|
[1] Bose, S. N. (1924). Planck’s law and light quantum hypothesis. Z. Phys, 26(1), 178. [2] Einstein, A. (1924). Quantentheorie des einatomigen idealen Gases. Akademie der Wis-senshaften, in Kommission bei W. de Gruyter. [3] Bradley, C. C., Sackett, C. A., Tollett, J. J., & Hulet, R. G. (1995). Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Physical Review Let-ters, 75(9), 1687. [4] Davis, K. B., Mewes, M. O., Andrews, M. R., Van Druten, N. J., Durfee, D. S., Kurn, D. M., & Ketterle, W. (1995). Bose-Einstein condensation in a gas of sodium atoms. Physical re-view letters, 75(22), 3969. [5] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., & Cornell, E. A. (1995). Observation of Bose-Einstein condensation in a dilute atomic vapor. science, 269(5221), 198-201. [6] Dalibard, J., & Cohen-Tannoudji, C. (1989). Laser cooling below the Doppler limit by po-larization gradients: simple theoretical models. JOSA B, 6(11), 2023-2045. [7] Hess, H. F. (1986). Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Physical Review B, 34(5), 3476. [8] Adams, C. S., Lee, H. J., Davidson, N., Kasevich, M., & Chu, S. (1995). Evaporative cool-ing in a crossed dipole trap. Physical review letters, 74(18), 3577. [9] Pethick, C. J., & Smith, H. (2002). Bose-Einstein condensation in dilute gases. Cambridge university press. [10] Petrich, W., Anderson, M. H., Ensher, J. R., & Cornell, E. A. (1995). Stable, tightly con-fining magnetic trap for evaporative cooling of neutral atoms. Physical Review Letters, 74(17), 3352. [11] Raab, E. L., Prentiss, M., Cable, A., Chu, S., & Pritchard, D. E. (1987). Trapping of neu-tral sodium atoms with radiation pressure. Physical Review Letters, 59(23), 2631. [12] Chu, S., Bjorkholm, J. E., Ashkin, A., & Cable, A. (1986). Experimental observation of optically trapped atoms. Physical review letters, 57(3), 314. [13] Davis, K. B., Mewes, M. O., Joffe, M. A., Andrews, M. R., & Ketterle, W. (1995). Evap-orative cooling of sodium atoms. Physical review letters, 74(26), 5202. [14] Steck, D. A. (2001). Rubidium 87 D line data. [15] Petrich, W., Anderson, M. H., Ensher, J. R., & Cornell, E. A. (1994). Behavior of atoms in a compressed magneto-optical trap. JOSA B, 11(8), 1332-1335. [16] Lin, Y. J., Perry, A. R., Compton, R. L., Spielman, I. B., & Porto, J. V. (2009). Rapid pro-duction of R 87 b Bose-Einstein condensates in a combined magnetic and optical potential. Physical Review A, 79(6), 063631. [17] Lin, Y. J., Jiménez-García, K., & Spielman, I. B. (2011). Spin–orbit-coupled Bose–Einstein condensates. Nature, 471(7336), 83. [18] Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V. P., & Cornell, E. A. (2004). Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level. Physical re-view letters, 92(4), 040404. [19] Spreeuw, R. J. C., Pfau, T., Janicke, U., & Wilkens, M. (1995). Laser-like scheme for atomic-matter waves. EPL (Europhysics Letters), 32(6), 469. [20] Holland, M., Burnett, K., Gardiner, C., Cirac, J. I., & Zoller, P. (1996). Theory of an atom laser. Physical Review A, 54(3), R1757. [21] Wiseman, H., Martins, A., & Walls, D. (1996). An atom laser based on evaporative cooling. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 8(3), 737. [22] Mewes, M. O., Andrews, M. R., Kurn, D. M., Durfee, D. S., Townsend, C. G., & Ketterle, W. (1997). Output coupler for Bose-Einstein condensed atoms. Physical Review Letters, 78(4), 582. [23] Bloch, I., Hänsch, T. W., & Esslinger, T. (1999). Atom laser with a cw output coupler. Physical Review Letters, 82(15), 3008. [24] Hagley, E. W., Deng, L., Kozuma, M., Wen, J., Helmerson, K., Rolston, S. A., & Phillips, W. D. (1999). A well-collimated quasi-continuous atom laser. Science, 283(5408), 1706-1709. [25] Le Coq, Y., Thywissen, J. H., Rangwala, S. A., Gerbier, F., Richard, S., Delannoy, G., ... & Aspect, A. (2001). Atom laser divergence. Physical review letters, 87(17), 170403. [26] Bloch, I., Hansch, T. W., & Esslinger, T. (2001). Atom lasers and phase coherence of atomic Bose gases. RIKEN REVIEW, 6-9. [27] Cennini, G., Ritt, G., Geckeler, C., & Weitz, M. (2003). All-optical realization of an atom laser. Physical Review Letters, 91(24), 240408. [28] Guerin, W., Riou, J. F., Gaebler, J. P., Josse, V., Bouyer, P., & Aspect, A. (2006). Guided quasicontinuous atom laser. Physical review letters, 97(20), 200402. [29] Robins, N. P., Figl, C., Haine, S. A., Morrison, A. K., Jeppesen, M., Hope, J. J., & Close, J. D. (2006). Achieving peak brightness in an atom laser. Physical review letters, 96(14), 140403. [30] Morinaga, M., Yasuda, M., Kishimoto, T., Shimizu, F., Fujita, J. I., & Matsui, S. (1996). Holographic manipulation of a cold atomic beam. Physical review letters, 77(5), 802. [31] Sarkar, S., Mangaonkar, J., Vishwakarma, C., & Rapol, U. D. (2018). Diffraction of a CW atom laser in the Raman-Nath regime. arXiv preprint arXiv:1802.01524. [32] Wright, E. M., Walls, D. F., & Garrison, J. C. (1996). Collapses and revivals of Bose-Einstein condensates formed in small atomic samples. Physical review letters, 77(11), 2158. [33] Imamoglu, A., Lewenstein, M., & You, L. (1997). Inhibition of coherence in trapped Bose-Einstein condensates. Physical review letters, 78(13), 2511. [34] Wright, E. M., Wong, T., Collett, M. J., Tan, S. M., & Walls, D. F. (1997). Collapses and revivals in the interference between two Bose-Einstein condensates formed in small atomic samples. Physical Review A, 56(1), 591. [35] Greiner, M., Mandel, O., Hänsch, T. W., & Bloch, I. (2002). Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature, 419(6902), 51. [36] Straatsma, C. J. E., Colussi, V. E., Davis, M. J., Lobser, D. S., Holland, M. J., Anderson, D. Z., ... & Cornell, E. A. (2016). Collapse and revival of the monopole mode of a degenerate Bose gas in an isotropic harmonic trap. Physical Review A, 94(4), 043640. [37] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., ... & Savona, V. (2006). Bose–Einstein condensation of exciton polaritons. Nature, 443(7110), 409. [38] Jin, D. S., Ensher, J. R., Matthews, M. R., Wieman, C. E., & Cornell, E. A. (1996). Col-lective excitations of a Bose-Einstein condensate in a dilute gas. Physical review letters, 77(3), 420. [39] Streltsova, O. I., Alon, O. E., Cederbaum, L. S., & Streltsov, A. I. (2014). Generic regimes of quantum many-body dynamics of trapped bosonic systems with strong repulsive interactions. Physical Review A, 89(6), 061602. [40] Bongs, K., Burger, S., Birkl, G., Sengstock, K., Ertmer, W., Rzazewski, K., ... & Lewen-stein, M. (1999). Coherent evolution of bouncing Bose-Einstein condensates. Physical review letters, 83(18), 3577. [41] Ott, H., Fortágh, J., Kraft, S., Günther, A., Komma, D., & Zimmermann, C. (2003). Non-linear dynamics of a Bose-Einstein condensate in a magnetic waveguide. Physical review letters, 91(4), 040402. [42] Streltsov, A. I. (2013). Quantum systems of ultracold bosons with customized interparticle interactions. Physical Review A, 88(4), 041602. [43] Streltsova, O. I., Alon, O. E., Cederbaum, L. S., & Streltsov, A. I. (2014). Generic regimes of quantum many-body dynamics of trapped bosonic systems with strong repulsive interactions. Physical Review A, 89(6), 061602. [44] Grimm, R., Weidemüller, M., & Ovchinnikov, Y. B. (2000). Optical dipole traps for neutral atoms. In Advances in atomic, molecular, and optical physics (Vol. 42, pp. 95-170). Academic Press.
|