帳號:guest(3.149.251.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):米瑞琪
作者(外文):Ragini Mishra
論文名稱(中文):氮化鈦磊晶膜在表面電漿子能源捕獲之應用
論文名稱(外文):Epitaxial Refractory Titanium Nitride (TiN) as a Plasmonic Material for Energy Harvesting Applications
指導教授(中文):果尚志
指導教授(外文):Gwo, Shangjr
口試委員(中文):嚴大任
呂明諺
安惠榮
吳忠霖
口試委員(外文):Yen, Ta-Jen
Lu, Ming-Yen
Ahn, Hyeyoung
Wu, Ching-Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:104022880
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:114
中文關鍵詞:等离激元外延能量收集
外文關鍵詞:PlasmonicsEpitaxyEnergy Harvesting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:443
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
數十年來,電漿子(Plasmonics)領域被深入地討論與研究,並且已發展於各種應用。其中,金(Au)通常被用於可見光到近紅外波段的研究,而貴金屬(Au、Ag)也已逐漸被其他電漿子材料取代,例如氮化鈦(TiN)。氮化鈦因為具有耐火特性以及可見光到近紅外波段的寬譜可調(broad adjustable) 共振而引起了人們的關注,並且與金相比,單晶的氮化鈦在小於 550nm的波段有著更小的損耗。
在此論文中,探究了電漿子在可見光波段的替代材料。因為電漿子的行為和強度主要由材料的品質決定,所以低損耗是可以被實現的。為了強調這個事實,我們利用低損耗和可大規模製造的單晶耐火氮化鈦薄膜去探討其對於熱光伏(thermophotovoltaics)的應用並且研究 氮化鈦/氮化鎵熱載流子次頻帶異質結構(heterostructures)中的光電導模態,結果顯示單晶的氮化鈦具有獨特又良好的光學、電學性質。
首先,由於氮化鈦在可見光和近紅外波段良好的光學特性、高熔點、出色的機械硬度以及在惡劣環境中的耐久性,其做為耐火的電漿子材料正被開發,所以針對氮化鈦耐火的特性探討其對太陽能收集(solar energy harvesting)的應用。近期,氮化鈦電漿超穎表面(plasmonic metasurfaces)被提出作為光學的寬頻譜吸收器(broadband absorbers)
6
和窄頻譜熱發射器(narrow-band thermal emitters),此兩者在高效能的太陽能熱光伏中都很重要。
我們展示了利用氮電漿輔助式分子束磊晶 (MBE) 在c面藍寶石基板長出延(111)面的抗氧化氮化鈦薄膜並將其製成在可見光吸收 90% 的單層超穎表面寬頻譜吸收器。與傳統反應濺鍍方法製備出的氮氧化鈦 (TiOxNy) 薄膜相比,MBE 成長的無氧氮化鈦薄膜具有優良的電漿子性質,通過穿透式電子顯微鏡 (TEM)、X光光電子能譜儀(XPS)、X光繞射儀(XRD)和原子力顯微鏡(AFM)證實了濺鍍出的氮化鈦和分子束磊晶成長氮化鈦的光學特性。結果顯示使用濺鍍方法製備出的氮化鈦不如分子束磊晶成長氮化鈦那樣的純正:以850°C真空退火濺鍍的氮化鈦樣品並且使用太陽光模擬器模擬130太陽(suns)的環境照射6小時後,發現濺鍍的氮化鈦無法承受如此高溫的環境,而分子束磊晶成長氮化鈦的超穎表面則具有出色的熱穩定性和化學穩定性。
在第二個工作中,將高效能電漿子的熱電洞注入光電導的氮化鈦/P型氮化鎵的異質結構:光電和光激發熱載流子的異質結構對於互補式金氧半導體(CMOS)在相容性、高穩定性和最快暫態時間(fastest transient time)方面具有極大潛力,其中一個獨特的熱載子裝置由耐火的氮化鈦/氮化鎵/藍寶石基板結合而成。在光激發載流子的應用中,作為替代材料的氮化鈦所受到的關注比其他電漿子材料(金、銀、銅、鋁)少,其特性尚不清楚,這裡我們提供了由分子束磊晶成長出的單晶氮化鈦/P型氮化鎵/藍寶石基板、
7
氮化鈦/N型氮化鎵/藍寶石基板兩種異質結構,以穿透式電子顯微鏡證實異質結構的接面處結晶性良好,再採用電子束微影製程的方式製造裝置。將熱電洞(氮化鈦/P型氮化鎵/藍寶石基板)和熱電子(氮化鈦/N型氮化鎵/藍寶石基板)的兩種裝置與用於可見光波段的光電檢測氮化鈦奈米狹縫裝置比較。在1.95 eV的共振波長下以氮化鈦/N型氮化鎵相比,因為氮化鈦/P型氮化鎵在金屬與半導體的界面擁有光電導模態,其光電流、響應度和外部量子效率 (external quantum efficiency, EQE) 高出4個數量級,也透過X光光電子能譜儀與量測電流-電壓曲線各別分析氮化鈦/ P型氮化鎵以及氮化鈦/ N型氮化鎵的肖特基能障高度(Schottky barrier height),分別為1.2 eV與0.6 eV。因此,量測氮化鈦的功函數(work function)求得肖特基能障高度解釋了熱載流子光電探測器的相對優勢和限制。最後總結了在可見光波段使用P型半導體作為光電耐火熱載流子裝置和電漿子驅動式光催化系統的材料是很好的選擇。
Plasmonics has been known for decades and has been used in various applications, primarily using gold (Au) for visible to NIR range. These days noble metal (Au, Ag) has been replaced with alternative plasmonic material such as Titanium Nitride (TiN). Titanium nitride has attracted interest due to its refractory characteristics and broad adjustable resonance from visible to the near-infrared regime. Moreover, one of the additional advantages we have introduced is that single-crystalline TiN is less lossy at wavelengths less than 550nm when compared to gold. Therefore, in this thesis, we explored the alternative plasmonic materials for the entire visible regime. As we know, the plasmonic behavior and strength are majorly dependent on the quality of materials so that the low loss can accomplish. Keeping this fact in mind, we explored the single-crystalline TiN film due to low-loss and mass-scale fabrication for designing the refractory TiN used for the thermophotovoltaics applications and hot carrier sub-band photodetection through TiN/GaN heterostructures, reported single-crystalline TiN has unique and tremendous optical and electrical properties.
Firstly, we studied the refractory Titanium nitride for solar energy harvesting; however, due to its outstanding optical characteristics in the visible and near-infrared ranges, high melting temperature, excellent mechanical hardness, and durability against material deterioration in harsh environments, titanium nitride (TiN) is developing material for refractory Plasmonics. TiN plasmonic metasurfaces have recently been proposed as optical broadband absorbers and narrow-band thermal emitters, both of which are important in high-efficiency solar thermophotovoltaics. We show that a single-layer metasurface broadband absorber fabricated from an oxidation-resistant TiN(111) epitaxial film grown on c-plane sapphire by nitrogen-plasma-assisted molecular beam epitaxy (MBE) can absorb 90% of visible light. In comparison to titanium oxynitride (TiOxNy) films made by the traditional reactive sputtering method, the oxygen-free stoichiometric TiN film created by MBE has improved plasmonic properties. The optical properties of sputtered TiN and MBE TiN has been confirmed from transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and atomic force microscopy (AFM), which demonstrated that sputtered TiN is not pure TiN as MBE TiN. Furthermore, vacuum annealing at 850 °C using a vacuum sputtering system and irradiation of solar simulator under 130 suns in the ambient environment for 6 hours. That shows the sputtered TiN can’t survive in a very high-temperature environment, whereas MBE-grown TiN metasurfaces have excellent thermal and chemical stability.
We used plasmonics efficient hot-hole injection at the photoconductive TiN/p-GaN heterostructure for the second study. Here optoelectronic and photoexcited hot carriers TiN/GaN heterostructure devices have the greatest potential for CMOS compatibility, high stability, and fastest transient time. One of the unique combinations for hot carrier devices is refractory TiN/GaN/Sapphire. Alternative TiN has received less attention than other plasmonic materials (aluminum, silver, copper, and gold) for photoexcited hot carrier applications, and its properties are unknown. We have MBE grown single-crystalline TiN/p-GaN/Sapphire and TiN/n-GaN/Sapphire heterostructures. The crystalline properties of MBE grown TiN are investigated from TEM analysis. TEM analysis of the heterostructures shows good crystallinity of the heterostructures at the interface. Afterward, we have fabricated the device by electron beam lithography process. We have compared the two types of devices with hot holes (TiN/p-GaN/Sapphire) and hot electrons (TiN/n-GaN/Sapphire) with plasmonic TiN nanosilts photodetection empowered across the visible regime. Due to the photoconductive mode of the metal-semiconductor interface, TiN/p-GaN has a four-order higher photocurrent, responsivity, and external quantum efficiency (EQE) compared to TiN/n-GaN at the resonance wavelength of 1.95 eV. The Schottky barrier height in TiN/p-GaN between the interface was determined via XPS analysis and Schottky barrier height in TiN/n-GaN by I-V curve from Keithley 4200
SCS. Measured Schottky barrier height for TiN/p-GaN and TiN/n-GaN is 1.2eV and 0.6eV respectively. Consequently, the work function of TiN measured the Schottky barrier height of the TiN/p-GaN and TiN/n- GaN to explain the relative benefits and constraints of these hot carrier photodetectors. We concluded that using a p-type semiconductor for hot-carrier in visible regimes is a good approach for optoelectronic refractory hot-carrier devices (space sciences) and plasmon-driven photocatalytic systems.
ABSTRACT ......................................................................................................... 2
摘要 ....................................................................................................................... 5
ACKNOWLEDGMENTS ................................................................................ 10
TABLE OF CONTENTS ................................................................................. 12
LIST OF FIGURE ............................................................................................ 15
LIST OF TABLE .............................................................................................. 23
1. Chapter 1 ............................................................................................... 24
Introduction ................................................................................................. 24
1.1 Thesis Organization ........................................................................... 26
2. Chapter 2 ............................................................................................... 27
Background .................................................................................................. 27
2.1 Losses in Conventional Plasmonic Materials .................................... 27
2.2 Refractory Plasmonic Materials ........................................................ 29
2.3 Surface Plasmon Polaritons ............................................................... 32
2.4 Refractory Materials as Perfect Absorber ......................................... 35
2.5 Plasmonic Hot-Carrier Photodetectors .............................................. 38
13
3. Chapter 3 ............................................................................................... 43
Titanium Nitride as Alternative Plasmonic Materials ................................. 43
3.1 Introduction of Titanium Nitride ....................................................... 43
3.2 Molecular Beam Epitaxy Growth of Titanium Nitride on Different Substrate ....................................................................................................... 44
3.3 Growth of Sputtered Titanium Nitride .............................................. 46
3.4 Crystalline and Optical Properties of the MBE and Sputtered TiN .. 47
3.5 Electrical Properties of Epitaxial TiN Film ....................................... 50
3.6 Fabrication of Nanoholes array and Nanosilts .................................. 51
4 Chapter 4 ............................................................................................... 53
Titanium Nitride for Solar Energy Harvesting Applications ...................... 53
4.1 Introduction and Motivation .............................................................. 53
4.2 Optical properties of Sputtered and MBE TiN film .......................... 56
4.3 Growth Comparison of Sputtered and MBE TiN .............................. 58
4.4 Optical Measurements and Fabrication of Metasurfaces .................. 61
4.5 Comparison of Sputtered and MBE TiN Metasurfaces ..................... 66
4.6 Conclusion ......................................................................................... 71
5 Chapter 5 ............................................................................................... 72
Epitaxial TiN/GaN Heterostructure for Efficient Photonic Energy Harvesting ............................................................................................... 72
5.1 Introduction and motivation .............................................................. 72
14
5.2 Growth of Heterostructure TiN/p-GaN and TiN/n-GaN ................... 75
5.3 Fabrication of Hot-carrier Device ...................................................... 78
5.4 Optical measurement of TiN/n-GaN and TiN/p-GaN ....................... 80
5.5 Band Diagram of TiN/n-GaN and TiN/p-GaN .................................. 82
5.6 Electrical measurements of Hot-carrier Devices ............................... 87
5.7 Conclusion ......................................................................................... 93
6 Chapter 6 ............................................................................................... 94
Summary ...................................................................................................... 94
BIBLIOGRAPHY ............................................................................................. 97
APPENDIX ...................................................................................................... 111
1. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: II. Die dioptrischen Bedingungen der Leistung des Mikroskops. Arch. für mikroskopische Anat. 9, 418–440 (1873).
2. R. H. RITCHIE. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1956).
3. Teranishi, T., Eguchi, M., Kanehara, M. & Gwo, S. Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region. J. Mater. Chem. 21, 10238–10242 (2011).
4. Mishra, R. et al. Optimized titanium nitride epitaxial film for refractory plasmonics and solar energy harvesting. 125, 13658–13665 (2021).
5. Boriskina, S. V., Ghasemi, H. & Chen, G. Plasmonic materials for energy: From physics to applications. Mater. Today 16, 375–386 (2013).
6. Zhang, Y. et al. Surface-plasmon-driven hot-electron photochemistry. Chem. Rev. 118, 2927–2954 (2018).
7. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).
8. Halas, N. J. et al. A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv. Mater. 24, 4842–4877 (2012).
9. Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).
10. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photon.
97
1, 641–648 (2007).
11. Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).
12. P. B. Johnson and R. W. Christy. Optical Constant of the nobel metals. Phys. Rev. B 6, 4370–4379 (1972).
13. Dressel, M., Gruener, G. & Bertsch, G. F. Electrodynamics of solids: Optical properties of electrons in matter. Am. J. Phys. 70, 1269–1270 (2002).
14. Khurgin, J. B. & Sun, G. In search of the elusive lossless metal. Appl. Phys. Lett. 96, 181102 (2010).
15. West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010).
16. Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009).
17. Rousseau, E., Siria, A., Jourdan, G., Volz, S. & Comin, F. Radiative heat transfer at the nanoscale. 3, 514-517 (2009).
18. Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011).
19. Fan, S. Photovoltaics: An alternative ‘Sun’ for solar cells. Nat. Nanotechnol. 9, 92–93 (2014).
20. Bhat, D. G. Chemical vapor deposition. Coatings Technol. Fundam. Testing, Process. Tech. 36-1-36–11 (2006).
21. Brongersma, M. L. & Shalaev, V. M. The case for plasmonics. Science 328, 440–441 (2010).
22. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).
98
23. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).
24. Arpin, K. A. et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 4, 2630 (2013).
25. Rinnerbauer, V. et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Opt. Express 21, 11482 (2013).
26. Zhang, J., Zhang, L. & Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D. Appl. Phys. 45, (2012).
27. Hayashi, S. & Okamoto, T. Plasmonics: Visit the past to know the future. J. Phys. D. Appl. Phys. 45, (2012).
28. Hutter, E. & Fendler, J. H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 16, 1685–1706 (2004).
29. Jackson 1925-2016, J. D. Classical electrodynamics. (Third edition. New York : Wiley, [1999] ©1999).
30. Chang, C. C. et al. Higherature Refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Lett. 18, 7665–7673 (2018).
31. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).
32. Liu, G. et al. Semiconductor meta-surface based perfect light absorber. Nanotechnology 28, 165202 (2017).
33. Song, X., Liu, Z., Scheuer, J., Xiang, Y. & Aydin, K. Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers. J. Phys. D. Appl. Phys. 52, 164002 (2019).
34. Zhai, Y. et al. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection.
99
Nanotechnology 30, 375202 (2019).
35. Zou, J. et al. Broadband mid-infrared perfect absorber using fractal Gosper curve. J. Phys. D. Appl. Phys. 53, 105106 (2020).
36. Kajtár, G., Kafesaki, M., Economou, E. N. & Soukoulis, C. M. Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum. J. Phys. D. Appl. Phys. 49, 055104 (2016).
37. Dyachenko, P. N. et al. Refractory absorber/emitter using monolayer of ceramic microparticles. Photonic Cryst. Mater. Devices XII 9885, 98851K (2016).
38. Wu, C. et al. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 14, 024005 (2012).
39. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).
40. Chirumamilla, M. et al. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt. Mater. Express 6, 2704 (2016).
41. Pang, Y. et al. Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett. 110, 104103 (2017).
42. Hasan, D. et al. Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based Mid-IR absorber. ACS Photonics 4, 302–315 (2017).
43. Liu, S., Chen, H. & Cui, T. J. A broadband terahertz absorber using multi-layer stacked bars. Appl. Phys. Lett. 106, 151601 (2015).
44. Wang, J. et al. Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt. Express 20, 14871 (2012).
45. Lu, Y. et al. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Sci. Rep. 6, 30650 (2016).
46. Gusken. N.A. et al. TiO2-x Enhanced IR hot carrier based photodetection in metal thin
100
film−Si junctions. ACS Photonics, 6, 953-960 (2019).
47. Yu, P., Wu, J., Ashalley, E., Govorov, A. & Wang, Z. Dual-band absorber for multispectral plasmon-enhanced infrared photodetection. J. Phys. D. Appl. Phys. 49, 365101 (2016).
48. Nejat, M. & Nozhat, N. Sensing and switching capabilities of a tunable GST-based perfect absorber in near-infrared region. J. Phys. D. Appl. Phys. 53, 245105 (2020).
49. Du, W. et al. An ultrathin MoSe2 photodetector with near- perfect absorption. Nanotechnology, 31, 225201 (2020).
50. Yang, Z. et al. Reflective color filters and monolithic color printing based on asymmetric fabry–perot cavities using nickel as a broadband absorber. Adv. Opt. Mater. 4, 1196–1202 (2016).
51. Yang, C. et al. Tunable, omnidirectional structural color on reflection based on metal-SiOx-metal structure. Appl. Phys. Lett. 109, (2016).
52. Cheng, F., Gao, J., Luk, S. T. & Yang, X. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 5, (2015).
53. Li, J., Chen, P., Wang, Y., Dong, Z. & Wang, Y. Toroidal dipole resonance in an asymmetric double-disk metamaterial. Opt. Express 28, 38076 (2020).
54. Cattoni, A. et al. λ3/1000 Plasmonic Nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett. 9, 3557-3563 (2011).
55. Li, G. et al. A novel plasmonic resonance sensor based on an infrared perfect absorber. J. Phys. D. Appl. Phys. 45, 205102 (2012).
56. Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).
57. Yong, Z., Zhang, S., Gong, C. & He, S. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep. 6,
101
24063 (2016).
58. Wang, X. et al. A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer. Chinese Phys. B 28, 044201 (2019).
59. Liu, P., Wang, H., Li, X., Rui, M. & Zeng, H. Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media. RSC Adv. 5, 79738–79745 (2015).
60. Xin, Y. et al. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 33, 2008145 (2021).
61. Wang, L., Zhang, Y., Bian, X. & Chen, Y. Melting of Cu nanoclusters by molecular dynamics simulation. Phys. Lett. Sect. A Gen. At. Solid State Phys. 310, 197–202 (2003).
62. Dubey, A. et al. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. 7, 2002274 (2020).
63. Cheng, C. W. et al. Epitaxial aluminum-on-sapphire films as a plasmonic material platform for ultraviolet and full visible spectral regions. ACS Photonics 5, 2624–2630 (2018).
64. Dubey, A. et al. Demonstration of a superior deep-UV surface-enhanced resonance raman scattering (SERRS) substrate and single-base mutation detection in oligonucleotides. J. Am. Chem. Soc. 143, 19282–19286 (2021).
65. Li, W. et al. Refractory plasmonics with titanium nitride: Broadband. Adv. Mater. 26, 7959–7965 (2014).
66. Guler, U. et al. Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett. 13, 6078–6083 (2013).
67. Burns, R. P. Systematics of the evaporation coefficient Al2O3, Ga2O3, In2O3. J. Chem. Phys. 44, 3307–3319 (1966).
68. S. J. Schneider & C. L. Mcdaniel. Effect of environment upon the melting point of Al2O3. J. Res. Natl. Bur. Stand. - A. Phys. Chem. 71, 317–333 (1967).
102
69. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. & Jacobson, D. C. Heat of crystallization and melting point of amorphous silicon. Appl. Phys. Lett. 42, 698–700 (1983).
70. Yu, P. et al. Broadband Metamaterial Absorbers. Adv. Opt. Mater. 7, 1800995 (2019).
71. Ghasali, E. & Shahedi Asl, M. Microstructural development during spark plasma sintering of ZrB2–SiC–Ti composite. Ceram. Int. 44, 18078–18083 (2018).
72. Inci, M. N. Thermal optical properties of TiO2 . Optical Mat. 18, 373-381 (2002).
73. Musil, J., Matouš, J., Vlček, J., Koydl, L. & Müller, K. Surface morphology of sputter deposited low melting point metallic thin films. Czechoslov. J. Phys. 44, 565–574 (1994).
74. Wu, B. et al. Polarization and angle insensitive ultra-broadband mid-infrared perfect absorber. Phys. Lett. Sect. A Gen. At. Solid State Phys. 384, 126288 (2020).
75. Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013).
76. Tanzid, M. et al. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-base. ACS Photonics. 9, 3472-3477 (2018).
77. Hussain, A. A., Sharma, B., Barman, T. & Pal, A. R. Self-powered broadband photodetector using plasmonic titanium nitride. ACS Appl. Mater. Interfaces 8, 4258–4265 (2016).
78. Dorodnyy, A. et al. Plasmonic photodetectors. IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
79. Scales, C. & Berini, P. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. 46, 633–643 (2010).
103
80. White, T. P. & Catchpole, K. R. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. 101, 073905 (2012).
81. Leenheer, A. J., Narang, P., Lewis, N. S. & Atwater, H. A. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. J. Appl. Phys. 115, 134301 (2014).
82. Ross, R. T. & Nozik, A. J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics 53, 3813–3818 (1982).
83. Rossi, T. P., Erhart, P. & Kuisma, M. Hot-carrier generation in plasmonic nanoparticles: The importance of atomic structure. ACS Nano 14, 9963–9971 (2020).
84. Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).
85. Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).
86. Ladstädter, F., Hohenester, U., Puschnig, P. & Ambrosch-Draxl, C. First-principles calculation of hot-electron scattering in metals. Phys. Rev. B - Condens. Matter Mater. Phys. 70, 235125 (2004).
87. Gong, T. & Munday, J. N. Materials for hot carrier plasmonics. Opt. Mater. Express 5, 2501 (2015).
88. Tagliabue, G. et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. 19, 1312–1318 (2020).
89. Kužel, R., Černý, R., Valvoda, V., Blomberg, M. & Merisalo, M. Complex XRD microstructural studies of hard coatings applied to PVD-deposited TiN films Part I. Problems and methods. Thin Solid Films 247, 64–78 (1994).
104
90. Lima, L. P. B., Diniz, J. A., Doi, I. & Godoy Fo, J. Titanium nitride as electrode for MOS technology and Schottky diode: Alternative extraction method of titanium nitride work function. Microelectron. Eng. 92, 86–90 (2012).
91. Patsalas, P. & Logothetidis, S. Interface properties and structural evolution of TiN/Si and TiN/GaN heterostructures. J. Appl. Phys. 93, 989–998 (2003).
92. Gautier, S. et al. Optical and electrical properties of TiN/n-GaN contacts in correlation with their structural properties. Semicond. Sci. Technol. 18, 594–601 (2003).
93. Gosciniak, J., Atar, F. B., Corbett, B. & Rasras, M. CMOS-compatible titanium nitride for on-chip plasmonic Schottky photodetectors. ACS Omega 4, 17223–17229 (2019).
94. Gui, L. et al. Nonlinear refractory plasmonics with titanium nitride nanoantennas. Nano Lett. 16, 5708–5713 (2016).
95. Ekmel Ozbay. Plasmonics : Merging photonics and electronics at nanoscale dimensions Science 189, 189–194 (2006).
96. Gadalla, M. N., Greenspon, A. S., Tamagnone, M., Capasso, F. & Hu, E. L. Excitation of strong localized surface plasmon resonances in highly metallic titanium nitride nano-antennas for stable performance at elevated temperatures. ACS Appl. Nano Mater. 2, 3444–3452 (2019).
97. Maier, S.A. Plasmonics: Fundamentals and Applications. Springer link
98. Ishii, S., Shinde, S. L., Jevasuwan, W., Fukata, N. & Nagao, T. Hot electron excitation from titanium nitride using visible light. ACS Photonics 3, 1552–1557 (2016).
99. Shinde, S. L., Ishii, S. & Nagao, T. Sub-band gap photodetection from the Titanium Nitride/Germanium heterostructure. ACS Appl. Mater. Interfaces 11, 21965–21972 (2019).
100. Guler, U., Boltasseva, A. & Shalaev, V. M. Refractory plasmonics. Science 344, 263–264 (2014).
105
101. Kumar, M., Umezawa, N., Ishii, S. & Nagao, T. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics 3, 43–50 (2016).
102. Catellani, A. & Calzolari, A. Plasmonic properties of refractory titanium nitride. Phys. Rev. B 95, 115145 (2017).
103. Naldoni, A. et al. Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis. Nano Lett. 20, 3663–3672 (2020).
104. Naik, G. V et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012).
105. Guo, W. P. et al. Titanium nitride epitaxial films as a plasmonic material platform: Alternative to gold. ACS Photonics 6, 1848–1854 (2019).
106. Yu, M. J. et al. Plasmon-enhanced solar-driven hydrogen evolution using titanium nitride metasurface broadband absorbers. ACS Photonics 8, 3125–3132 (2021).
107. Gmbii, K., Republic, F. & Republic, F. Dielectric properties of TiCx TiNx VCx and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy. Phy. Rev. B 30,
1155 (1984).
108. You, A., Be, M. A. Y. & In, I. Optical, electronic and transport properties of nanocrystalline titanium nitride thin films. Journal of Appl. Phy. 90, 4725, (2017).
109. Lu, Y. J. et al. Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure. Nat. Commun. 8, 1631 (2017).
110. Andrievski, R. A., Dashevsky, Z. M. & Kalinnikov, G. V. Conductivity and the hall coefficient of nanostructured titanium nitride films. Tech. Phys. Lett. 30, 930–932 (2004).
111. Solovan, M. N., Brus, V. V., Maistruk, E. V. & Maryanchuk, P. D. Electrical and optical properties of TiN thin films. Inorg. Mater. 50, 40–45 (2014).
106
112. Shah, D., Reddy, H., Kinsey, N., Shalaev, V. M. & Boltasseva, A. Optical properties of plasmonic ultrathin tin films. Adv. Opt. Mater. 5, 1700065 (2017).
113. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
114. Rephaeli, E. & Fan, S. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Express 17, 15145 (2009).
115. Swanson, R. M. . A proposed thermophotovoltic solar energy conversion system. Rev. Soc. Econ. 36, 228–229 (1978).
116. Spirkl, W., Ries, H. Solar thermophotovoltaics An assessment. Journal of App. Phy. 57, 4409 (1985).
117. Wang, Y., Liu, H. & Zhu, J. Solar thermophotovoltaics: Progress, challenges, and opportunities. APL Mater. 7, 080906 (2019).
118. Harder, N.P., Wurfer, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol. 18, S151 (2003).
119. Buddhiraju, S., Santhanam, P. & Fan, S. Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proc. Natl. Acad. Sci. 115, E3609 LP-E3615 (2018).
120. Wang, H. et al. Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application. Photonics Res. 3, 329 (2015).
121. Chirumamilla, M. et al. Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv. Opt. Mater. 5, 1700552 (2017).
122. Huo, D. et al. Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array. Nanoscale Res. Lett. 12, 465 (2017).
123. Yang, Z.-Y., et al. Narrow‐band thermal emitter with titanium nitride thin film
107
demonstrating high temperture stability. Adv. Opt. Mat. 8, 1900982 (2020).
124. Patsalas, P., Kalfagiannis, N. & Kassavetis, S. Optical properties and plasmonic performance of titanium nitride. Materials (Basel). 8, 3128–3154 (2015).
125. Cortie, M. B., Giddings, J. & Dowd, A. Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology 21, 115201 (2010).
126. Naik, G. V. et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478 (2012).
127. Murai, S. et al. Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films. Opt. Express 24, 1143 (2016).
128. Zgrabik, C. M. & Hu, E. L. Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications. Opt. Mater. Express 5, 2786 (2015).
129. Diroll, B. T., Saha, S., Shalaev, V. M., Boltasseva, A. & Schaller, R. D. Broadband ultrafast dynamics of refractory metals: TiN and ZrN. Adv. Opt. Mater. 8, 2000652 (2020).
130. Reddy, H. et al. Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS Photonics 6, 1413-1420 (2017).
131. Briggs, J.A. et al. Temperature-dependent optical properties of titanium nitride. Appl. Phys. Lett. 110, 101901, (2017).
132. Mascaretti, L. et al. Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage. Adv. Mater. 31, 1805513 (2019).
133. Saha, N.C.,Tompkins, H. G. Titanium nitride oxidation chemistry An x‐ray photoelectron spectroscopy study. Journal of Appl. Phy. 72, 3072 (1992).
134. Vasile, M. J., Emerson, A. B. & Baiocchi, F. A. The characterization of titanium nitride by X-ray photoelectron spectroscopy and Rutherford backscattering The characterization of titanium nitride by X-ray photoelectron spectroscopy. J. of Vacuum
108
Sci. & Tech. A 8, 99, (1990).
135. Gwo, S. Yeh, C.L, Chen, P.F., Chou, Y.C., Chen, T.T. Chao, T.S. Hu, S.F. Huang, T. Y. Local electric-field-induced oxidation of titanium nitride films. 1090, 1997–2000 (2005).
136. Zhang, R. et al. Crystal orientation-dependent oxidation of epitaxial tin films with tunable plasmonics. ACS Photonics 8, 847–856 (2021).
137. Nguyen, L. et al. Atomic-scale insights into the oxidation of aluminum. ACS Appl. Mater. Interfaces 3, 2230-2235 (2018).
138. Jaeger, D. & Patscheider, J. Single crystalline oxygen-free titanium nitride by XPS. Surf. Sci. Spectra 20, 1 (2013).
139. Langereis, E., Heil, S. B. S., Van De Sanden, M. C. M. & Kessels, W. M. M. In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma-assisted atomic layer deposition. J. Appl. Phys. 100, 023534 (2006).
140. Graciani, J., Hamad, S. & Sanz, J. F. Changing the physical and chemical properties of titanium oxynitrides TiN1-xOx by changing the composition. Phys. Rev. B, Condens. Mater. Phys. 80, 184112 (2009).
141. Braic, L. et al. Titanium oxynitride thin films with tunable double epsilon-near-zero behavior for nanophotonic applications. ACS Appl. Mater. Interfaces 9, 29857–29862 (2017).
142. Doiron, B. et al. Quantifying figures of merit for localized surface plasmon resonance applications: A materials survey. ACS Photonics 6, 240–259 (2019).
143. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).
144. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).
109
145. Tagliabue, G., Duchene, J. S., Habib, A., Sundararaman, R. & Atwater, H. A. Hot-hole versus hot-electron transport at Cu/GaN heterojunction interfaces. ACS Nano 14, 5788–5797 (2020).
146. Jermyn, A. S. et al. Transport of hot carriers in plasmonic nanostructures. Phys. Rev. Mater. 3, 075201 (2019).
147. Ahn, W., Vurgaftman, I., Pietron, J. J., Pehrsson, P. E. & Simpkins, B. S. Energy-tunable photocatalysis by hot carriers generated by surface plasmon polaritons. J. Mater. Chem. A 7, 7015–7024 (2019).
148. Li, W. & Valentine, J. G. Harvesting the loss: Surface plasmon-based hot electron photodetection. Nanophotonics 6, 177–191 (2017).
149. Tagliabue, G. et al. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. 9, 3394 (2018).
150. Duchene, J. S., Tagliabue, G., Welch, A. J., Cheng, W. H. & Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018).
151. Reddy, H. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020).
152. Habib, A., Florio, F. & Sundararaman, R. Hot carrier dynamics in plasmonic transition metal nitrides. J. Opt. 10, 064001 (2018).
153. Yu, M. W. et al. Direct observation of photoinduced charge separation at transition-metal nitride-semiconductor interfaces. ACS Appl. Mater. Interfaces 12, 56562–56567 (2020).
154. Ishii, S., Shinde, S. L. & Nagao, T. Nonmetallic materials for plasmonic hot carrier excitation. Adv. Opt. Mater. 7, 1800603 (2019).
155. Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev.
110
1, 011304 (2014).
156. Porte, L., Roux, L. & Hanus, J. Vacancy effects in the X-ray photoelectron spectra of TiNx. Phys. Rev. B 28, 3214–3224 (1983).
157. Höchst, H., Bringans, R. D., Steiner, P. & Wolf, T. Photoemission study of the electronic structure of stoichiometric and substoichiometric TiN and ZrN. Phys. Rev. B 25, 7183–7191 (1982).
158. Matsui, T. et al. Highly stable plasmon induced hot hole transfer into silicon via a SrTiO3 passivation interface. Adv. Funct. Mater. 28, 1705829 (2018).
159. Kuo, C. T., Lee, H. M., Shiu, H. W., Chen, C. H. & Gwo, S. Direct imaging of GaN p-n junction by cross-sectional scanning photoelectron microscopy and spectroscopy. Appl. Phys. Lett. 94, 92–95 (2009).
160. Wu, C. L., Lee, H. M., Kuo, C. T., Gwo, S. & Hsu, C. H. Polarization-induced valence-band alignments at cation- and anion-polar InN/GaN heterojunctions. Appl. Phys. Lett. 91, 89–92 (2007).
161. Lin, S. C. et al. Experimental determination of electron affinities for InN and GaN polar surfaces. Appl. Phys. Express 5, (2012).
162. Jaeger, D. & Patscheider, J. A complete and self-consistent evaluation of XPS spectra of TiN. J. Electron Spectros. Relat. Phenomena 185, 523–534 (2012).
(此全文20270619後開放外部瀏覽)
電子全文
Abstract
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *