帳號:guest(13.59.8.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林志嘉
作者(外文):Lin, Chih-Chia
論文名稱(中文):高產率偏振糾纏光子之產生及量測
論文名稱(外文):Generation and measurement of polarization-entangled photons with high flux
指導教授(中文):褚志崧
指導教授(外文):Chuu, Chih-Sung
口試委員(中文):王立邦
陳岳男
口試委員(外文):Wang, Li-Bang
Chen, Yueh-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:104022554
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:糾纏光子對偏振糾纏量子通訊量子資訊
外文關鍵詞:Entangled photon pairPolarization entanglementQuantum communicationQuantum information
相關次數:
  • 推薦推薦:0
  • 點閱點閱:337
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
隨著量子力學的發展,量子資訊漸漸變成一門獨立的學問,尤其在量子通訊的領域中光子扮演了非常重要的角色,因此如何產生良好的單光子以及糾纏光子源可以說是最基本也是最核心的課題。
在本實驗中我們使用高產率時間-能量糾纏光子源,透過Photodetector Post-Selection的方式產生預期detection rates約可為13000(s-1/mW)的高效率偏振糾纏光子,與過去用同晶體得到的探測效率相比仍然算高。我們以CHSH inequality以及CHSH like steering inequality驗證了這對糾纏光子彼此之間具有量子的非局域性以及操控性。最後調變時間-能量糾纏光子之間的頻率以及時間的可區分性,並用HOM 干涉儀去分析調變對總波函數造成的影響。
With the development of quantum mechanics, quantum information gradually became an independent subject. In this subject, photon plays a very important role; therefore, how to build a single photon source and also purity entangled bi-photon source are the core issues of the subject.
We use high detected rate time-energy entangled photons to generate polarization entangled photons with high flux by photodetector post-selection. Then, it is expected to have the detection rate up to 13000(s-1/mW) which is relatively high compared with the previous work. Furthermore, we verified our polarization entangled photons possesses quantum nonlocality and steerability by calculating CHSH inequality and CHSH like steering inequality. In the end, we manipulate either the frequency or time distinguishability between a pair of the time-energy entangled photons to analyze the properties of the total wavefunction with the help of Hong-Ou-Mandel interferometer.
摘要 i
致謝 iii
圖表目錄 vi
第一章 實驗動機 1
第二章 理論背景 2
2-1馬克士威爾方程組(Maxwell’s equations) 2
2-2非線性光學(Non-linear optics) 3
2-2.1非線性效應(Non-linear effect) 3
2-2.2波動方程式(Wave equation) 4
2-2.3自發性參量降頻轉換(Spontaneous parametric down-conversion, SPDC) 6
2-3耦合方程組(Coupled equations) 7
2-4相位匹配(Phase matching) 10
2-4.1相位匹配 10
2-4.2非臨界雙折射相位匹配(Non-critical birefringence phase matching) 11
2-4.3準相位匹配(Quasi-phase matching) 12
2-4.4非理想準相位匹配(Non-ideal quasi-phase matching) 14
2-5量子纏結性(Quantum entanglement) 15
2-5.1純態(Pure state) 15
2-5.2密度矩陣(Density matrix) 16
2-5.3混和態(Mixed state) 17
2-5.4纏結性(Entanglement) 18
2-5.5時間-能量糾纏(Time-Energy entanglement) 19
2-6量子力學的試驗 22
2-6.1 EPR悖論(EPR paradox) 22
2-6.2貝爾定理(Bell’s theorem)與貝爾不等式(Bell’s inequality) 27
2-6.3貝爾態(Bell state) 33
2-6.4 類CHSH操控不等式(CHSH like steering inequality) 34
2-7 偏振糾纏光子的製備 39
2-7.1 Photodetector Post-Selection 39
2-7.2利用補償晶體補償時間上的可區分性 41
2-7.3使用光路補償時間上的可區分性 43
第三章 實驗架設與數據分析 53
3-1 Pump光源架設 53
3-2 時間能量糾纏光子源及其性質 54
3-2.1高產率量子光源 54
3-2.2 相位匹配之溫度與波長 55
3-2.3糾纏光子之頻譜分析 57
3-2.4 反相關係數(Anti-correlation parameter) 59
3-3使用晶體補償時間上的可區分性產生偏振糾纏 62
3-3.1偏振糾纏光子之關聯性量測 63
3-4使用光路補償時間上的可區分性產生偏振糾纏 66
3-4.1馬赫-曾德爾干涉儀(Mach-Zehnder interferometer) 67
3-3.3 Hong-Ou-Mandel interference 70
3-3.4偏振糾纏光子之關聯性量測 75
3-3.5貝爾態的調控 76
第四章 討論與總結 79
參考文獻 80
[1] K. Ekert, Quantum Cryptography Based on Bell's Theorem, Phys. Rev. Lett. 67, 661 (1991).
[2] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an Unknown Quantum State via Dual Classical and Einstein–Podolsky–Rosen Channels, Phys. Rev. Lett. 70, 1895–1899 (1993)
[3] Robert W. Boyd, Nonlinear Optics, Third Edition, Academic Press, 2008
[4] C.-S. Chuu, ABCD Formulism for Spontaneous Parametric Down Conversion, Physics Department, National Tsing Hua University, Taiwan
[5] Kirk T. McDonald. Density-Matrix Description of the EPR “Paradox”. Joseph Henry Laboratories, Princeton University, Princeton. 31 Marzo 2005, 3 Aprile 2013.
[6] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777-780 (1935).
[7] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1, 195-200 (1964).
[8] Valerio Scarani. The device-independent outlook on quantum physics (lecture notes on the power of Bell’s theorem). arXiv preprint arXiv:1303.3081, 2013.
[9] J. S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38, 447 (1966).
[10] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett. 23, 880 (1969).
[11] Eric G. Cavalcanti, Christopher J. Foster, Maria Fuwa, and Howard M. Wiseman, Analog of the Clauser–Horne–Shimony–Holt inequality for steering, J. Opt. Soc. Am. B 32, A74-A81 (2015)
[12] J. S. Lundeen, Generalized Measurement and Post-selection in Optical Quantum Information, Ph.D. thesis, University of Toronto (2006).
[13] P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, and C. Kurtsiefer, Compact source of polarization-entangled photon pairs, Opt. Express 12, 276-281 (2004).
[14] Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)
[15] C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter, Phys. Rev. A 69, 013807 (2004).
[16] M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, Generation of ultra-bright tunable polarization entanglement without spatial, spectral, or temporal constraints, Phys. Rev. A 69, 041801 (2004).
[17] T. Kim, M. Fiorentino, and F. N. C. Wong, Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer, Phys. Rev. A 73, 012316 (2006).
[18] Alessandro Fedrizzi, Thomas Herbst, Andreas Poppe, Thomas Jennewein, and Anton Zeilinger, A wavelength-tunable fiber-coupled source of narrowband entangled photons, Opt. Express 15, 15377-15386 (2007).
[19] Sang Min Lee, Heonoh Kim, Myoungsik Cha, and Han Seb Moon, Polarization-entangled photon-pair source obtained via type-II non-collinear SPDC process with PPKTP crystal, Opt. Express 24, 2941-2953 (2016).
[20] Youn-Chang Jeong, Kang-Hee Hong, and Yoon-Ho Kim, Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser, Opt. Express 24, 1165-1174 (2016).
[21] B. J. Pearson and D. P. Jackson, A hands-on introduction to single photons and quantum mechanics for undergraduates, Am. J. Phys. 78, 471 (2010).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *