帳號:guest(18.227.24.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳錦軒
作者(外文):Chen, Chin-Hsuan
論文名稱(中文):高壓氫化物的電聲子超導之研究
論文名稱(外文):Electron-Phonon Interaction Superconductivity study on Hydride under High Pressure
指導教授(中文):鄭弘泰
指導教授(外文):Jeng, Horng-Tay
口試委員(中文):崔章琪
牟中瑜
口試委員(外文):Tsuai, Chang-Chyi
Mou, Chung-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:104022547
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:42
中文關鍵詞:超導體氫化物第一原理
外文關鍵詞:SuperconductorHydrideFirst Principles
相關次數:
  • 推薦推薦:0
  • 點閱點閱:103
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
1935年,Winger和Huntington理論預測金屬氫的存在性,而W. Ashcroft則預測金屬氫的超導溫度非常高,高達接近室溫。
其後,隨著科技的發展,計算機以第一原理計算結果也支持這種說法[19],在500GPa底下金屬氫的超導可達356K。2017年,實驗聲稱製作出金屬氫,但實驗結果遭受大家的質疑,而實驗樣本也因操作失誤而消失。
若是我們尋找一種富氫化合物,使得超導性質可以接近金屬氫,但壓力可以不需要金屬氫一樣大,那麼就可以大大減少實驗的難度。過去的文獻與本文支持我們的說法:如果某高壓下氫化合物穩定,則超導溫度將很容易異常高溫,甚至可以接近室溫程度。我們用密度泛函理論與密度泛函微擾理論數值計算高壓氫化物的電聲子超導特性,提出四種可能的高壓氫化物及其超導性質。
In 1935, Winger and Huntington theory predicted the existence of metal hydrogen , while W. Ashcroft predicted that the superconducting temperature of metal hydrogen was very high, up to near room temperature.
If we look for a hydrogen-rich compound, so that the superconducting properties can be close to the metal hydrogen, but the pressure can be as large as the metal hydrogen, then the difficulty of the experiment can be greatly reduced. The past literature and the paper support us: If the hydrogen compound is stable under a high pressure, the superconducting temperature will be very abnormally high temperature, and even close to room temperature. We use density functional theory and density functional perturbation theory to numerically calculate the electroacoustic superconductivity of high-pressure hydrides, and propose four possible high-pressure hydrides and their superconducting properties.
We use Quantum Espresso code base on density function perturbation theory to calculate superconductivity property. We report superconductivity temperature of 4 kinds of hydride under high pressure: NaH6, NaH8, NH5, MgH3 approaching 50~200K.
摘要 I
Abstract II
第一章 緒論 1
1.1 凝態系統Hamiltonian 1
1.2 密度泛函理論Density Function Theory 1
1.3 科恩-沈方程Kohn-Sham Equation[2] 2
1.4 密度泛函微擾理論Density Functional Perturbation Theory 3
1.5 線性響應理論Linear Response Theory[4] 4
1.6 電聲子交互作用 5
第二章 鈉氫化物NaH6 6
2.1 晶體結構 6
2.2 電子能帶結構與Partial charge 8
2.3 聲子能譜、超導體物理量與聲子震動方向 10
2.4 壓力相圖 10
2.5 收斂測試[10] 15
第三章 鈉氫化物NaH8 17
3.1 晶體結構 17
3.2 電子能帶結構與Partial charge 19
3.3 聲子能譜、超導體物理量與聲子震動方向 21
第四章 氮氫化物NH5 25
4.1 晶體結構 25
4.2 電子能帶與Partial charge 25
4.3 聲子能譜與聲子震動方向 27
4.4超導特性之壓力相圖 29
4.5 收斂測試 31
第五章 鎂氫化物MgH3 32
5.1 晶體結構 32
5.2 電子能帶結構 34
5.3 聲子能譜、超導體物理量 35
5.4 壓力相圖 38
Reference 40
[1] Giannozze, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502(2009); http://www.quantum-espresso.org.
[2] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas", Phys. Rev. 136 : B864-871, (1964).
[3] W. Kohn and L.J. Sham, Phys. Rev. 140 : A1133-1138, (1965).
[4] Feliciano Giustino, Rev. Mod. Phys. 89, 015003 – Published 16 February 2017
[5] Allen and Dynes, Phys. Rev. B 12, 905 (1975)
[6] Oganov A.R., Glass C.W. .J. Chem. Phys. 124, 244704 (2006)
[7] Oganov A.R., Stokes H., Valle M. Acc. Chem. Res. 44, 227-237(2011)
[8] Lyakhov A.O., Oganov A.R., Stokes H., Zhu Q. (2013 Comp. Phys. Comm., 184, 1172-1182
[9] Pio Baettig and Eva ZurekPhys. Rev. Lett. 106, 237002 (2011)
[10] Malgorzata Wierzbowska, Stefano de Gironcoli, Paolo Giannozzi, arXiv:cond-mat/0504077
[11] Feng Peng, Ying Sun, Chris J. Pickard,et al. , Phys. Rev. Lett. 119, 107001(2017)
[12] Hui Wang , John S. Tse , Kaori Tanaka , Toshiaki Iitaka, and Yanming Ma. PNAS April 24, 2012 vol. 109 no. 17 6463-6466
[13] Xiaolei Feng, Jurong Zhang, Guoying Gao, Hanyu Liu and Hui Wang, RSC Adv., 2015, 5, 59292
[14] Defang Duan, Yunxian Liu1, Fubo Tian, DaLi,et al. Scientific Reports volume 4, Article number: 6968 (2014)
[15] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov & S. I. Shylin, Nature volume 525, pages 73–76 (03 September 2015)
[16] Hanyu Liu, Ivan I. Naumov, Roald Hoffmann, N. W. Ashcroft, and Russell J. Hemley, 6990–6995 | PNAS | July 3, 2017 | vol. 114 | no. 27
[17] Wigner, E.; Huntington, H. B. On the possibility of a metallic modification of hydrogen. Journal of Chemical Physics. 1935, 3 (12): 764.
[18] N. W. Ashcroft, PhysRevLett.21.1748 (1968)
[19] Jeffrey M. McMahon and David M. Ceperley, PHYSICAL REVIEW B 84, 144515 (2011)
[20] Kresse, G. & Furthm uller, PhysRevB.54.11169
[21] M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse,2 Y. Yao, 14 MARCH 2008 VOL 319 SCIENCE
[22] Stefano Baroni, Stefano de Gironcoli, and Andrea Dal Corso, REVIEWS OF MODERN PHYSICS, VOLUME 73, APRIL 2001
[23] Ya Cheng, Chao Zhang, Tingting Wang, Guohua Zhong, Chunlei Yang, Xiao-Jia Chen &Hai-Qing Lin, Scientific Reports 5:16475 (2015)
[24] Lijun Zhang, Yanchao Wang, Jian Lv and Yanming Ma, VOLUME 2 | ARTICLE NUMBER 17005 (2017)
[25] Jeffrey M. McMahon and David M. Ceperley, PHYSICAL REVIEW B 84, 144515 (2011)
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *