帳號:guest(18.223.171.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅見聞
作者(外文):Luo, Jian-Wen
論文名稱(中文):鈷、鋯摻雜濃度對二氧化鈦主體之能隙與結構之影響研究
論文名稱(外文):Effects of Cobalt and Zirconium Dopant Concentrations on the Structures and Band Gap Width in (Co,Zr)-codoped TiO2
指導教授(中文):蘇雲良
指導教授(外文):Soo, Yun-Liang
口試委員(中文):鄭弘泰
湯茂竹
諸柏仁
黃玉山
口試委員(外文):Jeng, Horng-Tay
Tang, Mau-Tsu
Chu, Po-Jen
Huang, Yu-Shan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:104022539
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:40
中文關鍵詞:溶膠凝膠法二氧化鈦能隙雜質
外文關鍵詞:Sol-gel methodtitanium dioxideband gapimpurity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:28
  • 收藏收藏:0
近年來由於環保意識之興起,使得光觸媒此一材料受到大家的重視。其中又以二氧化鈦以其泛用性高,格外受到研究者之關注。因此選擇二氧化鈦作為研究之材料。
然而作為光觸媒材料,最使人詬病為其能隙過大,使可見光利用率低落。在此研究共摻雜二氧化鈦,對能隙與結構之影響。以溶膠凝膠法製備樣品共摻雜樣品並且在氧氣下以500oC鍛燒。量測數據顯示鈷與鋯皆取代鈦的位置且樣品內沒有其他氧化物,並且共摻雜樣品之能隙隨鋯比例增加有著顯著上升。此結果比起一般常用之摻雜方式有著截然不同的機制存在。
Recently, photocatalytic materials have attracted special research interest due to heightened awareness of the importance of environmental protection. Among such materials, many research works have been focused on titanium dioxide for its wide and versatile catalytic applications. However, the low activity of these catalysts in applications using visible light has limited their further development. In this thesis, we investigated the effect of (Co,Zr) co-dopeing on the structures and band gap width of the doped TiO2 host. Samples were synthesized by a sol-gel method followed by thermal annealing at 500oC. The extended x-ray absorption fine structure (EXAFS) data show that both cobalt and zirconium substitute for Ti in the TiO2 host. The existence of metal oxides in the samples was also excluded by our data. Most importantly, the band gap of TiO2 decreases with increasing Zr concentration. The observed dependence of band gap on Zr concentration indicates a rather unique mechanism governing the band gap variation in these co-doped oxides.
摘要...........................................................I
ABSTRACT......................................................II
誌謝..........................................................III
目錄..........................................................IV
1-1 研究動機...................................................1
1-2 論文簡介...................................................2
第二章 文獻回顧.................................................3
2-1 二氧化鈦與摻雜元素..........................................3
2-2 光觸媒材料與機制簡介........................................4
第三章 實驗量測方式與原理簡介....................................6
3-1 拉曼光譜(RAMAN SPECTROSCOPY)...............................6
3-2 X光繞射 (X-RAY DIFFRACTION)................................7
3-3 延伸X光吸收細微結構 (EXTENDED X-RAY ABSORPTION FINE STRUCTURE : EXAFS).........................................................9
3-4 紫外-可見光光譜(ULTRAVIOLET-VISIBLE SPECTROSCOPY)..........11
3-5感應耦合電漿質譜儀 (INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETER) ..............................................................12
第四章 樣品製備方法與流程.......................................13
4-1 溶膠凝膠法 (SOL-GEL).......................................13
4-2 樣品製作流程...............................................13
4-3 實驗方法比較................................................15
4-4 藥品.......................................................15
4-5 樣品代號...................................................16
第五章 實驗數據分析與結果討論....................................17
5-1 拉曼光譜 (RAMAN SPECTROSCOPY)..............................17
5-2 X光繞射 (X-RAY DIFFRACTION)................................20
5-3 延伸X光吸收細微結構與X光吸收邊緣結構.........................23
5-4 紫外-可見光光譜 (ULTRAVIOLET-VISIBLE SPECTROSCOPY)..........30
5-5 感應耦合電漿質譜儀 (INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETER)..................................................32
第六章 結論.....................................................35
第七章 參考文獻..................................................36
[1-1] L. Zhang, L.L. Cai, X.B. Yuan, G.C. Hu, J.F. Ren,Effects of acceptor–donor complexes on electronic structure properties in co-doped TiO2: A first-principles study,Physica E,81 (2016) 156–162

[2-1] Dorian A. H. Hanaor • Charles C.,Sorrell Review of the anatase to rutile phase transformation. J Mater Sci,46:855–874, 2011

[2-2] Akira Fujishima, Kenichi Honda,Electrochemical photolysis of water at a semiconductor electrode,nature,238:37-38,1972

[2-3] Siva Nagi Reddy Inturi, Thirupathi Boningari , Makram Suidan, Panagiotis G. Smirniotis,Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2,Applied Catalysis B: Environmental 144 (2014) 333–342

[2-4] Ye Cong,Jinlong Zhang,† Feng Chen,Masakazu Anpo, and Dannong He,Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III),J. Phys. Chem. C 2007, 111, 10618-10623

[3-1] Ahmad Monshi , Mohammad Reza Foroughi , Mohammad Reza Monshi ,Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD,WJNSE, 2012, 2, 154-160

[3-2] PAUL KUBELKA,New Contributions to the Optics of Intensely Light-Scattering Materials. Part I,JOS,38(5):448-448,1948.

[4-1] Funda SAYILKAN1, Meltem AS• ILTURK , Hikmet SAYILKAN1 , Yunus ONAL , Murat AKARSU and Ertugrul ARPAC¸,Characterization of TiO2 Synthesized in Alcohol by a Sol-Gel Process: The Effects of Annealing Temperature and Acid Catalyst,Turk J Chem,29 (2005) ,697–706.


[5-1] Junqing Yan, Guangjun Wu,Naijia Guan, Landong Li, Zhuoxin Li and Xingzhong Cao,Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile,Phys. Chem. Chem. Phys., 2013, 15, 10978-10988

[5-2] Tomasz Jakubek,Wojciech Kaspera, Piotr Legutko, Pawe Stelmachowski , Andrzej Kotarba,Surface versus bulk alkali promotion of cobalt-oxide catalyst in soot oxidation,Catalysis Communications ,71 (2015) 37–41

[5-3] Xuemin He, Xueyin Song, Wen Qiao, Zhiwen Li, Xing Zhang, Shiming Yan, Wei Zhong, and Youwei Du,Phase- and Size-Dependent Optical and Magnetic Properties of CoO Nanoparticles,J. Phys. Chem. C, 2015, 119, 9550−9559

[5-4] Reena Dwivedi , Akrati Verma , R. Prasad , K.S. Bartwal,Effect of microwave on distribution of Zr4+ and Ti4+ during sol–gel synthesis of ZrTiO4 nanoparticles,Optical Materials,35 (2012) 33–37

[5-5] Jingsheng Wang, Yanlong Yu, Sha Li, Limei Guo, Enjun Wang, and Yaan Cao,Doping Behavior of Zr4+ Ions in Zr4+-Doped TiO2 Nanoparticles,| J. Phys. Chem. C 2013, 117, 27120−27126

[5-6] Chunming Huang, Xueqin Liu, Yanping Liu, Yinyue Wang ,Room temperature ferromagnetism of Co-doped TiO2 nanotube arrays prepared by sol–gel template synthesis,Chemical Physics Letters 432 (2006) 468–472

[5-7] N. Yuangpho , S.T.T.Le , T.Treerujiraphapong , W.Khanitchaidecha , A.Nakaruk,Enhanced photocatalyticperformanceofTiO2 particles viaeffectof anatase–rutile ratio,Physica E,67(2015)18–22


[5-8] Jingsheng Wang, Yanlong Yu, Sha Li, Limei Guo,Enjun Wang, and Yaan Cao,Doping Behavior of Zr4+ Ions in Zr4+-Doped TiO2 Nanoparticles ,J. Phys. Chem. C,2013, 117, 27120−27126
[5-9] Poty R. de Lucena, Edson Roberto Leite, Fenelon M. Pontes, Elson Longo,Paulo S. Pizani, Jose Arana Varela ,Photoluminescence: A probe for short, medium and long-range self-organization order in ZrTiO4 oxide,Journal of Solid State Chemistry ,179 (2006) 3997–4002

[5-10] Congkang Xu, Yingkai Liu, Guoding Xu, Guanghou Wang,Fabrication of CoO nanorods via thermal decomposition of CoC2O4 precursor,Chemical Physics Letters,366 (2002) 567–571

[5-11] Y. L. Soo, G. Kioseoglou, S. Kim, and Y. H. KaoP. Sujatha Devi, John Parise, R. J. Gambino, and P. I. Gouma,Local environment surrounding magnetic impurity atoms in a structural phase transition of Co-doped TiO2 nanocrystal ferromagnetic semiconductors,Appl. Phys. Lett. 81, 655(2002)

[5-12] P. E. Lippens, A. V. Chadwick, A. Weibel, R. Bouchet, and P. Knauth,Structure and Chemical Bonding in Zr-Doped Anatase TiO2 Nanocrystals,J. Phys. Chem. C 2008, 112, 43-47

[5-13] A.M. Saib, A. Borgna , J. van de Loosdrecht , P.J. van Berge , J.W. Niemantsverdriet,XANES study of the susceptibility of nano-sized cobalt crystallites to oxidation during realistic Fischer–Tropsch synthesis,Applied Catalysis A: General 312 (2006) 12–19

[5-14] P. Jollivet a, G. Calas , L. Galoisy , F. Angeli , B. Bergeron , S. Gin , M.P. Ruffoni , N. Trcera,An enhanced resolution of the structural environment of zirconium in borosilicate glasses,Journal of Non-Crystalline Solids,381 (2013) 40–47

[5-15] N. Venkatachalam, M. Palanichamy, Banumathi Arabindoo, V. Murugesan,Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2,Journal of Molecular Catalysis A: Chemical,266 (2007) 158–165

[5-16] Xiaojie Yao, Xudong Wang, Lei Su, Hui Yan, Man Yao,Band structure and photocatalytic properties of N/Zr co-doped anatase TiO2 from first-principles study,Journal of Molecular Catalysis A: Chemical,351 (2011) 11–16

[5-17] Chandni Khurana,O. P. Pandey , Bhupendra Chudasama,Synthesis of visible light-responsive cobalt-doped TiO2 nanoparticles with tunable optical band gap,J Sol-Gel Sci Technol,(2015) 75:424–435

[5-18] T.S.Wu, H.D.Li, Y.W.Chen, S.F.Chen, Y.S.Su, C.H.Chu, C.W.Pao, J. F.Lee,C.H.Lai, H.T.Jeng, S.L. Chang, & Y.L.Soo,Unconventional interplay between heterovalent dopant elements: Switch-and-modulator band-gap engineering in (Y, Co)-Codoped CeO2 nanocrystals,Scientific Reports, 5:15415
λ
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *