|
1. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: II. Die dioptrischen Bedingungen der Leistung des Mikroskops. Arch. für mikroskopische Anat. 9, 418–440 (1873). 2. R. H. RITCHIE. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1956). 3. Teranishi, T., Eguchi, M., Kanehara, M. & Gwo, S. Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region. J. Mater. Chem. 21, 10238–10242 (2011). 4. Mishra, R. et al. Optimized titanium nitride epitaxial film for refractory plasmonics and solar energy harvesting. 125, 13658–13665 (2021). 5. Boriskina, S. V., Ghasemi, H. & Chen, G. Plasmonic materials for energy: From physics to applications. Mater. Today 16, 375–386 (2013). 6. Zhang, Y. et al. Surface-plasmon-driven hot-electron photochemistry. Chem. Rev. 118, 2927–2954 (2018). 7. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010). 8. Halas, N. J. et al. A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv. Mater. 24, 4842–4877 (2012). 9. Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008). 10. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photon. 97 1, 641–648 (2007). 11. Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). 12. P. B. Johnson and R. W. Christy. Optical Constant of the nobel metals. Phys. Rev. B 6, 4370–4379 (1972). 13. Dressel, M., Gruener, G. & Bertsch, G. F. Electrodynamics of solids: Optical properties of electrons in matter. Am. J. Phys. 70, 1269–1270 (2002). 14. Khurgin, J. B. & Sun, G. In search of the elusive lossless metal. Appl. Phys. Lett. 96, 181102 (2010). 15. West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010). 16. Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009). 17. Rousseau, E., Siria, A., Jourdan, G., Volz, S. & Comin, F. Radiative heat transfer at the nanoscale. 3, 514-517 (2009). 18. Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011). 19. Fan, S. Photovoltaics: An alternative ‘Sun’ for solar cells. Nat. Nanotechnol. 9, 92–93 (2014). 20. Bhat, D. G. Chemical vapor deposition. Coatings Technol. Fundam. Testing, Process. Tech. 36-1-36–11 (2006). 21. Brongersma, M. L. & Shalaev, V. M. The case for plasmonics. Science 328, 440–441 (2010). 22. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011). 98 23. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008). 24. Arpin, K. A. et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 4, 2630 (2013). 25. Rinnerbauer, V. et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Opt. Express 21, 11482 (2013). 26. Zhang, J., Zhang, L. & Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D. Appl. Phys. 45, (2012). 27. Hayashi, S. & Okamoto, T. Plasmonics: Visit the past to know the future. J. Phys. D. Appl. Phys. 45, (2012). 28. Hutter, E. & Fendler, J. H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 16, 1685–1706 (2004). 29. Jackson 1925-2016, J. D. Classical electrodynamics. (Third edition. New York : Wiley, [1999] ©1999). 30. Chang, C. C. et al. Higherature Refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Lett. 18, 7665–7673 (2018). 31. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008). 32. Liu, G. et al. Semiconductor meta-surface based perfect light absorber. Nanotechnology 28, 165202 (2017). 33. Song, X., Liu, Z., Scheuer, J., Xiang, Y. & Aydin, K. Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers. J. Phys. D. Appl. Phys. 52, 164002 (2019). 34. Zhai, Y. et al. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection. 99 Nanotechnology 30, 375202 (2019). 35. Zou, J. et al. Broadband mid-infrared perfect absorber using fractal Gosper curve. J. Phys. D. Appl. Phys. 53, 105106 (2020). 36. Kajtár, G., Kafesaki, M., Economou, E. N. & Soukoulis, C. M. Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum. J. Phys. D. Appl. Phys. 49, 055104 (2016). 37. Dyachenko, P. N. et al. Refractory absorber/emitter using monolayer of ceramic microparticles. Photonic Cryst. Mater. Devices XII 9885, 98851K (2016). 38. Wu, C. et al. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 14, 024005 (2012). 39. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016). 40. Chirumamilla, M. et al. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt. Mater. Express 6, 2704 (2016). 41. Pang, Y. et al. Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett. 110, 104103 (2017). 42. Hasan, D. et al. Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based Mid-IR absorber. ACS Photonics 4, 302–315 (2017). 43. Liu, S., Chen, H. & Cui, T. J. A broadband terahertz absorber using multi-layer stacked bars. Appl. Phys. Lett. 106, 151601 (2015). 44. Wang, J. et al. Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt. Express 20, 14871 (2012). 45. Lu, Y. et al. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Sci. Rep. 6, 30650 (2016). 46. Gusken. N.A. et al. TiO2-x Enhanced IR hot carrier based photodetection in metal thin 100 film−Si junctions. ACS Photonics, 6, 953-960 (2019). 47. Yu, P., Wu, J., Ashalley, E., Govorov, A. & Wang, Z. Dual-band absorber for multispectral plasmon-enhanced infrared photodetection. J. Phys. D. Appl. Phys. 49, 365101 (2016). 48. Nejat, M. & Nozhat, N. Sensing and switching capabilities of a tunable GST-based perfect absorber in near-infrared region. J. Phys. D. Appl. Phys. 53, 245105 (2020). 49. Du, W. et al. An ultrathin MoSe2 photodetector with near- perfect absorption. Nanotechnology, 31, 225201 (2020). 50. Yang, Z. et al. Reflective color filters and monolithic color printing based on asymmetric fabry–perot cavities using nickel as a broadband absorber. Adv. Opt. Mater. 4, 1196–1202 (2016). 51. Yang, C. et al. Tunable, omnidirectional structural color on reflection based on metal-SiOx-metal structure. Appl. Phys. Lett. 109, (2016). 52. Cheng, F., Gao, J., Luk, S. T. & Yang, X. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 5, (2015). 53. Li, J., Chen, P., Wang, Y., Dong, Z. & Wang, Y. Toroidal dipole resonance in an asymmetric double-disk metamaterial. Opt. Express 28, 38076 (2020). 54. Cattoni, A. et al. λ3/1000 Plasmonic Nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett. 9, 3557-3563 (2011). 55. Li, G. et al. A novel plasmonic resonance sensor based on an infrared perfect absorber. J. Phys. D. Appl. Phys. 45, 205102 (2012). 56. Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010). 57. Yong, Z., Zhang, S., Gong, C. & He, S. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep. 6, 101 24063 (2016). 58. Wang, X. et al. A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer. Chinese Phys. B 28, 044201 (2019). 59. Liu, P., Wang, H., Li, X., Rui, M. & Zeng, H. Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media. RSC Adv. 5, 79738–79745 (2015). 60. Xin, Y. et al. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 33, 2008145 (2021). 61. Wang, L., Zhang, Y., Bian, X. & Chen, Y. Melting of Cu nanoclusters by molecular dynamics simulation. Phys. Lett. Sect. A Gen. At. Solid State Phys. 310, 197–202 (2003). 62. Dubey, A. et al. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. 7, 2002274 (2020). 63. Cheng, C. W. et al. Epitaxial aluminum-on-sapphire films as a plasmonic material platform for ultraviolet and full visible spectral regions. ACS Photonics 5, 2624–2630 (2018). 64. Dubey, A. et al. Demonstration of a superior deep-UV surface-enhanced resonance raman scattering (SERRS) substrate and single-base mutation detection in oligonucleotides. J. Am. Chem. Soc. 143, 19282–19286 (2021). 65. Li, W. et al. Refractory plasmonics with titanium nitride: Broadband. Adv. Mater. 26, 7959–7965 (2014). 66. Guler, U. et al. Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett. 13, 6078–6083 (2013). 67. Burns, R. P. Systematics of the evaporation coefficient Al2O3, Ga2O3, In2O3. J. Chem. Phys. 44, 3307–3319 (1966). 68. S. J. Schneider & C. L. Mcdaniel. Effect of environment upon the melting point of Al2O3. J. Res. Natl. Bur. Stand. - A. Phys. Chem. 71, 317–333 (1967). 102 69. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. & Jacobson, D. C. Heat of crystallization and melting point of amorphous silicon. Appl. Phys. Lett. 42, 698–700 (1983). 70. Yu, P. et al. Broadband Metamaterial Absorbers. Adv. Opt. Mater. 7, 1800995 (2019). 71. Ghasali, E. & Shahedi Asl, M. Microstructural development during spark plasma sintering of ZrB2–SiC–Ti composite. Ceram. Int. 44, 18078–18083 (2018). 72. Inci, M. N. Thermal optical properties of TiO2 . Optical Mat. 18, 373-381 (2002). 73. Musil, J., Matouš, J., Vlček, J., Koydl, L. & Müller, K. Surface morphology of sputter deposited low melting point metallic thin films. Czechoslov. J. Phys. 44, 565–574 (1994). 74. Wu, B. et al. Polarization and angle insensitive ultra-broadband mid-infrared perfect absorber. Phys. Lett. Sect. A Gen. At. Solid State Phys. 384, 126288 (2020). 75. Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013). 76. Tanzid, M. et al. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-base. ACS Photonics. 9, 3472-3477 (2018). 77. Hussain, A. A., Sharma, B., Barman, T. & Pal, A. R. Self-powered broadband photodetector using plasmonic titanium nitride. ACS Appl. Mater. Interfaces 8, 4258–4265 (2016). 78. Dorodnyy, A. et al. Plasmonic photodetectors. IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018). 79. Scales, C. & Berini, P. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. 46, 633–643 (2010). 103 80. White, T. P. & Catchpole, K. R. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. 101, 073905 (2012). 81. Leenheer, A. J., Narang, P., Lewis, N. S. & Atwater, H. A. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. J. Appl. Phys. 115, 134301 (2014). 82. Ross, R. T. & Nozik, A. J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics 53, 3813–3818 (1982). 83. Rossi, T. P., Erhart, P. & Kuisma, M. Hot-carrier generation in plasmonic nanoparticles: The importance of atomic structure. ACS Nano 14, 9963–9971 (2020). 84. Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014). 85. Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016). 86. Ladstädter, F., Hohenester, U., Puschnig, P. & Ambrosch-Draxl, C. First-principles calculation of hot-electron scattering in metals. Phys. Rev. B - Condens. Matter Mater. Phys. 70, 235125 (2004). 87. Gong, T. & Munday, J. N. Materials for hot carrier plasmonics. Opt. Mater. Express 5, 2501 (2015). 88. Tagliabue, G. et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. 19, 1312–1318 (2020). 89. Kužel, R., Černý, R., Valvoda, V., Blomberg, M. & Merisalo, M. Complex XRD microstructural studies of hard coatings applied to PVD-deposited TiN films Part I. Problems and methods. Thin Solid Films 247, 64–78 (1994). 104 90. Lima, L. P. B., Diniz, J. A., Doi, I. & Godoy Fo, J. Titanium nitride as electrode for MOS technology and Schottky diode: Alternative extraction method of titanium nitride work function. Microelectron. Eng. 92, 86–90 (2012). 91. Patsalas, P. & Logothetidis, S. Interface properties and structural evolution of TiN/Si and TiN/GaN heterostructures. J. Appl. Phys. 93, 989–998 (2003). 92. Gautier, S. et al. Optical and electrical properties of TiN/n-GaN contacts in correlation with their structural properties. Semicond. Sci. Technol. 18, 594–601 (2003). 93. Gosciniak, J., Atar, F. B., Corbett, B. & Rasras, M. CMOS-compatible titanium nitride for on-chip plasmonic Schottky photodetectors. ACS Omega 4, 17223–17229 (2019). 94. Gui, L. et al. Nonlinear refractory plasmonics with titanium nitride nanoantennas. Nano Lett. 16, 5708–5713 (2016). 95. Ekmel Ozbay. Plasmonics : Merging photonics and electronics at nanoscale dimensions Science 189, 189–194 (2006). 96. Gadalla, M. N., Greenspon, A. S., Tamagnone, M., Capasso, F. & Hu, E. L. Excitation of strong localized surface plasmon resonances in highly metallic titanium nitride nano-antennas for stable performance at elevated temperatures. ACS Appl. Nano Mater. 2, 3444–3452 (2019). 97. Maier, S.A. Plasmonics: Fundamentals and Applications. Springer link 98. Ishii, S., Shinde, S. L., Jevasuwan, W., Fukata, N. & Nagao, T. Hot electron excitation from titanium nitride using visible light. ACS Photonics 3, 1552–1557 (2016). 99. Shinde, S. L., Ishii, S. & Nagao, T. Sub-band gap photodetection from the Titanium Nitride/Germanium heterostructure. ACS Appl. Mater. Interfaces 11, 21965–21972 (2019). 100. Guler, U., Boltasseva, A. & Shalaev, V. M. Refractory plasmonics. Science 344, 263–264 (2014). 105 101. Kumar, M., Umezawa, N., Ishii, S. & Nagao, T. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics 3, 43–50 (2016). 102. Catellani, A. & Calzolari, A. Plasmonic properties of refractory titanium nitride. Phys. Rev. B 95, 115145 (2017). 103. Naldoni, A. et al. Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis. Nano Lett. 20, 3663–3672 (2020). 104. Naik, G. V et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012). 105. Guo, W. P. et al. Titanium nitride epitaxial films as a plasmonic material platform: Alternative to gold. ACS Photonics 6, 1848–1854 (2019). 106. Yu, M. J. et al. Plasmon-enhanced solar-driven hydrogen evolution using titanium nitride metasurface broadband absorbers. ACS Photonics 8, 3125–3132 (2021). 107. Gmbii, K., Republic, F. & Republic, F. Dielectric properties of TiCx TiNx VCx and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy. Phy. Rev. B 30, 1155 (1984). 108. You, A., Be, M. A. Y. & In, I. Optical, electronic and transport properties of nanocrystalline titanium nitride thin films. Journal of Appl. Phy. 90, 4725, (2017). 109. Lu, Y. J. et al. Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure. Nat. Commun. 8, 1631 (2017). 110. Andrievski, R. A., Dashevsky, Z. M. & Kalinnikov, G. V. Conductivity and the hall coefficient of nanostructured titanium nitride films. Tech. Phys. Lett. 30, 930–932 (2004). 111. Solovan, M. N., Brus, V. V., Maistruk, E. V. & Maryanchuk, P. D. Electrical and optical properties of TiN thin films. Inorg. Mater. 50, 40–45 (2014). 106 112. Shah, D., Reddy, H., Kinsey, N., Shalaev, V. M. & Boltasseva, A. Optical properties of plasmonic ultrathin tin films. Adv. Opt. Mater. 5, 1700065 (2017). 113. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). 114. Rephaeli, E. & Fan, S. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Express 17, 15145 (2009). 115. Swanson, R. M. . A proposed thermophotovoltic solar energy conversion system. Rev. Soc. Econ. 36, 228–229 (1978). 116. Spirkl, W., Ries, H. Solar thermophotovoltaics An assessment. Journal of App. Phy. 57, 4409 (1985). 117. Wang, Y., Liu, H. & Zhu, J. Solar thermophotovoltaics: Progress, challenges, and opportunities. APL Mater. 7, 080906 (2019). 118. Harder, N.P., Wurfer, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol. 18, S151 (2003). 119. Buddhiraju, S., Santhanam, P. & Fan, S. Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proc. Natl. Acad. Sci. 115, E3609 LP-E3615 (2018). 120. Wang, H. et al. Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application. Photonics Res. 3, 329 (2015). 121. Chirumamilla, M. et al. Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv. Opt. Mater. 5, 1700552 (2017). 122. Huo, D. et al. Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array. Nanoscale Res. Lett. 12, 465 (2017). 123. Yang, Z.-Y., et al. Narrow‐band thermal emitter with titanium nitride thin film 107 demonstrating high temperture stability. Adv. Opt. Mat. 8, 1900982 (2020). 124. Patsalas, P., Kalfagiannis, N. & Kassavetis, S. Optical properties and plasmonic performance of titanium nitride. Materials (Basel). 8, 3128–3154 (2015). 125. Cortie, M. B., Giddings, J. & Dowd, A. Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology 21, 115201 (2010). 126. Naik, G. V. et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478 (2012). 127. Murai, S. et al. Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films. Opt. Express 24, 1143 (2016). 128. Zgrabik, C. M. & Hu, E. L. Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications. Opt. Mater. Express 5, 2786 (2015). 129. Diroll, B. T., Saha, S., Shalaev, V. M., Boltasseva, A. & Schaller, R. D. Broadband ultrafast dynamics of refractory metals: TiN and ZrN. Adv. Opt. Mater. 8, 2000652 (2020). 130. Reddy, H. et al. Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS Photonics 6, 1413-1420 (2017). 131. Briggs, J.A. et al. Temperature-dependent optical properties of titanium nitride. Appl. Phys. Lett. 110, 101901, (2017). 132. Mascaretti, L. et al. Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage. Adv. Mater. 31, 1805513 (2019). 133. Saha, N.C.,Tompkins, H. G. Titanium nitride oxidation chemistry An x‐ray photoelectron spectroscopy study. Journal of Appl. Phy. 72, 3072 (1992). 134. Vasile, M. J., Emerson, A. B. & Baiocchi, F. A. The characterization of titanium nitride by X-ray photoelectron spectroscopy and Rutherford backscattering The characterization of titanium nitride by X-ray photoelectron spectroscopy. J. of Vacuum 108 Sci. & Tech. A 8, 99, (1990). 135. Gwo, S. Yeh, C.L, Chen, P.F., Chou, Y.C., Chen, T.T. Chao, T.S. Hu, S.F. Huang, T. Y. Local electric-field-induced oxidation of titanium nitride films. 1090, 1997–2000 (2005). 136. Zhang, R. et al. Crystal orientation-dependent oxidation of epitaxial tin films with tunable plasmonics. ACS Photonics 8, 847–856 (2021). 137. Nguyen, L. et al. Atomic-scale insights into the oxidation of aluminum. ACS Appl. Mater. Interfaces 3, 2230-2235 (2018). 138. Jaeger, D. & Patscheider, J. Single crystalline oxygen-free titanium nitride by XPS. Surf. Sci. Spectra 20, 1 (2013). 139. Langereis, E., Heil, S. B. S., Van De Sanden, M. C. M. & Kessels, W. M. M. In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma-assisted atomic layer deposition. J. Appl. Phys. 100, 023534 (2006). 140. Graciani, J., Hamad, S. & Sanz, J. F. Changing the physical and chemical properties of titanium oxynitrides TiN1-xOx by changing the composition. Phys. Rev. B, Condens. Mater. Phys. 80, 184112 (2009). 141. Braic, L. et al. Titanium oxynitride thin films with tunable double epsilon-near-zero behavior for nanophotonic applications. ACS Appl. Mater. Interfaces 9, 29857–29862 (2017). 142. Doiron, B. et al. Quantifying figures of merit for localized surface plasmon resonance applications: A materials survey. ACS Photonics 6, 240–259 (2019). 143. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011). 144. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015). 109 145. Tagliabue, G., Duchene, J. S., Habib, A., Sundararaman, R. & Atwater, H. A. Hot-hole versus hot-electron transport at Cu/GaN heterojunction interfaces. ACS Nano 14, 5788–5797 (2020). 146. Jermyn, A. S. et al. Transport of hot carriers in plasmonic nanostructures. Phys. Rev. Mater. 3, 075201 (2019). 147. Ahn, W., Vurgaftman, I., Pietron, J. J., Pehrsson, P. E. & Simpkins, B. S. Energy-tunable photocatalysis by hot carriers generated by surface plasmon polaritons. J. Mater. Chem. A 7, 7015–7024 (2019). 148. Li, W. & Valentine, J. G. Harvesting the loss: Surface plasmon-based hot electron photodetection. Nanophotonics 6, 177–191 (2017). 149. Tagliabue, G. et al. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. 9, 3394 (2018). 150. Duchene, J. S., Tagliabue, G., Welch, A. J., Cheng, W. H. & Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018). 151. Reddy, H. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020). 152. Habib, A., Florio, F. & Sundararaman, R. Hot carrier dynamics in plasmonic transition metal nitrides. J. Opt. 10, 064001 (2018). 153. Yu, M. W. et al. Direct observation of photoinduced charge separation at transition-metal nitride-semiconductor interfaces. ACS Appl. Mater. Interfaces 12, 56562–56567 (2020). 154. Ishii, S., Shinde, S. L. & Nagao, T. Nonmetallic materials for plasmonic hot carrier excitation. Adv. Opt. Mater. 7, 1800603 (2019). 155. Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 110 1, 011304 (2014). 156. Porte, L., Roux, L. & Hanus, J. Vacancy effects in the X-ray photoelectron spectra of TiNx. Phys. Rev. B 28, 3214–3224 (1983). 157. Höchst, H., Bringans, R. D., Steiner, P. & Wolf, T. Photoemission study of the electronic structure of stoichiometric and substoichiometric TiN and ZrN. Phys. Rev. B 25, 7183–7191 (1982). 158. Matsui, T. et al. Highly stable plasmon induced hot hole transfer into silicon via a SrTiO3 passivation interface. Adv. Funct. Mater. 28, 1705829 (2018). 159. Kuo, C. T., Lee, H. M., Shiu, H. W., Chen, C. H. & Gwo, S. Direct imaging of GaN p-n junction by cross-sectional scanning photoelectron microscopy and spectroscopy. Appl. Phys. Lett. 94, 92–95 (2009). 160. Wu, C. L., Lee, H. M., Kuo, C. T., Gwo, S. & Hsu, C. H. Polarization-induced valence-band alignments at cation- and anion-polar InN/GaN heterojunctions. Appl. Phys. Lett. 91, 89–92 (2007). 161. Lin, S. C. et al. Experimental determination of electron affinities for InN and GaN polar surfaces. Appl. Phys. Express 5, (2012). 162. Jaeger, D. & Patscheider, J. A complete and self-consistent evaluation of XPS spectra of TiN. J. Electron Spectros. Relat. Phenomena 185, 523–534 (2012). |