evaluation of Side Chain Charge Pairs. J. Am. Chem. Soc. 2007, 129, 15034-15041.
12. Gauba, V.; Hartgerink, J. D., Synthetic Collagen Heterotrimers: Structural Mimics of Wild-Type and Mutant Collagen Type I. J. Am. Chem. Soc. 2008, 130, 7509-7515.
13. Madhan, B.; Xiao, J.; Thiagarajan, G.; Baum, J.; Brodsky, B., Nmr Monitoring of Chain-Specific Stability in Heterotrimeric Collagen Peptides. J. Am. Chem. Soc. 2008, 130, 13520-13521.
14. Chen, C.-C.; Hsu, W.; Hwang, K.-C.; Hwu, J. R.; Lin, C.-C.; Horng, J.-C., Contributions of Cation–π Interactions to the Collagen Triple Helix Stability. Arch. Biochem. Biophys. 2011, 508, 46-53.
15. Chen, C.-C.; Hsu, W.; Kao, T.-C.; Horng, J.-C., Self-Assembly of Short Collagen-Related Peptides into Fibrils Via Cation−π Interactions. Biochemistry 2011, 50, 2381-2383.
16. Chiang, C.-H.; Horng, J.-C., Cation−π Interaction Induced Folding of AAB-Type Collagen Heterotrimers. J. Phys. Chem. B 2016, 120, 1205-1211.
17. Marini, J. C.; Forlino, A.; Cabral, W. A.; Barnes, A. M.; San Antonio, J. D.; Milgrom, S.; Hyland, J. C.; Körkkö, J.; Prockop, D. J.; De Paepe, A.; Coucke, P.; Symoens, S.; Glorieux, F. H.; Roughley, P. J.; Lund, A. M.; Kuurila-Svahn, K.; Hartikka, H.; Cohn, D. H.; Krakow, D.; Mottes, M.; Schwarze, U.; Chen, D.; Yang, K.; Kuslich, C.; Troendle, J.; Dalgleish, R.; Byers, P. H., Consortium for Osteogenesis Imperfecta Mutations in the Helical Domain of Type I Collagen: Regions Rich in Lethal Mutations Align with Collagen Binding Sites for Integrins and Proteoglycans. Hum. Mutat. 2007, 28, 209-221.
18. Bodian, D. L.; Madhan, B.; Brodsky, B.; Klein, T. E., Predicting the Clinical Lethality of Osteogenesis Imperfecta from Collagen Glycine Mutations. Biochemistry 2008, 47, 5424-5432.
19. Acevedo-Jake, A. M.; Clements, K. A.; Hartgerink, J. D., Synthetic, Register-Specific, AAB Heterotrimers to Investigate Single Point Glycine Mutations in Osteogenesis Imperfecta. Biomacromolecules 2016, 17, 914-921.
20. Clements, K. A.; Acevedo-Jake, A. M.; Walker, D. R.; Hartgerink, J. D., Glycine Substitutions in Collagen Heterotrimers Alter Triple Helical Assembly. Biomacromolecules 2017, 18, 617-624.
21. Chen, Y.-S.; Chen, C.-C.; Horng, J.-C., Thermodynamic and Kinetic Consequences of Substituting Glycine at Different Positions in a Pro-Hyp-Gly Repeat Collagen Model Peptide. Pept. Sci. 2011, 96, 60-68.
22. Ma, J. C.; Dougherty, D. A., The Cation−π Interaction. Chem. Rev. 1997, 97, 1303-1324.
23. Dougherty, D. A., Cation-Π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-168.
24. Kearney, P. C.; Mizoue, L. S.; Kumpf, R. A.; Forman, J. E.; McCurdy, A.; Dougherty, D. A., Molecular Recognition in Aqueous Media. New Binding Studies Provide Further Insights into the Cation-.Pi. Interaction and Related Phenomena. J. Am. Chem. Soc. 1993, 115, 9907-9919.
25. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation−Π Interactions in Simple Aromatics:  Electrostatics Provide a Predictive Tool. J. Am. Chem. Soc. 1996, 118, 2307-2308.
26. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation-Pi Interactions in Aromatics of Biological and Medicinal Interest: Electrostatic Potential Surfaces as a Useful Qualitative Guide. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566-10571.
27. Williams, J. H., The Molecular Electric Quadrupole Moment and Solid-State Architecture. Acc. Chem. Res. 1993, 26, 593-598.
28. Dennis, G. R.; Ritchie, G. L. D., Dilute-Solution Field Gradient-Induced Birefringence and Molecular Quadrupole Moment of Benzene. J. Phys. Chem. 1991, 95, 656-660.
29. Hobza, P.; Selzle, H. L.; Schlag, E. W., Potential Energy Surface of the Benzene Dimer: Ab Initio Theoretical Study. J. Am. Chem. Soc. 1994, 116, 3500-3506.
30. Linse, P., Stacked or T-Shaped Benzene Dimer in Aqueous Solution? A Molecular Dynamic Study. J. Am. Chem. Soc. 1992, 114, 4366-4373.
31. Shepodd, T. J.; Petti, M. A.; Dougherty, D. A., Tight, Oriented Binding of an Aliphatic Guest by a New Class of Water-Soluble Molecules with Hydrophobic Binding Sites. J. Am. Chem. Soc. 1986, 108, 6085-6087.
32. Shepodd, T. J.; Petti, M. A.; Dougherty, D. A., Molecular Recognition in Aqueous Media: Donor-Acceptor and Ion-Dipole Interactions Produce Tight Binding for Highly Soluble Guests. J. Am. Chem. Soc. 1988, 110, 1983-1985.
33. Petti, M. A.; Shepodd, T. J.; Barrans, R. E.; Dougherty, D. A., "Hydrophobic" Binding of Water-Soluble Guests by High-Symmetry, Chiral Hosts. An Electron-Rich Receptor Site with a General Affinity for Quaternary Ammonium Compounds and Electron-Deficient .Pi. Systems. J. Am. Chem. Soc. 1988, 110, 6825-6840.
34. Schneider, H.-J.; Blatter, T.; Simova, S.; Theis, I., Large Binding Constant Differences between Aromatic and Aliphatic Substrates in Positively Charged Cavities Indicative of Higher Order Electric Effects. J. Chem. Soc., Chem. Commun. 1989, 580-581.
35. Schneider, H.-J., Linear Free Energy Relationships and Pairwise Interactions in Supramolecular Chemistry. Chem. Soc. Rev. 1994, 23, 227-234.
36. Schneider, H. J.; Schiestel, T.; Zimmermann, P., Host-Guest Supramolecular Chemistry. 34. The Incremental Approach to Noncovalent Interactions: Coulomb and Van Der Waals Effects in Organic Ion Pairs. J. Am. Chem. Soc. 1992, 114, 7698-7703.
37. Murayama, K.; Aoki, K., Molecular Recognition Involving Multiple Cation-π Interactions: The Inclusion of the Acetylcholine Trimethylammonium Moiety in Resorcin[4]Arene. Chem. Commun. 1997, 119-120.
38. Chipot, C.; Maigret, B.; Pearlman, D. A.; Kollman, P. A., Molecular Dynamics Potential of Mean Force Calculations:  A Study of the Toluene−Ammonium π-Cation Interactions. J. Am. Chem. Soc. 1996, 118, 2998-3005.
39. Duffy, E. M.; Kowalczyk, P. J.; Jorgensen, W. L., Do Denaturants Interact with Aromatic Hydrocarbons in Water? J. Am. Chem. Soc. 1993, 115, 9271-9275.
40. Burley, S. K.; Petsko, G. A., Amino-Aromatic Interactions in Proteins. FEBS Lett. 1986, 203, 139-143.
41. Perutz, M. F.; Fermi, G.; Abraham, D. J.; Poyart, C.; Bursaux, E., Hemoglobin as a Receptor of Drugs and Peptides: X-Ray Studies of the Stereochemistry of Binding. J. Am. Chem. Soc. 1986, 108, 1064-1078.
42. Singh, J.; Thornton, J. M., Sirius: An Automated Method for the Analysis of the Preferred Packing Arrangements between Protein Groups. J. Mol. Biol. 1990, 211, 595-615.
43. Mitchell, J. B. O.; Nandi, C. L.; McDonald, I. K.; Thornton, J. M.; Price, S. L., Amino/Aromatic Interactions in Proteins: Is the Evidence Stacked against Hydrogen Bonding? J. Mol. Biol. 1994, 239, 315-331.
44. Rodham, D. A.; Suzuki, S.; Suenram, R. D.; Lovas, F. J.; Dasgupta, S.; Goddard, W. A.; Blake, G. A., Hydrogen Bonding in the Benzene-Ammonia Dimer. Nature 1993, 362, 735-737.
45. Meot-Ner, M.; Deakyne, C. A., Unconventional Ionic Hydrogen Bonds. 2. NH+.Cntdot..Cntdot..Cntdot..Pi.. Complexes of Onium Ions with Olefins and Benzene Derivatives. J. Am. Chem. Soc. 1985, 107, 474-479.
46. Boudon, S.; Wipff, G.; Maigret, B., Monte Carlo Simulations on the Like-Charged Guanidinium-Guanidinium Ion Pair in Water. J. Phys. Chem. 1990, 94, 6056-6061.
47. Hubbard, S. R.; Wei, L.; Hendrickson, W. A., Crystal Structure of the Tyrosine Kinase Domain of the Human Insulin Receptor. Nature 1994, 372, 746-754.
48. Livnah, O.; Stura, E. A.; Johnson, D. L.; Middleton, S. A.; Mulcahy, L. S.; Wrighton, N. C.; Dower, W. J.; Jolliffe, L. K.; Wilson, I. A., Functional Mimicry of a Protein Hormone by a Peptide Agonist: The Epo Receptor Complex at 2.8 Å. Science 1996, 273, 464-471.
49. Shoemaker, K. R.; Fairman, R.; Schultz, D. A.; Robertson, A. D.; York, E. J.; Stewart, J. M.; Baldwin, R. L., Side-Chain Interactions in the C-Peptide Helix: Phe 8···His 12+. Biopolymers 1990, 29, 1-11.
50. Armstrong, K. M.; Fairman, R.; Baldwin, R. L., The (I,I+4) Phe-His Interaction Studied in an Alanine-Based Α-Helix. J. Mol. Biol. 1993, 230, 284-291.
51. Dion, A. S.; Myers, J. C., Cooh-Terminal Propeptides of the Major Human Procollagens. J. Mol. Biol. 1987, 193, 127-143.
52. Bhate, M.; Wang, X.; Baum, J.; Brodsky, B., Folding and Conformational Consequences of Glycine to Alanine Replacements at Different Positions in a Collagen Model Peptide. Biochemistry 2002, 41, 6539-6547.
53. Whitmore, L.; Wallace, B. A., Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392-400.
54. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino Acid Propensities for the Collagen Triple-Helix. Biochemistry 2000, 39, 14960-14967.
55. Chiang, C.-H.; Fu, Y.-H.; Horng, J.-C., Formation of AAB-Type Collagen Heterotrimers from Designed Cationic and Aromatic Collagen-Mimetic Peptides: Evaluation of the C-Terminal Cation−π Interactions. Biomacromolecules 2017, 18, 985-993.
56. Cooper, A., Heat Capacity of Hydrogen-Bonded Networks: An Alternative
View of Protein Folding Thermodynamics. Biophysical Chemistry 2000, 85,
25-39.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *