|
[1] N.V Prokof’ev, B.V Svistunov, and I.S Tupitsyn. “worm”algorithm in quantum monte carlo simulations. Physics Letters A, 238(4):253 – 257, 1998. [2] G.G. Batrouni and R.T. Scalettar. World line simulations of the bosonic hubbard model in the ground state. Computer Physics Communications, 97(1):63 – 81, 1996. High-Performance Computing in Science. [3] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326:96–192, January 2011. [4] Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349:117–158, October 2014. [5] E. L. Pollock and D. M. Ceperley. Path-integral computation of superfluid densities. Phys. Rev. B, 36:8343–8352, Dec 1987. [6] Kenji Harada. Bayesian inference in the scaling analysis of critical phenomena. Phys. Rev. E, 84:056704, Nov 2011. [7] Kenji Harada. Kernel method for corrections to scaling. Phys. Rev. E, 92:012106, Jul 2015. [8] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete. Matrix product operator representations. New Journal of Physics, 12(2):025012, February 2010. [9] J. C. Xavier. Entanglement entropy, conformal invariance, and the critical behavior of the anisotropic spin-s heisenberg chains: Dmrg study. Phys. Rev. B, 81:224404, Jun 2010. [10] Hyejin Ju, Ann B. Kallin, Paul Fendley, Matthew B. Hastings, and Roger G. Melko. Entanglement scaling in two-dimensional gapless systems. Phys. Rev. B, 85:165121, Apr 2012. [11] Jonathan D’Emidio, Matthew S. Block, and Ribhu K. Kaul. Rényi entanglement entropy of critical SU(n) spin chains. Phys. Rev. B, 92:054411, Aug 2015. |