帳號:guest(3.138.137.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈柏晉
作者(外文):Shen, Po-Chin
論文名稱(中文):有長程跳躍的玻色赫巴德模型
論文名稱(外文):Bose-Hubbard Model with Long-Range Hopping
指導教授(中文):陳柏中
指導教授(外文):Chen, Pochung
口試委員(中文):米格爾
高英哲
口試委員(外文):Cazalilla, Miguel A.
Kao, Ying-Jer
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:104022522
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:43
中文關鍵詞:玻色-赫巴德模型量子蒙地卡羅密度矩陣重整化群
外文關鍵詞:Bose-Hubbard modelquantum Monte Carlodensity matrix renormalization group
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
在此篇論文,我們主要研究⻑程有序在具有⻑程跳躍的一維的玻色-赫巴德模型 (Bose-Hubbard model)。我們使用量子蒙地卡羅(Quantum Monte Carlo) 來模擬系統,測量其關聯 (correlation) 和繞數 (winding number) 並用來計算凝聚係數 (condensate fraction) 和超流體密度 (superfluid density);此外,我們也利用密度矩陣重整化群(Density Matrix Renormalization Group) 來模擬系統,計算出零溫底下基態的糾纏熵 (entanglement entropy) 並用以推算出系統的中心電荷 (central charge)。
We study long-range orders in one-dimensional Bose-Hubbard model with power-law long-range hoppings. We measure the correlation and the winding numbers of hardcore bosons in one-dimension ring using quantum Monte Carlo simulations to calculate the condensate fraction and the superfluid density. On the other hand, we calculate the Entanglement entropy of open boundary zero-temperature ground states via density matrix renormalization group to estimate the central charge of the system.
Abstract i
摘要 ii
Contents iii
1 Introduction 1
2 Quantum Monte Carlo 2
2.1 Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Path Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Worm Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Density Matrix Renormalization Group 10
3.1 Tensor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 Matrix Product States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Graphic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Matrix Product Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Results 16
4.1 Finite Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Condensate Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Superfluid Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Zero Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 MPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Entanglement Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Bibliography 42
[1] N.V Prokof’ev, B.V Svistunov, and I.S Tupitsyn. “worm”algorithm in quantum monte carlo simulations. Physics Letters A, 238(4):253 – 257, 1998.
[2] G.G. Batrouni and R.T. Scalettar. World line simulations of the bosonic hubbard model in the ground state. Computer Physics Communications, 97(1):63 – 81, 1996. High-Performance Computing in Science.
[3] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326:96–192, January 2011.
[4] Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349:117–158, October 2014.
[5] E. L. Pollock and D. M. Ceperley. Path-integral computation of superfluid densities. Phys. Rev. B, 36:8343–8352, Dec 1987.
[6] Kenji Harada. Bayesian inference in the scaling analysis of critical phenomena. Phys. Rev. E, 84:056704, Nov 2011.
[7] Kenji Harada. Kernel method for corrections to scaling. Phys. Rev. E, 92:012106, Jul 2015.
[8] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete. Matrix product operator representations. New Journal of Physics, 12(2):025012, February 2010.
[9] J. C. Xavier. Entanglement entropy, conformal invariance, and the critical behavior of the anisotropic spin-s heisenberg chains: Dmrg study. Phys. Rev. B, 81:224404, Jun 2010.
[10] Hyejin Ju, Ann B. Kallin, Paul Fendley, Matthew B. Hastings, and Roger G. Melko. Entanglement scaling in two-dimensional gapless systems. Phys. Rev. B, 85:165121, Apr 2012.
[11] Jonathan D’Emidio, Matthew S. Block, and Ribhu K. Kaul. Rényi entanglement entropy of critical SU(n) spin chains. Phys. Rev. B, 92:054411, Aug 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *