帳號:guest(13.58.72.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁珈郡
作者(外文):Liang, Chia-Chun
論文名稱(中文):細胞膜耦合細胞骨架之動力學
論文名稱(外文):Investigating dynamics of the cell membrane coupled to cytoskeleton
指導教授(中文):吳國安
好村滋行
指導教授(外文):Wu, Kuo-An
Komura, Shigeyuki
口試委員(中文):陳宣毅
田溶根
口試委員(外文):Chen, Hsuan-Yi
Jun, Yong-Gun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:104022520
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:72
中文關鍵詞:生物膜軟物質
外文關鍵詞:actincortexbiomembranesoftmatteractivematter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:616
  • 評分評分:*****
  • 下載下載:23
  • 收藏收藏:0
在生物細胞中,細胞膜通常會耦合到actin cortex (主要由一種細胞骨架—微絲
(actin filaments)—所組成)︒這將形成一種層狀結構並決定大部分細胞的運動︒
自從科學家在十九世紀發現了紅血球細胞膜上的震動現象 (flickering phenomena) 後,有些物理學家 (現在我們稱這些人為生物物理學家) 開始對細胞
的動力學產生興趣並且開始構築一些模型去解釋觀察到的現象︒在此論文中,我將提出一些理論模型去探討細胞膜耦合到actin cortex的動力學︒在我們最新
的模型中,我們考慮了肌凝蛋白 (myosin protein/motor) 會在actin cortex 產生收縮性的應力 (contractile stress),這些肌凝蛋白作用就是提供actin cortex一個力偶極子 (force dipole) 的分布 (distribution)︒我們發現肌凝蛋白的收縮性在長波長的時候對系統很重要,並且會使的細胞膜進入不平衡的狀態 (non-equilibrium states)︒此外,臨界波長 (crossover wavelength) 與系統中肌凝蛋白的根號濃度 (concentration) 倒數成正比︒從系統的特徵時間(characteristic time scale) 可以觀察到從純黏滯到肌凝蛋白的收縮性主導的區間 (from pure viscous to contractility-dominant
regimes)︒最後,我們也會討論這些臨界波長和各區間的物理意義︒

Keywords: actin cortex, biomembrane (生物膜), soft matter (軟物質), active matter
In a biological cell, the cell membrane is coupled to the actin cortex. This forms an outer layer that determines much of the mechanics of the cell. Since scientists discovered the flickering phenomena in red blood cells in the nineteenth century, biophysicists constructed models that were expected to explain the dynamics of cell membranes. In this thesis, I present theoretical models to investigate the dynamics of a membrane coupled to an actin cortex. The main feature of our lastest model is that the contractility provided by the myosin motors in the actin cortex is included. This provides a distribution of active force dipoles in the actin cortex. We found that the contractility from the myosin becomes significant in the long wavelength limit, bringing the membrane into non-equilibrium states. The crossover wavelength is proportional to the inverse square root of myosin concentration.
Also, the characteristic time scale for the cell membrane dynamics shows crossover from purely viscous to contractility-dominant regimes. Last but not the least, the physical meaning of the crossovers are discussed in details.

Keywords: actin cortex, biomembrane, soft matter, active matter.
1
1 Introduction 5
2 Background knowledges 9
2.1 Lipid bilayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Monge parametrization . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Free energy of a lipid bilayer . . . . . . . . . . . . . . . . . . 10
2.2 Actin cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Incompressibility condition for actin gel and fluid outside the membrane
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 A passive membrane embedded in a fluid above a static wall 14
3.1 Free energy, hydrodynamic equation, and boundary conditions . . . 14
3.2 Hydrodynamic decay rate . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Mean square displacement (MSD) . . . . . . . . . . . . . . . . . . . 20
4 Model I: a membrane coupled to a passive actin cortex 23
4.1 Free energy, hydrodynamic equations, and boundary conditions . . 23
4.2 Hydrodynamic decay rate . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Mean square displacement (MSD) . . . . . . . . . . . . . . . . . . . 31
5 Model II: a membrane coupled to a active actin cortex 37
5.1 Free energy, hydrodynamic equations, and boundary conditions . . 37
5.2 Hydrodynamic decay rate . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Mean Square Displacement (MSD) . . . . . . . . . . . . . . . . . . 49
3
6 Summary and future works 52
APPENDICES 54
A Fourier transform of membrane free energy 55
B Solving the velocity and pressure around a membrane 57
C The velocity and the pressure field in Model II 62
Bibliography 64
[1] R. Hooke, Micrographia: Or Some Physiological Descriptions of Minute Bod-
ies Made by Magnifying Glasses, with Observations and Inquiries Thereupon,
(Courier Dover Publications, 1665).
[2] https://en.wikipedia.org/wiki/Robert_Hooke.
[3] H. Fricke, The electrical capacity of suspensions with special reference to
blood, Journal of General Physiology 9, 137-152 (1925).
[4] E. Gorter and F. Grendel, On bimolecular layers of lipids on the chromocytes
of the blood, Journal of Experimental Medicine 41, 439-443 (1925).
[5] J. F. Danielli and H. Davson, A contribution to the theory of permeability
of thin films, Journal of Cellular and Comparative Physiology 5. 495-508
(1935).
[6] F. S. Sjostrand, E. Andersson-Cedergren, and M. M. Dewey, The ultrastructure
of the intercalated discs of frog, mouse and guinea pig cardiac muscle,
Journal of Ultrastructure Research 1, 271-287 (1958).
[7] J. D. Robertson, The molecular structure and contact relationships of cell
membranes, Progress Biophysics and Biophysical Chemistry 10, 343-418
(1960).
[8] J. D. Robertson, The ultrastructure of cell membranes and their derivatives,
Biochemical Society Symposia 16, 3-43 (1959).
[9] https://en.wikipedia.org/wiki/History_of_cell_membrane_theory.
[10] S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of
cell membranes, Science 175, 720-731 (1972).
[11] https://en.wikipedia.org/wiki/Fluid_mosaic_model.
[12] T. Browicz, Further observation of motion phenomena on red blood cells in
pathological states, Zbl. Med. Wiss. 28, 625-627 (1890).
[13] P. G. de Genes and J. Badoz, Fragile Objects: Soft Matter, Hard Science,
and the Thrill of Discovery, (Springer Science, 1996).
[14] F. Brochard, and J. F. Lennon, Frequency spectrum of the flicker phenomenon
in erythrocytes, Journal de Physique 36 (11),1035-1047 (1975).
[15] S. Tuvia, A. Almagor, A. Bitler, S. Levin, R. Korenstein, and S. Yedgar, Cell
membrane fluctuation are regulated by medium macroviscosity: evidence for
a metabolic driving force, Proc. Natl. Acad. Sci. USA 94, 5045-5049 (1997).
[16] T. Betz, M. Lenz, J. -F. Joanny, and C. Sykes, ATP-dependent mechanics
of red blood cells, Proc. Natl. Acad. Sci. USA 106, 15320-15325 (2009)
[17] Y. Park et al, Metabolic remodeling of the human red blood cell membrane,
Proc. Natl. Acad. Sci. USA 107, 1289-1294 (2010).
[18] R. Rodriguez-Garcia et al, Direct cytoskeleton forces cause membrane softening
in red blood cells, Biophys. J 108, 2794-2806 (2015).
[19] R. I. Weed, P. L. Lacelle, and E. Merrill, Metabolic dependence of red blood
cell deformability, J. Clin. Invest. 48, 795-809 (1969).
[20] A. Chabanal, W. Reinhart, and S. Chein, Increased resistance to membrane
deformation of shape-transformed human red blood cells, Blood 69, 739-743
(1987).
[21] D. E. Discher, N. Mohandas, and E. A. Evans, Molecular maps of red cells
deformation: hidden elasticity and in situ connectivity, Science 266, 1032-
1035 (1994).
[22] M. Nakao, T. Nakao, and S. Yamazoe, Adenosine triphosphate and maintenance
of shape of the human red cells, Nature 187, 945-946 (1960).
[23] M. P. Sheetz, On the mechanism of ATP-induced shape changes in human
erythrocyte membranes. I. The role of spectrin complex, J. Cell. Biol. 73,
638-646 (1977).
[24] H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. -F.
Joanny, G. Gompper, and T. Betz, Equilibrium physics breakdown reveals
the active nature of red blood cell flickering, Nature Physics 12, 513-519
(2016).
[25] J. Prost and R. Bruinsma, Shape fluctuations of active membranes, Euro-
phys. Lett. 33 (4), 321-326 (1996).
[26] Jerusalem Winter School, edited by D. Nelson and T. Piran, Statistical Me-
chanics of Membranes and Surfaces, (World Scientific, 1989).
[27] S. Ramaswamy, J. Toner, and J. Prost, Nonequilibrium Fluctuations, Traveling
Waves, and Instabilities in Active Membranes, Phys. Rev. Lett. 84
(15), 3494 (2000).
[28] J.-B. Manneville, P. Bassereau, S. Ramaswamy, and J. Prost, Active membrane
fluctuations studied by micropipet aspiration, Phys. Rev. E 64,
021908 (2001).
[29] Hsuan-Yi Chen, The internal states of active inclusions and the dynamics of
an active membrane, Phys. Rev. Lett. 92 (16), 168101 (2004).
[30] Hsuan-Yi Chen, and A. S. Mikhailov, Dynamics of biomembranes with active
multiple-state inclusions, Phys. Rev. E 81, 031901 (2010).
[31] https://en.wikipedia.org/wiki/Cytoskeleton.
[32] K. Kruse, J. F. Joanny, F. Julicher, J. Prost and K. Sekimoto, Asters, Vortices,
and Rotating Spirals in Active Gels of Polar Filaments, Phys. Rev.
Lett. 93, 0999902 (2004).
[33] K. Kruse, J. F. Joanny, F. Julicher, J. Prost and K. Sekimoto, Generic theory
of active polar gels: a paradigm for cytoskeletal dynamics, Eur. Phys. J. E.
16, 5-16 (2005).
[34] F. Julicher, K. Kruse, J. Prost, and J. F. Joanny, Active behavior of the
Cytoskeleton, Physics Reports 449, 3-28 (2007).
[35] M. C. Marchetti, J. F. Joanny, S. Ramaswamy,T. B. Liverpool, J. Prost,
Madan Rao, and R. Aditi Simha, Hydrodynamics of soft active matter, Rev.
Mod. Phys., 85, 1143 (2013).
[36] J. Prost, F. Julicher and J. F. Joanny, Active gel physics, Nature physics
11, 111-117 (2015).
[37] R. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Kas, Scanning probebased,
frequency-dependent microrheology of polymer gels and biological
cells, Phys. Rev. Lett., 85 (4), 880-883 (2000).
[38] D. Humphrey, C. Duggan, D. Saha, D. Smith, and J. Kas, Active fluidization
of polymer networks through molecular motors, Nature 416, 413-416 (2002).
[39] R. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Kas, Quantitative analysis
of the viscoelastic properties of thin regions of fibroblasts using atomic force
microscopy, Biophys. J. 86, 1777-1793 (2004).
[40] J. Guck, H. Erickson, R. Ananthakrishnan, D. Mitchell, M. Romeyke, S.
Schinkinger, F. Wottawah, B. Lincoln, J. Kas, S. Ulvick, and C. Bilby,
Optical Deformability as Inherent Cell Marker for Malignant Transformation
and Metastatic Competence, Biophys. J. 88, 5 (2005).
[41] T. Betz, J. Teipel, D. Koch, W. Hartig, J. Guck, J. Kas, and H. Giessen,
Excitation beyond the monochromatic laser limit: Simultaneous 3-D confocal
and multiphoton microscopy with a tapered fiber as white-light laser
source, J. Biomed. Optics 10 (5), 054009 (2005).
[42] F.Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke,
J. Guck, and J. Kas, Optical rheology of biological cells, Phys. Rev. Lett. 94
(9), 98103 (2005).
[43] P. A. Janmey, S. Hvidt, J. Kas, D. Lerche, A. Maggs, E. Sackmann, M.
Schliwa and T. P. Stossel, The mechanical properties of actin gels. Elastic
modulus and filament motions., Journal of Biological Chemistry 269 (51),
32503-32513 (1994).
[44] A. Behrischy, C. Dietrich, A. A. Noegel, M. Schleicher, and E. Sackmann,
The Actin-Binding Protein Hisactophilin Binds in Vitro to Partially Charged
Membranes and Mediates Actin Coupling to Membranes, Biochemistry 34,
15182-15190 (1995).
[45] M. Tempel, G. Isenberg, and E. Sackmann, Temperature-induced sol-gel
transition and microgel formation in α-actinin cross-linked actin networks:
A rheological study, Phys. Rev. E 54, 1802 (1996).
[46] F. G. Schmidt, F. Ziemann, and E. Sackmann, Shear field mapping in actin
networks by using magnetic tweezers, European Biophysics Journal 24 5,
348-353 (1996).
[47] R. Grimm, M. Barmann, W. Hackl, D. Typke, E. Sackmann, and W.
Baumeister, Energy filtered electron tomography of ice-embedded actin and
vesicles, Biophysical Journal 72 (1), 482-489 (1997).
[48] B. Hinner, M. Tempel, E. Sackmann, K. Kroy, and E. Frey, Entanglement,
Elasticity and Viscous Relaxation of Actin Solutions, Phys. Rev. Lett. 81,
2614 (1998).
[49] Frank G. Schmidt, B. Hinner, and E. Sackmann, Microrheometry underestimates
the values of the viscoelastic moduli in measurements on F-actin
solutions compared to macrorheometry, Phys. Rev. E 61, 5646 (2000).
[50] A. R. Bausch, U. Hellerer, M. Essler, M. Aepfelbacher, and E. Sackmann,
Rapid Stiffening of Integrin Receptor-Actin Linkages in Endothelial Cells
Stimulated with Thrombin: A Magnetic Bead Microrheology Study, Bio-
physical Journal 80, 2649-2657 (2001).
[51] L. Limozin and E. Sackmann, Polymorphism of Cross-Linked Actin Networks
in Giant Vesicles, Phys. Rev. Lett. 89, 168103 (2002).
[52] W. H. Roos, A. Roth, J. Konle, H. Presting, E. Sackmann, and J. P. Spatz,
Freely Suspended Actin Cortex Models on Arrays of Microfabricated Pillars,
Chem. Phys. Chem. 4 (8), 872-877 (2003).
[53] M. Keller, R. Tharmann, M. A. Dichtl, A. R. Bausch, and E. Sackmann,
Slow filament dynamics and viscoelasticity in entangled and active actin
networks, Phil. Trans. Roy. Soc. A 361, 1805, (2003).
[54] J. Uhde, M. Keller, E. Sackmann, A. Parmeggiani, and E. Frey, Internal
Motility in Stiffening Actin-Myosin Networks, Phys. Rev. Lett. 93, 268101
(2004).
[55] L. Limozin, A. Roth, and E. Sackmann, Microviscoelastic Moduli of
Biomimetic Cell Envelops, Phys. Rev. Lett. 95 (17), 178101 (2005).
[56] J. Uhde, W. Feneberg, N. Ter-Oganessian, E. Sackmann, and A. Boulbitch,
Osmotic force controlled microrheometry of entangled actin networks, Phys.
Rev. Lett. 94 (19), 198102 (2005).
[57] M. A. Dichtl, E. Sackmann, Microrheometry of semiflexible actin networks
through enforced single-filament reptation: Frictional coupling and heterogeneities
in entangled networks, Proc. Natl Acad. Sci. USA 99 (10), 6533-
6538 (2002).
[58] K. Yasuda, S. Komura, R. Okamoto, Dynamics of a membrane interacting
with an active wall, Phys. Rev. E 93, 052407 (2016).
[59] E. Kreyzig, Differential Geometry, (Dover Publications, 2013).
[60] M. Deserno, Note of Fluid lipid membranes-a primer.
[61] https://en.wikipedia.org/wiki/Actin.
[62] G. M. Cooper, The Cell: A Molecular Approach (2nd edition), (Boston
University, 2000).
[63] https://www.mechanobio.info/topics/cytoskeleton-dynamics/
cytoskeleton/actin-filament/.
[64] F. Julicher, K. Kruse, J. Prost, J-F Joanny, Active behavior of Cytoskeleton,
Physics Reports 449, 3-28 (2007).
[65] L. Blanchoin, R. Boujemaa-Paterski, C. Sykes, J. Plastino, Actin Dynamics,
Architecture, and Mechanics in Cell Motility, APS Journals, 94, 1, 235-263
(2014) .
[66] Udo Seifert, Dynamics of a bound membrane, Phys. Rev. E, 49, 3124 (1994).
[67] U. Seifert, Configurations of fluid membranes and vesicles, Advances in
Physics, 46, 13-137 (1997).
[68] R. Feynman, R. B. Leighton and M. L. Sands, The Feynman Lectures on
Physics, vol II, (Addison-Wesley Publishing Company, 1963).
[69] U. Seifert and S. Langer, Viscous Modes of Fluid Bilayer Membranes, Eu-
rophys. Lett. 23, 71 (1993).
[70] M. Kraus and U. Seifert, Relaxation modes of an adhering bilayer membrane,
J. Phys II France 4 (1994) 1117-1134.
[71] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, (Springer-
Verlag, New York, 1991).
[72] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics, (Pergamon
Press, 1980).
[73] M. Doi, Soft Matter Physics, (Oxford University Press, 2013).
[74] R. Zwanzig, Nonequilibrium Statistical Mechanics, (Oxford University Press,
2001).
[75] A. G. Zilman and R. Granek, Membrane dynamics and structure factor,
Chemical Physics 284, 195-204 (2002).
[76] R. Granek, Membrane surrounded by viscoelastic continuous media: anomalous
diffusion and linear response to force, Soft Matter 7, 5281-5289 (2011).
[77] J. F. Joanny, K. Kruse, J. Prost, S. Ramaswamy, The actin cortex as an
active wetting layer, Eur. Phys. J. E (2013) 36: 52.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *