帳號:guest(3.145.20.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪珮瑜
作者(外文):Hung, Pei-Yu
論文名稱(中文):含組胺酸之聚脯胺酸短胜肽與類膠原蛋白胜肽對酯類水解反應的催化效率探討
論文名稱(外文):Design of Histidine-Containing Polyproline and Collagen-Mimetic Peptides as Enzymes for Catalyzing Ester Hydrolysis
指導教授(中文):洪嘉呈
指導教授(外文):Horng, Jia-Cherng
口試委員(中文):朱立岡
陳青諭
口試委員(外文):Chu, Li-Kang
Chen, Chin-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023503
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:83
中文關鍵詞:聚脯胺酸膠原蛋白酯類水解人工水解酶催化
外文關鍵詞:PolyprolineCollagenEster hydrolysisArtificial enzymeCatalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
近年來,許多研究將簡單的胜肽序列設計成人工水解酶,期望能模擬天然水解酶的活性與選擇性。儘管常見的天然水解酶結構及序列已在文獻中被報導,組成活性中心的胺基酸序列與位置可以作為設計上參考,然而設計出同時具高催化活性及高受質結合性的水解酶仍是一大挑戰。在本研究中,我們設計以聚脯胺酸螺旋結構為主體的人工水解酶,並利用天然水解酶中催化二聯體、三聯體的概念,以及先前文獻中共同組裝的概念,研究聚脯胺酸結構對於催化效率的影響。我們以CD光譜鑑定所設計胜肽的結構及穩定性,並利用UV-Vis光譜以及一系列酯類受質研究人工水解酶的催化能力。在第一部分的實驗中,利用簡單的聚脯胺酸胜肽,我們發現PPII結構的完整性對於人工水解酶的催化效率有很重要的影響,並且去質子化過程也是影響人工水解酶的催化效率之重要因素;在第二部分的實驗中,利用膠原蛋白模擬胜肽,我們發現膠原蛋白三股螺旋的穩定性對於催化效率有很重要的影響,並且成功利用金屬與膠原蛋白模擬胜肽配位以提升催化效率。我們的研究說明在人工水解酶中,維持穩定三維結構及形成有效的催化中心才能使人工水解酶作為有效率的催化劑。本研究為首例將催化二聯體、三聯體引入聚脯胺酸結構的人工水解酶設計,並且催化效率優於部分文獻中具有大型奈米結構的水解酶設計,而我們所設計的人工水解酶也適合作為疏水性較高的大分子受質的催化劑。基於天然胺基酸所組成的人工水解酶具有較高的生物相容性與生物降解性,我們的設計也可在未來應用於生物系統中。
Recently, a number of simple oligopeptides have been developed as artificial enzymes for mimicking the activity and selectivity of natural hydrolases. Although the arrangement of amino acid residues in natural enzymes has been reported and their composition of active sites could provide a strategy for designing artificial enzymes, creating catalysts with both efficient binding and catalytic activity is still challenging. In this study, we designed a series of peptides with polyproline scaffold as artificial enzymes and also utilized the concept of catalytic dyad or triad and the co-assembly strategy. Their secondary structures were characterized by CD spectroscopy and their catalytic activities on ester hydrolysis were measured by UV-Vis spectroscopy using a series of p-nitrophenyl ester assay. In the first part, the results indicate that a well formed polyproline II (PPII) structure could result in a much higher catalytic efficiency. In addition, deprotonation steps in artificial enzymes are an important factor for obtaining a higher catalytic efficiency. In the second part, the results show that the triple helical stability of collagen-mimetic peptides could dramatically affect their catalytic efficiency. Furthermore, introducing zinc ions into collagen-mimetic peptides could mimic the active site in metalloenzymes and result in a higher catalytic efficiency. This is the first report of a functional dyad or triad engineered into a polyproline helix framework. Despite the fact that our designs are not as efficient as natural enzymes, the activity of our designs is still greater than some reported nanostructures. Our investigation has also revealed the necessity of maintaining a stable three-dimensional structure and a well-organized catalytic site for effective biocatalysts.
誌謝辭 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1聚脯胺酸(Polyproline) 1
1-2膠原蛋白(Collagen) 3
1-3酯類水解反應(Ester hydrolysis reaction) 6
1-4天然水解酶的作用機制 8
1-5人工水解酶的設計 12
1-6研究動機 15
第二章 實驗部分 16
2-1實驗儀器 16
2-2實驗藥品 17
2-3圓二色光譜儀 (Circular dichroism spectrometer, CD) 20
2-4固相胜肽合成法 (Solid phase peptide synthesis, SPPS) 23
2-5化合物的合成、純化與鑑定 26
2-5-1 Fmoc-Tyr(tBu)-resin之合成 26
2-5-2 Fmoc-Pro-Hyp-Gly-OH之合成 27
2-5-3 p-Nitrophenyl-(2-phenyl)-propanoate (p-NPP)之合成 29
2-5-4 p-Nitrophenylmethoxyacetate (p-NPMA)之合成 30
2-6胜肽的合成、純化與鑑定 31
2-7光譜測量 33
2-7-1 UV光譜測量濃度 33
2-7-2 CD光譜測量 33
2-7-3催化水解活性實驗 34
2-8光譜數據分析 37
2-8-1 CD變溫實驗之數據處理 37
2-8-2活性實驗之數據處理 38
2-8-3利用1H NMR光譜量測胜肽pKa值實驗之數據處理 40
2-9計算模擬聚脯胺酸結構之研究方法 40
第三章 結果與討論 41
第一部分 設計聚脯胺酸短胜肽作為人工水解酶 41
3-1聚脯胺酸短胜肽之設計 41
3-2胜肽結構之鑑定 42
3-3對酯類水解反應的催化效率探討 45
3-4在不同pH值環境下的催化效率探討 49
3-5利用1H NMR光譜量測胜肽pKa值 51
3-6對酯類水解反應的選擇性探討 52
3-7計算模擬聚脯胺酸結構 56
第二部分 設計膠原蛋白模擬胜肽作為人工水解酶 59
3-8膠原蛋白模擬胜肽之設計 59
3-9膠原蛋白模擬胜肽三股螺旋結構之鑑定 60
3-10對酯類水解反應的催化效率探討 62
3-11與文獻中人工水解酶的催化效率比較 67
第四章 結論與展望 68
參考文獻 70
附錄 76
1. Traub, W.; Shmueli, U., Structure of poly-L-proline I. Nature 1963, 198, 1165-1166.
2. Cowan, P. M.; McGavin, S., Structure of poly-L-proline. Nature 1955, 176, 501-503.
3. Kakinoki, S., et al., On the stability of polyproline-I and II structures of proline oligopeptides. Polym. Bull. 2004, 53, 109-115.
4. Fischer, G., Chemical aspects of peptide bond isomerisation. Chem. Soc. Rev. 2000, 29, 119-127.
5. Dugave, C.; Demange, L., Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem. Rev. 2003, 103, 2475-2532.
6. Rath, A., et al., The structure of "unstructured" regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Biopolymers 2005, 80, 179-185.
7. Bochicchio, B.; Tamburro, A. M., Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 2002, 14, 782-792.
8. Lam, S. L.; Hsu, V. L., NMR identification of left-handed polyproline type II helices. Biopolymers 2003, 69, 270-281.
9. Horng, J. C.; Raines, R. T., Stereoelectronic effects on polyproline conformation. Protein Sci. 2006, 15, 74-83.
10. Chiang, Y. C., et al., Stereoelectronic effects on the transition barrier of polyproline conformational interconversion. Protein Sci. 2009, 18, 1967-1977.
11. Ungar-Waron, H., et al., Role of a rigid polyproline spacer inserted between hapten and carrier in the induction of anti-hapten antibodies and delayed hypersensitivity. Eur. J. Immunol. 1973, 3, 201-205.
12. Arora, P. S., et al., Design of artificial transcriptional activators with rigid poly-L-proline linkers. J. Am. Chem. Soc. 2002, 124, 13067-13071.
13. Bonger, K. M., et al., Oligoproline helices as structurally defined scaffolds for oligomeric G protein-coupled receptor ligands. Org. Biomol. Chem. 2010, 8, 1881-1884.
14. Lai, Y.-C., et al., Distance-dependent excited-state electron transfer from tryptophan to gold nanoparticles through polyproline helices. J. Phys. Chem. C 2017, 121, 4882-4890.
15. Wilhelm, P., et al., A crystal structure of an oligoproline PPII-helix, at last. J. Am. Chem. Soc. 2014, 136, 15829-15832.
16. Oliveira, S. M., et al., An improved collagen scaffold for skeletal regeneration. J. Biomed. Mater. Res. A 2010, 94, 371-379.
17. Singh, O., et al., Collagen dressing versus conventional dressings in burn and chronic wounds: a retrospective study. J. Cutan. Aesthet. Surg. 2011, 4, 12-16.
18. Cowan, P. M., et al., The polypeptide chain configuration of collagen. Nature 1955, 176, 1062-1064.
19. McKenzie, L. Cytoskeletal structural proteins. Retrived June 18, 2017, from http://slideplayer.com/slide/6117668/
20. Privalov, P., Stability of proteins: proteins which do not present a single cooperative system. Adv. Protein Chem. 1982, 35, 1-104.
21. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554.
22. Sakakibara, S., et al., Synthesis of (Pro-Hyp-Gly)n of defined molecular weights Evidence for the stabilization of collagen triple helix by hydroxypyroline. Biochim. Biophys. Acta 1973, 303, 198-202.
23. Persikov, A. V., et al., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967.
24. Bruice, P. Y., Organic Chemistry. 6th ed.; Prentice Hall International, Inc.: 2010.
25. Bruice, T. C.; Schmir, G. L., Imidazole catalysis. I. The catalysis of the hydrolysis of phenyl acetates by imidazole. J. Am. Chem. Soc. 1957, 79, 1663-1667.
26. Kirsch, J. F.; Jencks, W. P., Base catalysis of imidazole catalysis of ester hydrolysis. J. Am. Chem. Soc. 1964, 86, 833-837.
27. Pandit, N. K.; Connors, K. A., Kinetics and mechanism of hydroxy group acetylations catalyzed by N-methylimidazole. J. Pharm. Sci. 1982, 71, 485-491.
28. Gold, D. H.; Gregor, H. P., Metal—polyelectrolyte complexes. Vii. The poly-N-vinylimidazole silver(I) complex and the imidazole—silver(I) complex. J. Phys. Chem. 1960, 64, 1461-1463.
29. Okhapkin, I. M., et al., Thermosensitive imidazole-containing polymers as catalysts in hydrolytic decomposition of p-nitrophenyl acetate. Macromolecules 2004, 37, 7879-7883.
30. Bezer, S., et al., Identification and optimization of short helical peptides with novel reactive functionality as catalysts for acyl transfer by reactive tagging. Org. Biomol. Chem. 2014, 12, 1488-1494.
31. Gutfreund, H.; Sturtevant, J. M., The mechanism of the reaction of chymotrypsin withp-nitrophenyl acetate. Biochem. J. 1956, 63, 656-661.
32. Godzhaev, N., Study of trypsin-substrate and trypsin-inhibitor complexes. 1. Conformation of Asp-102, His-57 and Ser-195 residues in the trypsin active center. Mol. Biol. 1983, 18, 1432-1435.
33. Massiah, M. A., et al., Short, strong hydrogen bonds at the active site of human acetylcholinesterase: proton NMR studies. Biochemistry 2001, 40, 5682-5690.
34. Clark, J. D., et al., Cytosolic phospholipase A2. J. Lipid Mediat. Cell Signal. 1995, 12, 83-117.
35. Mignatti, P.; Rifkin, D. B., Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 1996, 49, 117-137.
36. DeClerck, Y. A., et al., Proteases and protease inhibitors in tumor progression. Adv. Exp. Med. Biol. 1997, 425, 89-97.
37. Gorrell, M. D., Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin. Sci. 2005, 108, 277-292.
38. De Munter, S., et al., Challenges and opportunities in the development of protein phosphatase-directed therapeutics. ACS Chem. Biol. 2013, 8, 36-45.
39. Head, M. B., et al., Nucleophilic and enzymic catalysis of p-nitrophenylacetate hydrolysis. J. Chem. Educ. 1995, 72, 184-186.
40. Ohkubo, K., et al., Stereoselective esterolysis of dipeptide-type amino acid esters with Di-and Tri-peptide-type L-histidine derivatives in the solution of a chiral cationic surfactant. J. Mol. Catal. 1984, 26, 1-5.
41. Barton, J. S., A comprehensive enzyme kinetic exercise for biochemistry. J. Chem. Educ. 2011, 88, 1336-1339.
42. Hiscock, J. R., et al., Tripodal molecules for the promotion of phosphoester hydrolysis. Chem. Commun. 2014, 50, 6217-6220.
43. Li, Y., et al., Dipeptide seryl-histidine and related oligopeptides cleave DNA, protein, and a carboxyl ester. Bioorg. Med. Chem. 2000, 8, 2675-2680.
44. Blow, D. M., et al., Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 1969, 221, 337-340.
45. Khersonsky, O.; Tawfik, D. S., The histidine 115-histidine 134 dyad mediates the lactonase activity of mammalian serum paraoxonases. J. Biol. Chem. 2006, 281, 7649-7656.
46. Quirk, D. J.; Raines, R. T., His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes. Biophys. J. 1999, 76, 1571-1579.
47. Drenth, J., et al., The structure of papain. Adv. Protein Chem. 1971, 25, 79-115.
48. MacBeath, G.; Hilvert, D., Hydrolytic antibodies: variations on a theme. Chem. Biol. 1996, 3, 433-445.
49. Simon, L.; Goodman, J. M., Enzyme catalysis by hydrogen bonds: the balance between transition state binding and substrate binding in oxyanion holes. J. Org. Chem. 2010, 75, 1831-1840.
50. Kamerlin, S. C., et al., On catalytic preorganization in oxyanion holes: highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models. J. Org. Chem. 2010, 75, 6391-6401.
51. MÉNard, R.; Storer, A. C., Oxyanion hole interactions in serine and cysteine proteases. Biol. Chem. Hoppe-Seyler 1992, 373, 393-400.
52. Steitz, T. A., et al., Structure of crystalline α-chymotrypsin. J. Mol. Biol. 1969, 46, 337-348.
53. Gráf, L., et al., Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4961-4965.
54. Navia, M. A., et al., Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-A resolution. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 7-11.
55. Lippard, S. J.; Berg, J. M., Principles of bioinorganic chemistry. University Science Books: 1994.
56. Richter, F., et al., Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J. Am. Chem. Soc. 2012, 134, 16197-16206.
57. Moroz, Y. S., et al., New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J. Am. Chem. Soc. 2015, 137, 14905-14911.
58. Maeda, Y., et al., Discovery of catalytic phages by biocatalytic self-assembly. J. Am. Chem. Soc. 2014, 136, 15893-15896.
59. Duncan, K. L.; Ulijn, R. V., Short peptides in minimalistic biocatalyst design. Biocatalysis 2015, 1, 67-81.
60. Matsumoto, M., et al., Cross-strand histidine-aromatic interactions enhance acyl-transfer rates in beta-hairpin peptide catalysts. Org. Biomol. Chem. 2014, 12, 8711-8718.
61. Matsumoto, M., et al., A catalyst selection protocol that identifies biomimetic motifs from beta-hairpin libraries. J. Am. Chem. Soc. 2014, 136, 15817-15820.
62. Burton, A. J., et al., Installing hydrolytic activity into a completely de novo protein framework. Nat. Chem. 2016, 8, 837-844.
63. Zastrow, M. L.; Pecoraro, V. L., Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes. J. Am. Chem. Soc. 2013, 135, 5895-5903.
64. Zastrow, M. L., et al., Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 2011, 4, 118-123.
65. Wang, P. S., et al., Design and high-resolution structure of a beta(3)-peptide bundle catalyst. J. Am. Chem. Soc. 2014, 136, 6810-6813.
66. Zhang, Q., et al., Artificial hydrolase based on carbon nanotubes conjugated with peptides. Nanoscale 2016, 8, 16851-16856.
67. Zaramella, D., et al., Self-assembly of a catalytic multivalent peptide-nanoparticle complex. J. Am. Chem. Soc. 2012, 134, 8396-8399.
68. Poznik, M.; Konig, B., Cooperative hydrolysis of aryl esters on functionalized membrane surfaces and in micellar solutions. Org. Biomol. Chem. 2014, 12, 3175-3180.
69. Rufo, C. M., et al., Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 2014, 6, 303-309.
70. Zhang, C., et al., Self-assembled Peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. ACS Nano 2014, 8, 11715-11723.
71. Wang, M., et al., Enhancing the activity of peptide-based artificial hydrolase with catalytic Ser/His/Asp triad and molecular imprinting. ACS Appl. Mater. Interfaces 2016, 8, 14133-14141.
72. Wong, Y. M., et al., Enzyme-mimic peptide assembly to achieve amidolytic activity. Biomacromolecules 2016, 17, 3375-3385.
73. Singh, N., et al., Insight into the esterase like activity demonstrated by an imidazole appended self-assembling hydrogelator. Chem. Commun. 2015, 51, 13213-13216.
74. Fasman, G. D., Circular dichroism and the conformational analysis of biomolecules. Springer Science & Business Media: 1996.
75. Workman, J., The concise handbook of analytical spectroscopy: theory, applications, and reference materials. World Scientific: 2014; Vol. 1.
76. Woody, R. W., Circular dichroism and conformation of unordered polypeptides. Adv. Biophys. Chem. 1992, 2, 37-79.
77. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.
78. Applied Biosystems. Determination of the amino acid substitution level via an Fmoc assay, Technical Note 123485 Rev 2; Documents on Demand-Applied Biosystems Web Page, Retrieved June 18, 2017, from http://www3.appliedbiosystems.com/cms/groups/psm_marketing/documents/generaldocuments/cms_040640.pdf.
79. Knowlton, R. C.; Byers, L. D., Acyl substituent effects on ester aminolysis. J. Org. Chem. 1988, 53, 3862-3865.
80. Rehor, A., et al., Glucose sensitivity through oxidation responsiveness. An example of cascade-responsive nano-sensors. J. Mater. Chem. 2005, 15, 4006-4009
81. Privalov, P. L., Stability of proteins: proteins which do not present a single cooperative system. Adv. Protein Chem. 1982, 35, 1-104.
82. Michaelis, L. M., M. L., Die kinetik der invertinwirkung. Biochem. Z. 1913, 49, 333–369.
83. Brocklehurst, K.; Dixon, H., pH-dependence of the steady-state rate of a two-step enzymic reaction. Biochem. J. 1976, 155, 61-70.
84. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;, et al. Gaussian 09, Revision B.01, Gaussian, Inc.: Wallingford, CT, 2009.
85. Chakrabartty, A., et al., Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry 1993, 32, 5560-5565.
86. Lin, Y. J., et al., Effects of the terminal aromatic residues on polyproline conformation: thermodynamic and kinetic studies. J. Phys. Chem. B 2015, 119, 15796-15806.
87. Loewenthal, R., et al., Histidine-aromatic interactions in barnase. J. Mol. Biol. 1992, 224, 759-770.
88. Macias, M. J., et al., WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 2002, 513, 30-37.
89. Lorand, L., et al., Thrombin-catalyzed hydrolysis of p-nitrophenyl esters. Arch. Biochem. Biophys. 1962, 96, 147-151.
90. Zhong, H.; Carlson, H. A., Conformational studies of polyprolines. J. Chem. Theory Comput. 2006, 2, 342-353.
91. O'Leary, L. E., et al., Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 2011, 3, 821-828.
92. Persikov, A. V., et al., Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 2005, 280, 19343-19349.
93. Chen, C. C., et al., Self-assembly of short collagen-related peptides into fibrils via cation-pi interactions. Biochemistry 2011, 50, 2381-2383.
94. 丁翊涵. 金屬誘導膠原蛋白模擬胜肽自組裝與其結構對酯類水解反應之催化活性探討. 碩士學位論文, 國立清華大學, 2016

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *