帳號:guest(18.226.170.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):趙芷瑩
作者(外文):Chew, Chee-Ying.
論文名稱(中文):利用可切換式近紅外光之部分花青染料和生物素—鏈親和素的複合物來成像特定細胞器
論文名稱(外文):Organelle-Specific Imaging Using Near-Infrared Fluorescence Switchable Merocyanine Dye and Biotin-Streptavidin Chemistry
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):黃郁棻
許馨云
口試委員(外文):Huang, Yu-Fen
Hsu, Hsin-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023403
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:85
中文關鍵詞:探針細胞影像螢光增益籠閉生物素
外文關鍵詞:probecell imagefluorescence enhancementcaged-biotin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:558
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
在細胞代謝過程中,每一個細胞器都有著特定和不可或缺的作用。例如,核調節基因表達,線粒體負責有氧代謝。因此,監測生物物種內特定細胞器的微環境提供了至關重要的準確信息,以了解其在細胞器的病理與生理學中的作用。
然而,由於大多數近紅外染料擁有傾向於積聚在線粒體中的陽離子電荷,這使得它們不適用於特定細胞器的細胞影像。在本論文中,我們提出了一種新型的無電荷、可切換近紅外光的部份花青螢光染料。與傳統的部份花青相比,此新染料對擁擠的環境非常敏感,並在近紅外區域內展示出顯著的吸收和放射。將能夠與蛋白質專一性結合的配體整合到螢光團,探針在與靶標蛋白結合時表現出顯著的螢光增加(高達300倍)。大差距的螢光差異能夠擁有最小的背景螢光、可免去洗滌步驟並且針對不同細胞器來標記。
除此之外,我們也開發出新型籠閉生物素探針,搭配醯胺耦合的設計,提出一種細胞膜成像的方法。所設計的籠閉生物素探針與鏈親和素蛋白的結合,可以偵測細胞表面上的過氧亞硝酸分泌,此方法可達到極小背景訊號、螢光增益,且可應用不同的螢光分子。在目標分析物存在下引發去籠閉情況,將含有多個螢光團連接的鏈親和素蛋白來進行信號放大。
Cellular organelles play a specific and indispensable role in cellular processes. Consequently, monitoring of biological species and the microenvironment within specific organelles are crucial to provide accurate information to understand their roles in the physiopathology of organelles. Because of permanent cationic charge, most near-infrared dyes tend to accumulate preferentially in the mitochondria which make them not suitable for organelle-specific imaging. In this thesis, we present a novel charge-free fluorescence switchable near-IR dye based on merocyanine. As compared to the classical merocyanine, the new dye is highly sensitive to crowded surroundings and exhibits substantial red-shifted absorption and emission within the near-IR region. By incorporating a protein specific ligand to the dye, the probe P-Mero4BG exhibit dramatic fluorescence increases (up to 300-fold) upon binding to its target protein. The large fluorescence enhancement enabled no-wash labeling and imaging of the SNAP-tag protein in different subcellular compartments with minimum background fluorescence.
In the second part of my thesis, I demonstrated a novel approach for specific imaging of plasma membrane by using caged-biotin chemical probes by regulating biotin-streptavidin binding. The caged-biotin chemical probe design takes advantage of the specific and rapid biotin-streptavidin binding. One application is to anchor caged-biotin on the cell surface to accomplish background free and signal amplified detection of the secreted peroxynitrite upon PMA stimulation.
Abstract i
摘要 iii
謝誌 iv
Publication vi
Contents vii
Table of Abbreviation xi
Chapter 1 Introduction 1
1-1 Preface 1
1-2 Biosensor 1
1-2.1 Bioreceptor 2
1-2.2 Transducer 3
1-2.2.1 Optical Fibres 4
1-2.2.2 Surface Plasmon Resonance (SPR) 4
1-2.2.3 Fluorescence Transducer 6
1-3 Mechanism of Fluorescence Enhancement 7
1-3.1 Self-Assembly/Disassembly 7
1-3.2 Aggregation-Induced Emission (AIE) 8
1-3.3 Environment-Sensitive 9
Part 1. 15
Chapter 2 Literature Review 16
2-1 Near-Infrared Fluorophore 16
2-2 Organelles-Specific Imaging 17
2-3 Protein Labeling 19
2-3.1 Fluorescence Protein Labeling 21
2-3.2 Fluorescence Probe Labeling 23
Chapter 3 Probe Design and Concept 25
Chapter 4 Results and Discussion 27
4-1 Spectroscopic Property of Mero4 and P-Mero4 27
4-2 Organelle-Specific Imaging 29
4-3 Permeability and Labeling Rates in Living Cells 32
4-4 The Specific Labeling of Pre-Mature Lamin A 34
4-5 Experimental Conclusion and Future Research 35
Part 2. 37
Chapter 5 Literature Review 38
5-1 Reactive Caged Probe 38
5-1.1 Caged-Luciferin 38
5-1.2 Caged-Fluorophore 39
5-1.3 Caged-Biotin 41
Chapter 6 Probe Design and Concept 43
6-1 Design Concept 43
6-2 The Motivation of Detection Peroxynitrite 46
6-3 Strategy for Cell Membrane Sensor 48
Chapter 7 Results and Discussion 50
7-1 Selectivity Studies and Imaging of Exogenous ONOO- 50
7-2 Secreted Peroxynitrite under PMA Stimulation 53
7-3 Initiation and Duration of Peroxynitrite Burst in RAW264.7 Cells under PMA Stimulation 56
7-4 Determine Amount of Secreted Endogeneous Peroxynitrite on Extracellular Surface 59
7-5 Experimental Conclusion 67
Chapter 8 Conclusion of the Thesis 68
Chapter 9 Experimental Section 70
9-1 Materials and Apparatus 70
9-2 Fluorescence Spectroscopic Evaluation 71
9-3 Protein Expression and Purification 71
9-3.1 Protein Expression 71
9-3.2 Purification of Protein 71
9-3.3 SDS-PAGE 72
9-4 Cell Culture and Image 74
9-4.1 Culture Medium and Reagent 74
9-4.2 Subculture of Cells 75
9-4.3 Cell Transfection and Fluorescence Imaging 76
9-5 Study of Peroxynitrite Released from SIN-1 in DMEM Medium 78
9-6 Preparation of Various ROS and RNS Solutions for Selectivity Studies 78
9-7 Flow Cytometry Analysis 79
References 80
1. Thévenot, D.R., et al., Electrochemical biosensors: Recommended definitions and classification. Biosensors and Bioelectronics, 2001. 16(1-2): p. 121-131.
2. Grieshaber, D., et al., Electrochemical biosensors - Sensor principles and architectures. Sensors, 2008. 8(3): p. 1400-1458.
3. Chan, J., S.C. Dodani, and C.J. Chang, Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nature Chemistry, 2012. 4(12): p. 973-984.
4. Long, F., A. Zhu, and H. Shi, Recent Advances in Optical Biosensors for Environmental Monitoring and Early Warning. Sensors, 2013. 13(10): p. 13928.
5. Tanya, M.M., et al., Sensing with microstructured optical fibres. Measurement Science and Technology, 2001. 12(7): p. 854.
6. Yoshii, T., et al., Intracellular protein-responsive supramolecules: Protein sensing and in-cell construction of inhibitor assay system. Journal of the American Chemical Society, 2014. 136(47): p. 16635-16642.
7. Qi, H., et al., Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors. Sensors, 2009. 9(1): p. 674.
8. Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539.
9. Hou, T.C., et al., Near-infrared fluorescence activation probes based on disassembly-induced emission cyanine dye. Chemical Science, 2015. 6(8): p. 4643-4649.
10. Yang, Z., et al., A mechanistic study of AIE processes of TPE luminogens: intramolecular rotation vs. configurational isomerization. Journal of Materials Chemistry C, 2016. 4(1): p. 99-107.
11. Loving, G.S., M. Sainlos, and B. Imperiali, Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends in Biotechnology, 2010. 28(2): p. 73-83.
12. Lai, W.-Y. and K.-T. Tan, Environment-sensitive Fluorescent Turn-on Chemical Probe for the Specific Detection of O-Methylguanine-DNA Methyltransferase (MGMT) in Living Cells. Journal of the Chinese Chemical Society, 2016. 63(8): p. 688-693.
13. Sarangi, M.K., et al., Hydrogen bond sensitive probe 5-methoxy-1-keto-1,2,3,4-tetrahydro carbazole in the microheterogeneity of binary mixtures and reverse micelles. Journal of Physical Chemistry C, 2013. 117(5): p. 2166-2174.
14. Mustafic, A., et al., Imaging of Flow Patterns with Fluorescent Molecular Rotors. Journal of Fluorescence, 2010. 20(5): p. 1087-1098.
15. Drummen, G., Fluorescent Probes and Fluorescence (Microscopy) Techniques — Illuminating Biological and Biomedical Research. Molecules, 2012. 17(12): p. 14067.
16. Wu, Y.-Y., et al., A selective and sensitive fluorescent albumin probe for the determination of urinary albumin. Chemical Communications, 2014. 50(78): p. 11507-11510.
17. Escobedo, J.O., et al., NIR Dyes for Bioimaging Applications. Current opinion in chemical biology, 2010. 14(1): p. 64.
18. Weissleder, R., A clearer vision for in vivo imaging. Nature Biotechnology, 2001. 19(4): p. 316-317.
19. Chen, C., et al., Far-red/near-infrared fluorescence light-up probes for specific in vitro and in vivo imaging of a tumour-related protein. Scientific Reports, 2016. 6.
20. Kim, E., et al., Optimized Near-IR fluorescent agents for in vivo imaging of Btk expression. Bioconjugate chemistry, 2015. 26(8): p. 1513-1518.
21. Liu, Y., et al., A Cyanine Dye to Probe Mitophagy: Simultaneous Detection of Mitochondria and Autolysosomes in Live Cells. Journal of the American Chemical Society, 2016. 138(38): p. 12368-12374.
22. Los, G.V., et al., HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chemical Biology, 2008. 3(6): p. 373-382.
23. Kosaka, N., et al., In Vivo Stable Tumor-Specific Painting in Various Colors Using Dehalogenase-Based Protein-Tag Fluorescent Ligands. Bioconjugate chemistry, 2009. 20(7): p. 1367-1374.
24. Giepmans, B.N.G., et al., The fluorescent toolbox for assessing protein location and function. Science, 2006. 312(5771): p. 217-224.
25. Varki, A., Radioactive tracer techniques in the sequencing of glycoprotein oligosaccharides. FASEB Journal, 1991. 5(2): p. 226-235.
26. Strauch, R.C., et al., Reporter Protein-Targeted Probes for Magnetic Resonance Imaging. Journal of the American Chemical Society, 2011. 133(41): p. 16346-16349.
27. van Staveren, D.R. and N. Metzler-Nolte, Bioorganometallic chemistry of ferrocene. Chemical Reviews, 2004. 104(12): p. 5931-5985.
28. Sahoo, H., Fluorescent labeling techniques in biomolecules: A flashback. RSC Advances, 2012. 2(18): p. 7017-7029.
29. Beatty, K.E., et al., Selective dye-labeling of newly synthesized proteins in bacterial cells. Journal of the American Chemical Society, 2005. 127(41): p. 14150-14151.
30. Zeng, Y.S., et al., Fluorescent Probe Encapsulated in SNAP-Tag Protein Cavity to Eliminate Nonspecific Fluorescence and Increase Detection Sensitivity. Bioconjugate Chemistry, 2016. 27(8): p. 1872-1879.
31. Wu, T.W., et al., Fluorescent probe encapsulated in avidin protein to eliminate nonspecific fluorescence and increase detection sensitivity in blood serum. Analytical Chemistry, 2016. 88(16): p. 7873-7877.
32. Goldsmith, C.R., et al., Selective Labeling of Extracellular Proteins Containing Polyhistidine Sequences by a Fluorescein–Nitrilotriacetic Acid Conjugate. Journal of the American Chemical Society, 2006. 128(2): p. 418-419.
33. Keppler, A., et al., A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotech, 2003. 21(1): p. 86-89.
34. Damoiseaux, R., A. Keppler, and K. Johnsson, Synthesis and applications of chemical probes for human O6-alkylguanine-DNA alkyltransferase. ChemBioChem, 2001. 2(4): p. 285-287.
35. MacNevin, C.J., et al., Environment-sensing merocyanine dyes for live cell imaging applications. Bioconjugate Chemistry, 2013. 24(2): p. 215-223.
36. Coffinier, C., et al., HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(33): p. 13432-13437.
37. Lutz, R.J., et al., Nucleoplasmic localization of prelamin A: implications for prenylation-dependent lamin A assembly into the nuclear lamina. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(7): p. 3000-3004.
38. Ellis-Davies, G.C.R., Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nature Methods, 2007. 4(8): p. 619-628.
39. Van de Bittner, G.C., et al., In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc Natl Acad Sci U S A, 2010. 107(50): p. 21316-21.
40. Chen, X., et al., Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chemical Reviews, 2012. 112(3): p. 1910-1956.
41. Hargrove, A.E., et al., Artificial receptors for the recognition of phosphorylated molecules. Chemical Reviews, 2011. 111(11): p. 6603-6782.
42. Sakabe, M., et al., Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. Journal of the American Chemical Society, 2013. 135(1): p. 409-414.
43. Lu, T., et al., The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction. PLoS ONE, 2016. 11(3): p. e0149751.
44. Hughes, L.D., R.J. Rawle, and S.G. Boxer, Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers. PLOS ONE, 2014. 9(2): p. e87649.
45. Zanetti-Domingues, L.C., et al., Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding. PLOS ONE, 2013. 8(9): p. e74200.
46. Anderson, N.L. and N.G. Anderson, The human plasma proteome: history, character, and diagnostic prospects. Molecular & cellular proteomics : MCP, 2002. 1(11): p. 845-867.
47. Das, D.K., et al., Binding of organic dyes with human serum albumin: A single-molecule study. Chemistry - An Asian Journal, 2011. 6(11): p. 3097-3103.
48. Mishra, A., et al., Cyanines during the 1990s: a review. Chemical Reviews, 2000. 100(6): p. 1973-2011.
49. Kim, Y.K., et al., The binding of fluorophores to proteins depends on the cellular environment. Angewandte Chemie - International Edition, 2011. 50(12): p. 2761-2763.
50. Haab, B.B., Applications of antibody array platforms. Current Opinion in Biotechnology, 2006. 17(4): p. 415-421.
51. Wilchek, M. and E.A. Bayer, Introduction to avidin-biotin technology, in Methods in Enzymology. 1990. p. 5-13.
52. Terai, T., et al., Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chemistry & Biology, 2011. 18(10): p. 1261-1272.
53. Hengsakul, M. and A.E. Cass, Protein patterning with a photoactivatable derivative of biotin. Bioconjugate Chemistry, 1996. 7(2): p. 249-54.
54. Sundberg, S.A., et al., Spatially-addressable immobilization of macromolecules on solid supports. Journal of the American Chemical Society, 1995. 117(49): p. 12050-12057.
55. Kim, K., et al., Protein patterning based on electrochemical activation of bioinactive surfaces with hydroquinone-caged biotin. Journal of the American Chemical Society, 2004. 126(47): p. 15368-15369.
56. Pacher, P., J.S. Beckman, and L. Liaudet, Nitric Oxide and Peroxynitrite in Health and Disease. Physiological reviews, 2007. 87(1): p. 315-424.
57. Radi, R., Peroxynitrite, a Stealthy Biological Oxidant. The Journal of Biological Chemistry, 2013. 288(37): p. 26464-26472.
58. Niki, E., Lipid peroxidation: Physiological levels and dual biological effects. Free Radical Biology and Medicine, 2009. 47(5): p. 469-484.
59. Niki, E., Biomarkers of lipid peroxidation in clinical material. Biochimica et Biophysica Acta (BBA) - General Subjects, 2014. 1840(2): p. 809-817.
60. Astarita, G., et al., Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2015. 1851(4): p. 456-468.
61. Szabo, C., H. Ischiropoulos, and R. Radi, Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 2007. 6(8): p. 662-680.
62. Peng, T., et al., Molecular imaging of peroxynitrite with HKGreen-4 in live cells and tissues. Journal of the American Chemical Society, 2014. 136(33): p. 11728-11734.
63. Sun, Z.N., et al., BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. Organic Letters, 2009. 11(9): p. 1887-1890.
64. Kim, J., et al., A boronate-based fluorescent probe for the selective detection of cellular peroxynitrite. Chemical Communications, 2014. 50(66): p. 9353-9356.
65. Sikora, A., et al., Direct oxidation of boronates by peroxynitrite: Mechanism and implications in fluorescence imaging of peroxynitrite. Free radical biology & medicine, 2009. 47(10): p. 1401-1407.
66. Raad, H., et al., Regulation of the phagocyte NADPH oxidase activity: phosphorylation of gp91(phox)/NOX2 by protein kinase C enhances its diaphorase activity and binding to Rac2, p67(phox), and p47(phox). The FASEB Journal, 2009. 23(4): p. 1011-1022.
67. Cosentino-Gomes, D., N. Rocco-Machado, and J.R. Meyer-Fernandes, Cell Signaling through Protein Kinase C Oxidation and Activation. International Journal of Molecular Sciences, 2012. 13(9): p. 10697-10721.
68. González-Perilli, L., et al., Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages. Free radical biology & medicine, 2013. 58: p. 126-133.
69. Koppenol, W.H., The chemistry of peroxynitrite, a biological toxin. Química Nova, 1998. 21: p. 326-331.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *