|
1. Thévenot, D.R., et al., Electrochemical biosensors: Recommended definitions and classification. Biosensors and Bioelectronics, 2001. 16(1-2): p. 121-131. 2. Grieshaber, D., et al., Electrochemical biosensors - Sensor principles and architectures. Sensors, 2008. 8(3): p. 1400-1458. 3. Chan, J., S.C. Dodani, and C.J. Chang, Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nature Chemistry, 2012. 4(12): p. 973-984. 4. Long, F., A. Zhu, and H. Shi, Recent Advances in Optical Biosensors for Environmental Monitoring and Early Warning. Sensors, 2013. 13(10): p. 13928. 5. Tanya, M.M., et al., Sensing with microstructured optical fibres. Measurement Science and Technology, 2001. 12(7): p. 854. 6. Yoshii, T., et al., Intracellular protein-responsive supramolecules: Protein sensing and in-cell construction of inhibitor assay system. Journal of the American Chemical Society, 2014. 136(47): p. 16635-16642. 7. Qi, H., et al., Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors. Sensors, 2009. 9(1): p. 674. 8. Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539. 9. Hou, T.C., et al., Near-infrared fluorescence activation probes based on disassembly-induced emission cyanine dye. Chemical Science, 2015. 6(8): p. 4643-4649. 10. Yang, Z., et al., A mechanistic study of AIE processes of TPE luminogens: intramolecular rotation vs. configurational isomerization. Journal of Materials Chemistry C, 2016. 4(1): p. 99-107. 11. Loving, G.S., M. Sainlos, and B. Imperiali, Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends in Biotechnology, 2010. 28(2): p. 73-83. 12. Lai, W.-Y. and K.-T. Tan, Environment-sensitive Fluorescent Turn-on Chemical Probe for the Specific Detection of O-Methylguanine-DNA Methyltransferase (MGMT) in Living Cells. Journal of the Chinese Chemical Society, 2016. 63(8): p. 688-693. 13. Sarangi, M.K., et al., Hydrogen bond sensitive probe 5-methoxy-1-keto-1,2,3,4-tetrahydro carbazole in the microheterogeneity of binary mixtures and reverse micelles. Journal of Physical Chemistry C, 2013. 117(5): p. 2166-2174. 14. Mustafic, A., et al., Imaging of Flow Patterns with Fluorescent Molecular Rotors. Journal of Fluorescence, 2010. 20(5): p. 1087-1098. 15. Drummen, G., Fluorescent Probes and Fluorescence (Microscopy) Techniques — Illuminating Biological and Biomedical Research. Molecules, 2012. 17(12): p. 14067. 16. Wu, Y.-Y., et al., A selective and sensitive fluorescent albumin probe for the determination of urinary albumin. Chemical Communications, 2014. 50(78): p. 11507-11510. 17. Escobedo, J.O., et al., NIR Dyes for Bioimaging Applications. Current opinion in chemical biology, 2010. 14(1): p. 64. 18. Weissleder, R., A clearer vision for in vivo imaging. Nature Biotechnology, 2001. 19(4): p. 316-317. 19. Chen, C., et al., Far-red/near-infrared fluorescence light-up probes for specific in vitro and in vivo imaging of a tumour-related protein. Scientific Reports, 2016. 6. 20. Kim, E., et al., Optimized Near-IR fluorescent agents for in vivo imaging of Btk expression. Bioconjugate chemistry, 2015. 26(8): p. 1513-1518. 21. Liu, Y., et al., A Cyanine Dye to Probe Mitophagy: Simultaneous Detection of Mitochondria and Autolysosomes in Live Cells. Journal of the American Chemical Society, 2016. 138(38): p. 12368-12374. 22. Los, G.V., et al., HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chemical Biology, 2008. 3(6): p. 373-382. 23. Kosaka, N., et al., In Vivo Stable Tumor-Specific Painting in Various Colors Using Dehalogenase-Based Protein-Tag Fluorescent Ligands. Bioconjugate chemistry, 2009. 20(7): p. 1367-1374. 24. Giepmans, B.N.G., et al., The fluorescent toolbox for assessing protein location and function. Science, 2006. 312(5771): p. 217-224. 25. Varki, A., Radioactive tracer techniques in the sequencing of glycoprotein oligosaccharides. FASEB Journal, 1991. 5(2): p. 226-235. 26. Strauch, R.C., et al., Reporter Protein-Targeted Probes for Magnetic Resonance Imaging. Journal of the American Chemical Society, 2011. 133(41): p. 16346-16349. 27. van Staveren, D.R. and N. Metzler-Nolte, Bioorganometallic chemistry of ferrocene. Chemical Reviews, 2004. 104(12): p. 5931-5985. 28. Sahoo, H., Fluorescent labeling techniques in biomolecules: A flashback. RSC Advances, 2012. 2(18): p. 7017-7029. 29. Beatty, K.E., et al., Selective dye-labeling of newly synthesized proteins in bacterial cells. Journal of the American Chemical Society, 2005. 127(41): p. 14150-14151. 30. Zeng, Y.S., et al., Fluorescent Probe Encapsulated in SNAP-Tag Protein Cavity to Eliminate Nonspecific Fluorescence and Increase Detection Sensitivity. Bioconjugate Chemistry, 2016. 27(8): p. 1872-1879. 31. Wu, T.W., et al., Fluorescent probe encapsulated in avidin protein to eliminate nonspecific fluorescence and increase detection sensitivity in blood serum. Analytical Chemistry, 2016. 88(16): p. 7873-7877. 32. Goldsmith, C.R., et al., Selective Labeling of Extracellular Proteins Containing Polyhistidine Sequences by a Fluorescein–Nitrilotriacetic Acid Conjugate. Journal of the American Chemical Society, 2006. 128(2): p. 418-419. 33. Keppler, A., et al., A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotech, 2003. 21(1): p. 86-89. 34. Damoiseaux, R., A. Keppler, and K. Johnsson, Synthesis and applications of chemical probes for human O6-alkylguanine-DNA alkyltransferase. ChemBioChem, 2001. 2(4): p. 285-287. 35. MacNevin, C.J., et al., Environment-sensing merocyanine dyes for live cell imaging applications. Bioconjugate Chemistry, 2013. 24(2): p. 215-223. 36. Coffinier, C., et al., HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(33): p. 13432-13437. 37. Lutz, R.J., et al., Nucleoplasmic localization of prelamin A: implications for prenylation-dependent lamin A assembly into the nuclear lamina. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(7): p. 3000-3004. 38. Ellis-Davies, G.C.R., Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nature Methods, 2007. 4(8): p. 619-628. 39. Van de Bittner, G.C., et al., In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc Natl Acad Sci U S A, 2010. 107(50): p. 21316-21. 40. Chen, X., et al., Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chemical Reviews, 2012. 112(3): p. 1910-1956. 41. Hargrove, A.E., et al., Artificial receptors for the recognition of phosphorylated molecules. Chemical Reviews, 2011. 111(11): p. 6603-6782. 42. Sakabe, M., et al., Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. Journal of the American Chemical Society, 2013. 135(1): p. 409-414. 43. Lu, T., et al., The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction. PLoS ONE, 2016. 11(3): p. e0149751. 44. Hughes, L.D., R.J. Rawle, and S.G. Boxer, Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers. PLOS ONE, 2014. 9(2): p. e87649. 45. Zanetti-Domingues, L.C., et al., Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding. PLOS ONE, 2013. 8(9): p. e74200. 46. Anderson, N.L. and N.G. Anderson, The human plasma proteome: history, character, and diagnostic prospects. Molecular & cellular proteomics : MCP, 2002. 1(11): p. 845-867. 47. Das, D.K., et al., Binding of organic dyes with human serum albumin: A single-molecule study. Chemistry - An Asian Journal, 2011. 6(11): p. 3097-3103. 48. Mishra, A., et al., Cyanines during the 1990s: a review. Chemical Reviews, 2000. 100(6): p. 1973-2011. 49. Kim, Y.K., et al., The binding of fluorophores to proteins depends on the cellular environment. Angewandte Chemie - International Edition, 2011. 50(12): p. 2761-2763. 50. Haab, B.B., Applications of antibody array platforms. Current Opinion in Biotechnology, 2006. 17(4): p. 415-421. 51. Wilchek, M. and E.A. Bayer, Introduction to avidin-biotin technology, in Methods in Enzymology. 1990. p. 5-13. 52. Terai, T., et al., Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chemistry & Biology, 2011. 18(10): p. 1261-1272. 53. Hengsakul, M. and A.E. Cass, Protein patterning with a photoactivatable derivative of biotin. Bioconjugate Chemistry, 1996. 7(2): p. 249-54. 54. Sundberg, S.A., et al., Spatially-addressable immobilization of macromolecules on solid supports. Journal of the American Chemical Society, 1995. 117(49): p. 12050-12057. 55. Kim, K., et al., Protein patterning based on electrochemical activation of bioinactive surfaces with hydroquinone-caged biotin. Journal of the American Chemical Society, 2004. 126(47): p. 15368-15369. 56. Pacher, P., J.S. Beckman, and L. Liaudet, Nitric Oxide and Peroxynitrite in Health and Disease. Physiological reviews, 2007. 87(1): p. 315-424. 57. Radi, R., Peroxynitrite, a Stealthy Biological Oxidant. The Journal of Biological Chemistry, 2013. 288(37): p. 26464-26472. 58. Niki, E., Lipid peroxidation: Physiological levels and dual biological effects. Free Radical Biology and Medicine, 2009. 47(5): p. 469-484. 59. Niki, E., Biomarkers of lipid peroxidation in clinical material. Biochimica et Biophysica Acta (BBA) - General Subjects, 2014. 1840(2): p. 809-817. 60. Astarita, G., et al., Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2015. 1851(4): p. 456-468. 61. Szabo, C., H. Ischiropoulos, and R. Radi, Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 2007. 6(8): p. 662-680. 62. Peng, T., et al., Molecular imaging of peroxynitrite with HKGreen-4 in live cells and tissues. Journal of the American Chemical Society, 2014. 136(33): p. 11728-11734. 63. Sun, Z.N., et al., BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. Organic Letters, 2009. 11(9): p. 1887-1890. 64. Kim, J., et al., A boronate-based fluorescent probe for the selective detection of cellular peroxynitrite. Chemical Communications, 2014. 50(66): p. 9353-9356. 65. Sikora, A., et al., Direct oxidation of boronates by peroxynitrite: Mechanism and implications in fluorescence imaging of peroxynitrite. Free radical biology & medicine, 2009. 47(10): p. 1401-1407. 66. Raad, H., et al., Regulation of the phagocyte NADPH oxidase activity: phosphorylation of gp91(phox)/NOX2 by protein kinase C enhances its diaphorase activity and binding to Rac2, p67(phox), and p47(phox). The FASEB Journal, 2009. 23(4): p. 1011-1022. 67. Cosentino-Gomes, D., N. Rocco-Machado, and J.R. Meyer-Fernandes, Cell Signaling through Protein Kinase C Oxidation and Activation. International Journal of Molecular Sciences, 2012. 13(9): p. 10697-10721. 68. González-Perilli, L., et al., Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages. Free radical biology & medicine, 2013. 58: p. 126-133. 69. Koppenol, W.H., The chemistry of peroxynitrite, a biological toxin. Química Nova, 1998. 21: p. 326-331.
|