|
[1] R. Hooke, Micrographia: Or Some Physiological Descriptions of Minute Bod- ies Made by Magnifying Glasses, with Observations and Inquiries Thereupon, (Courier Dover Publications, 1665). [2] https://en.wikipedia.org/wiki/Robert_Hooke. [3] H. Fricke, The electrical capacity of suspensions with special reference to blood, Journal of General Physiology 9, 137-152 (1925). [4] E. Gorter and F. Grendel, On bimolecular layers of lipids on the chromocytes of the blood, Journal of Experimental Medicine 41, 439-443 (1925). [5] J. F. Danielli and H. Davson, A contribution to the theory of permeability of thin films, Journal of Cellular and Comparative Physiology 5. 495-508 (1935). [6] F. S. Sjostrand, E. Andersson-Cedergren, and M. M. Dewey, The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle, Journal of Ultrastructure Research 1, 271-287 (1958). [7] J. D. Robertson, The molecular structure and contact relationships of cell membranes, Progress Biophysics and Biophysical Chemistry 10, 343-418 (1960). [8] J. D. Robertson, The ultrastructure of cell membranes and their derivatives, Biochemical Society Symposia 16, 3-43 (1959). [9] https://en.wikipedia.org/wiki/History_of_cell_membrane_theory. [10] S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science 175, 720-731 (1972). [11] https://en.wikipedia.org/wiki/Fluid_mosaic_model. [12] T. Browicz, Further observation of motion phenomena on red blood cells in pathological states, Zbl. Med. Wiss. 28, 625-627 (1890). [13] P. G. de Genes and J. Badoz, Fragile Objects: Soft Matter, Hard Science, and the Thrill of Discovery, (Springer Science, 1996). [14] F. Brochard, and J. F. Lennon, Frequency spectrum of the flicker phenomenon in erythrocytes, Journal de Physique 36 (11),1035-1047 (1975). [15] S. Tuvia, A. Almagor, A. Bitler, S. Levin, R. Korenstein, and S. Yedgar, Cell membrane fluctuation are regulated by medium macroviscosity: evidence for a metabolic driving force, Proc. Natl. Acad. Sci. USA 94, 5045-5049 (1997). [16] T. Betz, M. Lenz, J. -F. Joanny, and C. Sykes, ATP-dependent mechanics of red blood cells, Proc. Natl. Acad. Sci. USA 106, 15320-15325 (2009) [17] Y. Park et al, Metabolic remodeling of the human red blood cell membrane, Proc. Natl. Acad. Sci. USA 107, 1289-1294 (2010). [18] R. Rodriguez-Garcia et al, Direct cytoskeleton forces cause membrane softening in red blood cells, Biophys. J 108, 2794-2806 (2015). [19] R. I. Weed, P. L. Lacelle, and E. Merrill, Metabolic dependence of red blood cell deformability, J. Clin. Invest. 48, 795-809 (1969). [20] A. Chabanal, W. Reinhart, and S. Chein, Increased resistance to membrane deformation of shape-transformed human red blood cells, Blood 69, 739-743 (1987). [21] D. E. Discher, N. Mohandas, and E. A. Evans, Molecular maps of red cells deformation: hidden elasticity and in situ connectivity, Science 266, 1032- 1035 (1994). [22] M. Nakao, T. Nakao, and S. Yamazoe, Adenosine triphosphate and maintenance of shape of the human red cells, Nature 187, 945-946 (1960). [23] M. P. Sheetz, On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of spectrin complex, J. Cell. Biol. 73, 638-646 (1977). [24] H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. -F. Joanny, G. Gompper, and T. Betz, Equilibrium physics breakdown reveals the active nature of red blood cell flickering, Nature Physics 12, 513-519 (2016). [25] J. Prost and R. Bruinsma, Shape fluctuations of active membranes, Euro- phys. Lett. 33 (4), 321-326 (1996). [26] Jerusalem Winter School, edited by D. Nelson and T. Piran, Statistical Me- chanics of Membranes and Surfaces, (World Scientific, 1989). [27] S. Ramaswamy, J. Toner, and J. Prost, Nonequilibrium Fluctuations, Traveling Waves, and Instabilities in Active Membranes, Phys. Rev. Lett. 84 (15), 3494 (2000). [28] J.-B. Manneville, P. Bassereau, S. Ramaswamy, and J. Prost, Active membrane fluctuations studied by micropipet aspiration, Phys. Rev. E 64, 021908 (2001). [29] Hsuan-Yi Chen, The internal states of active inclusions and the dynamics of an active membrane, Phys. Rev. Lett. 92 (16), 168101 (2004). [30] Hsuan-Yi Chen, and A. S. Mikhailov, Dynamics of biomembranes with active multiple-state inclusions, Phys. Rev. E 81, 031901 (2010). [31] https://en.wikipedia.org/wiki/Cytoskeleton. [32] K. Kruse, J. F. Joanny, F. Julicher, J. Prost and K. Sekimoto, Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments, Phys. Rev. Lett. 93, 0999902 (2004). [33] K. Kruse, J. F. Joanny, F. Julicher, J. Prost and K. Sekimoto, Generic theory of active polar gels: a paradigm for cytoskeletal dynamics, Eur. Phys. J. E. 16, 5-16 (2005). [34] F. Julicher, K. Kruse, J. Prost, and J. F. Joanny, Active behavior of the Cytoskeleton, Physics Reports 449, 3-28 (2007). [35] M. C. Marchetti, J. F. Joanny, S. Ramaswamy,T. B. Liverpool, J. Prost, Madan Rao, and R. Aditi Simha, Hydrodynamics of soft active matter, Rev. Mod. Phys., 85, 1143 (2013). [36] J. Prost, F. Julicher and J. F. Joanny, Active gel physics, Nature physics 11, 111-117 (2015). [37] R. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Kas, Scanning probebased, frequency-dependent microrheology of polymer gels and biological cells, Phys. Rev. Lett., 85 (4), 880-883 (2000). [38] D. Humphrey, C. Duggan, D. Saha, D. Smith, and J. Kas, Active fluidization of polymer networks through molecular motors, Nature 416, 413-416 (2002). [39] R. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Kas, Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy, Biophys. J. 86, 1777-1793 (2004). [40] J. Guck, H. Erickson, R. Ananthakrishnan, D. Mitchell, M. Romeyke, S. Schinkinger, F. Wottawah, B. Lincoln, J. Kas, S. Ulvick, and C. Bilby, Optical Deformability as Inherent Cell Marker for Malignant Transformation and Metastatic Competence, Biophys. J. 88, 5 (2005). [41] T. Betz, J. Teipel, D. Koch, W. Hartig, J. Guck, J. Kas, and H. Giessen, Excitation beyond the monochromatic laser limit: Simultaneous 3-D confocal and multiphoton microscopy with a tapered fiber as white-light laser source, J. Biomed. Optics 10 (5), 054009 (2005). [42] F.Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Kas, Optical rheology of biological cells, Phys. Rev. Lett. 94 (9), 98103 (2005). [43] P. A. Janmey, S. Hvidt, J. Kas, D. Lerche, A. Maggs, E. Sackmann, M. Schliwa and T. P. Stossel, The mechanical properties of actin gels. Elastic modulus and filament motions., Journal of Biological Chemistry 269 (51), 32503-32513 (1994). [44] A. Behrischy, C. Dietrich, A. A. Noegel, M. Schleicher, and E. Sackmann, The Actin-Binding Protein Hisactophilin Binds in Vitro to Partially Charged Membranes and Mediates Actin Coupling to Membranes, Biochemistry 34, 15182-15190 (1995). [45] M. Tempel, G. Isenberg, and E. Sackmann, Temperature-induced sol-gel transition and microgel formation in α-actinin cross-linked actin networks: A rheological study, Phys. Rev. E 54, 1802 (1996). [46] F. G. Schmidt, F. Ziemann, and E. Sackmann, Shear field mapping in actin networks by using magnetic tweezers, European Biophysics Journal 24 5, 348-353 (1996). [47] R. Grimm, M. Barmann, W. Hackl, D. Typke, E. Sackmann, and W. Baumeister, Energy filtered electron tomography of ice-embedded actin and vesicles, Biophysical Journal 72 (1), 482-489 (1997). [48] B. Hinner, M. Tempel, E. Sackmann, K. Kroy, and E. Frey, Entanglement, Elasticity and Viscous Relaxation of Actin Solutions, Phys. Rev. Lett. 81, 2614 (1998). [49] Frank G. Schmidt, B. Hinner, and E. Sackmann, Microrheometry underestimates the values of the viscoelastic moduli in measurements on F-actin solutions compared to macrorheometry, Phys. Rev. E 61, 5646 (2000). [50] A. R. Bausch, U. Hellerer, M. Essler, M. Aepfelbacher, and E. Sackmann, Rapid Stiffening of Integrin Receptor-Actin Linkages in Endothelial Cells Stimulated with Thrombin: A Magnetic Bead Microrheology Study, Bio- physical Journal 80, 2649-2657 (2001). [51] L. Limozin and E. Sackmann, Polymorphism of Cross-Linked Actin Networks in Giant Vesicles, Phys. Rev. Lett. 89, 168103 (2002). [52] W. H. Roos, A. Roth, J. Konle, H. Presting, E. Sackmann, and J. P. Spatz, Freely Suspended Actin Cortex Models on Arrays of Microfabricated Pillars, Chem. Phys. Chem. 4 (8), 872-877 (2003). [53] M. Keller, R. Tharmann, M. A. Dichtl, A. R. Bausch, and E. Sackmann, Slow filament dynamics and viscoelasticity in entangled and active actin networks, Phil. Trans. Roy. Soc. A 361, 1805, (2003). [54] J. Uhde, M. Keller, E. Sackmann, A. Parmeggiani, and E. Frey, Internal Motility in Stiffening Actin-Myosin Networks, Phys. Rev. Lett. 93, 268101 (2004). [55] L. Limozin, A. Roth, and E. Sackmann, Microviscoelastic Moduli of Biomimetic Cell Envelops, Phys. Rev. Lett. 95 (17), 178101 (2005). [56] J. Uhde, W. Feneberg, N. Ter-Oganessian, E. Sackmann, and A. Boulbitch, Osmotic force controlled microrheometry of entangled actin networks, Phys. Rev. Lett. 94 (19), 198102 (2005). [57] M. A. Dichtl, E. Sackmann, Microrheometry of semiflexible actin networks through enforced single-filament reptation: Frictional coupling and heterogeneities in entangled networks, Proc. Natl Acad. Sci. USA 99 (10), 6533- 6538 (2002). [58] K. Yasuda, S. Komura, R. Okamoto, Dynamics of a membrane interacting with an active wall, Phys. Rev. E 93, 052407 (2016). [59] E. Kreyzig, Differential Geometry, (Dover Publications, 2013). [60] M. Deserno, Note of Fluid lipid membranes-a primer. [61] https://en.wikipedia.org/wiki/Actin. [62] G. M. Cooper, The Cell: A Molecular Approach (2nd edition), (Boston University, 2000). [63] https://www.mechanobio.info/topics/cytoskeleton-dynamics/ cytoskeleton/actin-filament/. [64] F. Julicher, K. Kruse, J. Prost, J-F Joanny, Active behavior of Cytoskeleton, Physics Reports 449, 3-28 (2007). [65] L. Blanchoin, R. Boujemaa-Paterski, C. Sykes, J. Plastino, Actin Dynamics, Architecture, and Mechanics in Cell Motility, APS Journals, 94, 1, 235-263 (2014) . [66] Udo Seifert, Dynamics of a bound membrane, Phys. Rev. E, 49, 3124 (1994). [67] U. Seifert, Configurations of fluid membranes and vesicles, Advances in Physics, 46, 13-137 (1997). [68] R. Feynman, R. B. Leighton and M. L. Sands, The Feynman Lectures on Physics, vol II, (Addison-Wesley Publishing Company, 1963). [69] U. Seifert and S. Langer, Viscous Modes of Fluid Bilayer Membranes, Eu- rophys. Lett. 23, 71 (1993). [70] M. Kraus and U. Seifert, Relaxation modes of an adhering bilayer membrane, J. Phys II France 4 (1994) 1117-1134. [71] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, (Springer- Verlag, New York, 1991). [72] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics, (Pergamon Press, 1980). [73] M. Doi, Soft Matter Physics, (Oxford University Press, 2013). [74] R. Zwanzig, Nonequilibrium Statistical Mechanics, (Oxford University Press, 2001). [75] A. G. Zilman and R. Granek, Membrane dynamics and structure factor, Chemical Physics 284, 195-204 (2002). [76] R. Granek, Membrane surrounded by viscoelastic continuous media: anomalous diffusion and linear response to force, Soft Matter 7, 5281-5289 (2011). [77] J. F. Joanny, K. Kruse, J. Prost, S. Ramaswamy, The actin cortex as an active wetting layer, Eur. Phys. J. E (2013) 36: 52. |