|
1. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424 (6950), 824-830. 2. Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X., Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects. Science 2007, 315 (5819), 1686-1686. 3. Lu, Y.-J.; Wang, C.-Y.; Kim, J.; Chen, H.-Y.; Lu, M.-Y.; Chen, Y.-C.; Chang, W.-H.; Chen, L.-J.; Stockman, M. I.; Shih, C.-K.; Gwo, S., All-Color Plasmonic Nanolasers with Ultralow Thresholds: Autotuning Mechanism for Single-Mode Lasing. Nano Letters 2014, 14 (8), 4381-4388. 4. Yu, N.; Aieta, F.; Genevet, P.; Kats, M. A.; Gaburro, Z.; Capasso, F., A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Letters 2012, 12 (12), 6328-6333. 5. Chen, H. Y.; Lin, M. H.; Wang, C. Y.; Chang, Y. M.; Gwo, S., Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. Journal of the American Chemical Society 2015, 137 (42), 13698-13705. 6. Mejía-Salazar, J. R.; Oliveira, O. N., Plasmonic Biosensing. Chemical Reviews 2018, 118 (20), 10617-10625. 7. Lal, S.; Clare, S. E.; Halas, N. J., Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact. Accounts Chem Res 2008, 41 (12), 1842-1851. 8. Tagliabue, G.; DuChene, J. S.; Habib, A.; Sundararaman, R.; Atwater, H. A., Hot-Hole versus Hot-Electron Transport at Cu/GaN Heterojunction Interfaces. ACS Nano 2020, 14 (5), 5788-5797. 9. Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J., Photodetection with Active Optical Antennas. Science 2011, 332 (6030), 702-704. 10. DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W.-H.; Atwater, H. A., Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. Nano Letters 2018, 18 (4), 2545-2550. 11. Levine, I.; Yoffe, A.; Salomon, A.; Li, W. J.; Feldman, Y.; Vilan, A., Epitaxial two dimensional aluminum films on silicon (111) by ultra-fast thermal deposition. J Appl Phys 2012, 111 (12). 12. Park, J. H.; Ambwani, P.; Manno, M.; Lindquist, N. C.; Nagpal, P.; Oh, S.-H.; Leighton, C.; Norris, D. J., Single-Crystalline Silver Films for Plasmonics. Advanced Materials 2012, 24 (29), 3988-3992. 13. Lin, S. W.; Wu, J. Y.; Lin, S. D.; Lo, M. C.; Lin, M. H.; Liang, C. T., Characterization of Single-Crystalline Aluminum Thin Film on (100) GaAs Substrate. Japanese Journal of Applied Physics 2013, 52 (4). 14. Wu, Y.; Zhang, C.; Estakhri, N. M.; Zhao, Y.; Kim, J.; Zhang, M.; Liu, X.-X.; Pribil, G. K.; Alù, A.; Shih, C.-K.; Li, X., Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver. Advanced Materials 2014, 26 (35), 6054-6055. 15. Cheng, F.; Su, P.-H.; Choi, J.; Gwo, S.; Li, X.; Shih, C.-K., Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties. ACS Nano 2016. 16. Zhu, Y. N.; Wang, W. L.; Yang, W. J.; Wang, H. Y.; Gao, J. N.; Li, G. Q., Nucleation mechanism for epitaxial growth of aluminum films on sapphire substrates by molecular beam epitaxy. Mat Sci Semicon Proc 2016, 54, 70-76. 17. Dutta, S.; Biser, J. M.; Vinci, R. P.; Chan, H. M., Solid State Annealing Behavior of Aluminum Thin Films on Sapphire. J Am Ceram Soc 2012, 95 (2), 823-830. 18. Cheng, C. W.; Liao, Y. J.; Liu, C. Y.; Wu, B. H.; Raja, S. S.; Wang, C. Y.; Li, X. Q.; Shih, C. K.; Chen, L. J.; Gwo, S., Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions. Acs Photonics 2018, 5 (7), 2624-2630. 19. Tsai, Y. H.; Wu, Y. H.; Ting, Y. Y.; Wu, C. C.; Wu, J. S.; Lin, S. D., Nano- to atomic-scale epitaxial aluminum films on Si substrate grown by molecular beam epitaxy. Aip Adv 2019, 9 (10). 20. Cheng, F.; Lee, C.-J.; Choi, J.; Wang, C.-Y.; Zhang, Q.; Zhang, H.; Gwo, S.; Chang, W.-H.; Li, X.; Shih, C.-K., Epitaxial Growth of Optically Thick, Single Crystalline Silver Films for Plasmonics. Acs Appl Mater Inter 2019, 11 (3), 3189-3195. 21. Law, K. M.; Budhathoki, S.; Ranjit, S.; Martin, F.; Thind, A. S.; Mishra, R.; Hauser, A. J., Demonstration of nearly pinhole-free epitaxial aluminum thin films by sputter beam epitaxy. Scientific Reports 2020, 10 (1), 18357. 22. Zhang, K. D.; Xia, S. J.; Li, C.; Pan, J. H.; Ding, Y. F.; Lu, M. H.; Lu, H.; Chen, Y. F., Interface Engineering and Epitaxial Growth of Single-Crystalline Aluminum Films on Semiconductors. Adv Mater Interfaces 2020. 23. Wang, C.-Y.; Chen, H.-Y.; Sun, L.; Chen, W.-L.; Chang, Y.-M.; Ahn, H.; Li, X.; Gwo, S., Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nature Communications 2015, 6 (1), 7734. 24. Jacobson, C. R.; Solti, D.; Renard, D.; Yuan, L.; Lou, M.; Halas, N. J., Shining Light on Aluminum Nanoparticle Synthesis. Accounts Chem Res 2020, 53 (9), 2020-2030. 25. Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers, M.; Hofer, F.; Aussenegg, F. R.; Krenn, J. R., Silver Nanowires as Surface Plasmon Resonators. Physical Review Letters 2005, 95 (25), 257403. 26. Allione, M.; Temnov, V. V.; Fedutik, Y.; Woggon, U.; Artemyev, M. V., Surface Plasmon Mediated Interference Phenomena in Low-Q Silver Nanowire Cavities. Nano Letters 2008, 8 (1), 31-35. 27. Huang, J.-S.; Callegari, V.; Geisler, P.; Brüning, C.; Kern, J.; Prangsma, J. C.; Wu, X.; Feichtner, T.; Ziegler, J.; Weinmann, P.; Kamp, M.; Forchel, A.; Biagioni, P.; Sennhauser, U.; Hecht, B., Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications 2010, 1 (1), 150. 28. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011, 111 (6), 3669-3712. 29. Meziani, M. J.; Bunker, C. E.; Lu, F.; Li, H.; Wang, W.; Guliants, E. A.; Quinn, R. A.; Sun, Y.-P., Formation and Properties of Stabilized Aluminum Nanoparticles. Acs Appl Mater Inter 2009, 1 (3), 703-709. 30. McClain, M. J.; Schlather, A. E.; Ringe, E.; King, N. S.; Liu, L.; Manjavacas, A.; Knight, M. W.; Kumar, I.; Whitmire, K. H.; Everitt, H. O.; Nordlander, P.; Halas, N. J., Aluminum Nanocrystals. Nano Letters 2015, 15 (4), 2751-2755. 31. Zhou, L.; Zhang, C.; McClain, M. J.; Manjavacas, A.; Krauter, C. M.; Tian, S.; Berg, F.; Everitt, H. O.; Carter, E. A.; Nordlander, P.; Halas, N. J., Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation. Nano Letters 2016, 16 (2), 1478-1484. 32. Tian, S.; Neumann, O.; McClain, M. J.; Yang, X.; Zhou, L.; Zhang, C.; Nordlander, P.; Halas, N. J., Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Letters 2017, 17 (8), 5071-5077. 33. Blaber, M. G.; Arnold, M. D.; Ford, M. J., A review of the optical properties of alloys and intermetallics for plasmonics. Journal of Physics: Condensed Matter 2010, 22 (14), 143201. 34. Zwilling, M.; Schmidt, P. C.; Weiss, A., Experimental and theoretical studies of optical properties on alloys of the intermetallic systems Li2Ag2−xInxand Li2Cd2−xInx. Applied physics 1978, 16 (3), 255-269. 35. Wang, Y.; Yu, J.; Mao, Y.-F.; Chen, J.; Wang, S.; Chen, H.-Z.; Zhang, Y.; Wang, S.-Y.; Chen, X.; Li, T.; Zhou, L.; Ma, R.-M.; Zhu, S.; Cai, W.; Zhu, J., Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 2020, 581 (7809), 401-405. 36. Guo, W. P.; Mishra, R.; Cheng, C. W.; Wu, B. H.; Chen, L. J.; Lin, M. T.; Gwo, S., Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold. Acs Photonics 2019, 6 (8), 1848-1854. 37. Naik, G. V.; Schroeder, J. L.; Ni, X.; Kildishev, A. V.; Sands, T. D.; Boltasseva, A., Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2012, 2 (4), 478-489. 38. Patsalas, P.; Logothetidis, S., Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films. J Appl Phys 2001, 90 (9), 4725-4734. 39. Chen, N. C.; Lien, W. C.; Liu, C. R.; Huang, Y. L.; Lin, Y. R.; Chou, C.; Chang, S. Y.; Ho, C. W., Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry. J Appl Phys 2011, 109 (4), 043104-043104-7. 40. Naik, G. V.; Saha, B.; Liu, J.; Saber, S. M.; Stach, E. A.; Irudayaraj, J. M. K.; Sands, T. D.; Shalaev, V. M.; Boltasseva, A., Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proceedings of the National Academy of Sciences 2014, 111 (21), 7546. 41. Shah, D.; Reddy, H.; Kinsey, N.; Shalaev, V. M.; Boltasseva, A., Optical Properties of Plasmonic Ultrathin TiN Films. Advanced Optical Materials 2017, 5 (13), 1700065. 42. Murai, S.; Fujita, K.; Daido, Y.; Yasuhara, R.; Kamakura, R.; Tanaka, K., Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films. Opt. Express 2016, 24 (2), 1143-1153. 43. Langereis, E.; Heil, S. B. S.; Sanden, M. C. M. v. d.; Kessels, W. M. M., In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma-assisted atomic layer deposition. J Appl Phys 2006, 100 (2), 023534. 44. Catellani, A.; Calzolari, A., Plasmonic properties of refractory titanium nitride. Physical Review B 2017, 95 (11), 115145. 45. Vertchenko, L.; Leandro, L.; Shkondin, E.; Takayama, O.; Bondarev, I. V.; Akopian, N.; Lavrinenko, A. V., Cryogenic characterization of titanium nitride thin films. Opt Mater Express 2019, 9 (5), 2117-2127. 46. Karl, P.; Mennle, S.; Ubl, M.; Flad, P.; Yang, J.-W.; Peng, T.-Y.; Lu, Y.-J.; Giessen, H., Niobium nitride plasmonic perfect absorbers for tunable infrared superconducting nanowire photodetection. Opt. Express 2021, 29 (11), 17087-17096. 47. Karl, P.; Ubl, M.; Hentschel, M.; Flad, P.; Chiao, Z.-Y.; Yang, J.-W.; Lu, Y.-J.; Giessen, H., Optical properties of niobium nitride plasmonic nanoantennas for the near- and mid-infrared spectral range. Opt Mater Express 2020, 10 (10), 2597-2606. 48. Michelotti, F.; Dominici, L.; Descrovi, E.; Danz, N.; Menchini, F., Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm. Opt. Lett. 2009, 34 (6), 839-841. 49. Rhodes, C.; Franzen, S.; Maria, J.-P.; Losego, M.; Leonard, D. N.; Laughlin, B.; Duscher, G.; Weibel, S., Surface plasmon resonance in conducting metal oxides. J Appl Phys 2006, 100 (5), 054905. 50. Franzen, S., Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold. The Journal of Physical Chemistry C 2008, 112 (15), 6027-6032. 51. Kim, H.; Piqué, A.; Horwitz, J. S.; Murata, H.; Kafafi, Z. H.; Gilmore, C. M.; Chrisey, D. B., Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films 2000, 377-378, 798-802. 52. Agura, H.; Suzuki, A.; Matsushita, T.; Aoki, T.; Okuda, M., Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 2003, 445 (2), 263-267. 53. Kim, K. H.; Park, K. C.; Ma, D. Y., Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J Appl Phys 1997, 81 (12), 7764-7772. 54. Hiramatsu, M.; Imaeda, K.; Horio, N.; Nawata, M., Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS 1998, 16 (2), 669-673. 55. Singh, A. V.; Mehra, R. M.; Buthrath, N.; Wakahara, A.; Yoshida, A., Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient. J Appl Phys 2001, 90 (11), 5661-5665. 56. Yoon, M. H.; Lee, S. H.; Park, H. L.; Kim, H. K.; Jang, M. S., Solid solubility limits of Ga and Al in ZnO. JOURNAL OF MATERIALS SCIENCE LETTERS 2002, 21 (21), 1703-1704. 57. Lu, J. G.; Ye, Z. Z.; Zeng, Y. J.; Zhu, L. P.; Wang, L.; Yuan, J.; Zhao, B. H.; Liang, Q. L., Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions. J Appl Phys 2006, 100 (7). 58. Hanson, G. W., Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 2008, 103 (6), 064302. 59. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. SCIENCE 2004, 306 (5696), 666-669. 60. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. NATURE 2005, 438 (7065), 197-200. 61. Geim, A. K.; Novoselov, K. S., The rise of graphene. NATURE MATERIALS 2007, 6 (3), 183-191. 62. Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Seyller, T., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. NATURE MATERIALS 2009, 8 (3), 203-207. 63. Ryzhii, V.; Satou, A.; Otsuji, T., Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J Appl Phys 2007, 101 (2). 64. Rana, F., Graphene terahertz plasmon oscillators. Ieee T Nanotechnol 2008, 7 (1), 91-99. 65. Boltasseva, A.; Atwater, H. A., Low-Loss Plasmonic Metamaterials. Science 2011, 331 (6015), 290-291. 66. Johnson, P. B.; Christy, R. W., Optical Constants of the Noble Metals. Physical Review B 1972, 6 (12), 4370-4379. 67. Ehrenreich, H.; Philipp, H. R.; Segall, B., Optical Properties of Aluminum. Physical Review 1963, 132 (5), 1918-1928. 68. Ehrenreich, H.; Philipp, H. R., Optical Properties of Ag and Cu. Physical Review 1962, 128 (4), 1622-1629. 69. Kaxiras, E.; Joannopoulos, J. D., Quantum Theory of Materials. Cambridge University Press: Cambridge, 2019. 70. Søndergård, E.; Kerjan, O.; Barreteau, C.; Jupille, J., Structure and growth of titanium buffer layers on Al2O3(0001). Surf Sci 2004, 559, 131-140. 71. Wooten, F., Chapter 5 - INTERBAND TRANSITIONS. In Optical Properties of Solids, Wooten, F., Ed. Academic Press: 1972; pp 108-172. 72. Rakic, A. D.; Djurisic, A. B.; Elazar, J. M.; Majewski, M. L., Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics 1998, 37 (22), 5271-5283. 73. Cooper, B. R.; Ehrenreich, H.; Philipp, H. R., Optical Properties of Noble Metals. II. Physical Review 1965, 138 (2A), A494-A507. 74. Lewis, P. E.; Lee, P. M., Band Structure and Electronic Properties of Silver. Physical Review 1968, 175 (3), 795-804. 75. Taft, E. A.; Philipp, H. R., Optical Constants of Silver. Physical Review 1961, 121 (4), 1100-1103. 76. Segall, B., Fermi Surface and Energy Bands of Copper. Physical Review 1962, 125 (1), 109-122. 77. Roberts, S., Optical Properties of Copper. Physical Review 1960, 118 (6), 1509-1518. 78. Segall, B., Energy Bands of Aluminum. Physical Review 1961, 124 (6), 1797-1806. 79. Dold, B.; Mecke, R., OPTISCHE EIGENSCHAFTEN VON EDELMETALLEN UBERGANGSMETALLEN UND DEREN LEGIERUNGEN IM INFRAROT .1. Optik 1965, 22 (6), 435-&. 80. Thèye, M.-L., Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films. Physical Review B 1970, 2 (8), 3060-3078. 81. Winsemius, P.; Lengkeek, H. P.; Van Kampen, F. F., Structure dependence of the optical properties of Cu, Ag and Au. Physica B+C 1975, 79 (6), 529-546. 82. Leveque, G.; Olson, C. G.; Lynch, D. W., Reflectance spectra and dielectric functions for Ag in the region of interband transitions. Physical Review B 1983, 27 (8), 4654-4660. 83. Hagemann, H. J.; Gudat, W.; Kunz, C., Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 1975, 65 (6), 742-744. 84. Ordal, M. A.; Bell, R. J.; Alexander, R. W.; Long, L. L.; Querry, M. R., Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics 1985, 24 (24), 4493-4499. 85. Nash, D. J.; Sambles, J. R., Surface Plasmon-polariton Study of the Optical Dielectric Function of Copper. J Mod Optic 1995, 42 (8), 1639-1647. 86. Rakić, A. D., Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Applied Optics 1995, 34 (22), 4755-4767. 87. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films. Physical Review 1957, 106 (5), 874-881. 88. Choi, J. H.; Cheng, F.; Cleary, J. W.; Sun, L. Y.; Dass, C. K.; Hendrickson, J. R.; Wang, C. Y.; Gwo, S.; Shih, C. K.; Li, X. Q., Optical dielectric constants of single crystalline silver films in the long wavelength range. Opt Mater Express 2020, 10 (2), 693-703. 89. Wang, C. Y.; Chen, H. Y.; Sun, L. Y.; Chen, W. L.; Chang, Y. M.; Ahn, H.; Li, X. Q.; Gwo, S., Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nature Communications 2015, 6. 90. Nagpal, P.; Lindquist, N. C.; Oh, S.-H.; Norris, D. J., Ultrasmooth Patterned Metals for Plasmonics and Metamaterials. Science 2009, 325 (5940), 594. 91. Cheng, C.-W.; Raja, S. S.; Chang, C.-W.; Zhang, X.-Q.; Liu, P.-Y.; Lee, Y.-H.; Shih, C.-K.; Gwo, S., Epitaxial aluminum plasmonics covering full visible spectrum. Nanophotonics-Berlin 2021, 10 (1), 627-637. 92. Raja, S. S.; Cheng, C.-W.; Gwo, S., Low-loss aluminum epitaxial film for scalable and sustainable plasmonics: direct comparison with silver epitaxial film. Nanoscale 2020, 12 (46), 23809-23816. 93. Chang, C.-W.; Lin, F.-C.; Chiu, C.-Y.; Su, C.-Y.; Huang, J.-S.; Perng, T.-P.; Yen, T.-J., HNO3-Assisted Polyol Synthesis of Ultralarge Single-Crystalline Ag Microplates and Their Far Propagation Length of Surface Plasmon Polariton. Acs Appl Mater Inter 2014, 6 (14), 11791-11798. 94. Baburin, A. S.; Kalmykov, A. S.; Kirtaev, R. V.; Negrov, D. V.; Moskalev, D. O.; Ryzhikov, I. A.; Melentiev, P. N.; Rodionov, I. A.; Balykin, V. I., Toward a theoretically limited SPP propagation length above two hundred microns on an ultra-smooth silver surface [Invited]. Opt Mater Express 2018, 8 (11), 3254-3261. 95. Sun, L. Y.; Zhang, C. D.; Wang, C. Y.; Su, P. H.; Zhang, M.; Gwo, S.; Shih, C. K.; Li, X. Q.; Wu, Y. W., Enhancement of Plasmonic Performance in Epitaxial Silver at Low Temperature. Scientific Reports 2017, 7. 96. Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X., Plasmon lasers at deep subwavelength scale. Nature 2009, 461 (7264), 629-632. 97. Oulton, R. F.; Sorger, V. J.; Genov, D. A.; Pile, D. F. P.; Zhang, X., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photon 2008, 2 (8), 496-500. 98. Lu, Y.-J.; Kim, J.; Chen, H.-Y.; Wu, C.; Dabidian, N.; Sanders, C. E.; Wang, C.-Y.; Lu, M.-Y.; Li, B.-H.; Qiu, X.; Chang, W.-H.; Chen, L.-J.; Shvets, G.; Shih, C.-K.; Gwo, S., Plasmonic Nanolaser Using Epitaxially Grown Silver Film. Science 2012, 337 (6093), 450-453. 99. Zhang, Q.; Li, G.; Liu, X.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q., A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat Commun 2014, 5. 100. Sidiropoulos, T. P. H.; Roder, R.; Geburt, S.; Hess, O.; Maier, S. A.; Ronning, C.; Oulton, R. F., Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat Phys 2014, 10 (11), 870-876. 101. Chou, Y.-H.; Chou, B.-T.; Chiang, C.-K.; Lai, Y.-Y.; Yang, C.-T.; Li, H.; Lin, T.-R.; Lin, C.-C.; Kuo, H.-C.; Wang, S.-C.; Lu, T.-C., Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers. ACS Nano 2015, 9 (4), 3978-3983. 102. Chou, Y.-H.; Wu, Y.-M.; Hong, K.-B.; Chou, B.-T.; Shih, J.-H.; Chung, Y.-C.; Chen, P.-Y.; Lin, T.-R.; Lin, C.-C.; Lin, S.-D.; Lu, T.-C., High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum. Nano Letters 2016, 16 (5), 3179-3186. 103. Ma, R.-M.; Oulton, R. F.; Sorger, V. J.; Bartal, G.; Zhang, X., Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Materials 2011, 10 (2), 110-113. 104. Ho, J.; Tatebayashi, J.; Sergent, S.; Fong, C. F.; Iwamoto, S.; Arakawa, Y., Low-Threshold near-Infrared GaAs–AlGaAs Core–Shell Nanowire Plasmon Laser. ACS Photonics 2015, 2 (1), 165-171. 105. Liao, Y. J.; Cheng, C. W.; Wu, B. H.; Wang, C. Y.; Chen, C. Y.; Gwo, S.; Chen, L. J., Low threshold room-temperature UV surface plasmon polariton lasers with ZnO nanowires on single-crystal aluminum films with Al2O3 interlayers. Rsc Adv 2019, 9 (24), 13600-13607. 106. Agarwal, A.; Tien, W. Y.; Huang, Y. S.; Mishra, R.; Cheng, C. W.; Gwo, S.; Lu, M. Y.; Chen, L. J., ZnO Nanowires on Single-Crystalline Aluminum Film Coupled with an Insulating WO3 Interlayer Manifesting Low Threshold SPP Laser Operation. Nanomaterials-Basel 2020, 10 (9). 107. Maniyara, R. A.; Rodrigo, D.; Yu, R.; Canet-Ferrer, J.; Ghosh, D. S.; Yongsunthon, R.; Baker, D. E.; Rezikyan, A.; García de Abajo, F. J.; Pruneri, V., Tunable plasmons in ultrathin metal films. Nature Photonics 2019, 13 (5), 328-333. 108. Abd El-Fattah, Z. M.; Mkhitaryan, V.; Brede, J.; Fernández, L.; Li, C.; Guo, Q.; Ghosh, A.; Echarri, A. R.; Naveh, D.; Xia, F.; Ortega, J. E.; García de Abajo, F. J., Plasmonics in Atomically Thin Crystalline Silver Films. ACS Nano 2019, 13 (7), 7771-7779. 109. Moreno, E.; Rodrigo, S. G.; Bozhevolnyi, S. I.; Martín-Moreno, L.; García-Vidal, F. J., Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons. Physical Review Letters 2008, 100 (2), 023901. 110. Moreno, E.; Garcia-Vidal, F. J.; Rodrigo, S. G.; Martin-Moreno, L.; Bozhevolnyi, S. I., Channel plasmon-polaritons: modal shape, dispersion, and losses. Opt. Lett. 2006, 31 (23), 3447-3449. 111. Shi, J. W.; Liang, W. Y.; Raja, S. S.; Sang, Y. G.; Zhang, X. Q.; Chen, C. A.; Wang, Y. R.; Yang, X. Y.; Lee, Y. H.; Ahn, H.; Gwo, S., Plasmonic Enhancement and Manipulation of Optical Nonlinearity in Monolayer Tungsten Disulfide. Laser & Photonics Reviews 2018, 12 (10). 112. Li, G.-C.; Zhang, Q.; Maier, S. A.; Lei, D., Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics-Berlin 2018, 7 (12), 1865-1889. 113. Baranov, D. G.; Munkhbat, B.; Zhukova, E.; Bisht, A.; Canales, A.; Rousseaux, B.; Johansson, G.; Antosiewicz, T. J.; Shegai, T., Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions. Nature Communications 2020, 11 (1), 2715. 114. Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J., Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127. 115. Qin, J.; Chen, Y.-H.; Zhang, Z.; Zhang, Y.; Blaikie, R. J.; Ding, B.; Qiu, M., Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions. Physical Review Letters 2020, 124 (6), 063902. 116. Benz, F.; Schmidt, M. K.; Dreismann, A.; Chikkaraddy, R.; Zhang, Y.; Demetriadou, A.; Carnegie, C.; Ohadi, H.; Nijs, B. d.; Esteban, R.; Aizpurua, J.; Baumberg, J. J., Single-molecule optomechanics in “picocavities”. Science 2016, 354 (6313), 726-729. 117. Feng, S.; Halterman, K., Coherent perfect absorption in epsilon-near-zero metamaterials. Physical Review B 2012, 86 (16), 165103. 118. Luk, T. S.; Campione, S.; Kim, I.; Feng, S.; Jun, Y. C.; Liu, S.; Wright, J. B.; Brener, I.; Catrysse, P. B.; Fan, S.; Sinclair, M. B., Directional perfect absorption using deep subwavelength low-permittivity films. Physical Review B 2014, 90 (8), 085411. 119. Anopchenko, A.; Tao, L.; Arndt, C.; Lee, H. W. H., Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness. ACS Photonics 2018, 5 (7), 2631-2637. 120. Zhang, J.; Yang, J.; Schell, M.; Anopchenko, A.; Tao, L.; Yu, Z.; Lee, H. W. H., Gate-tunable optical filter based on conducting oxide metasurface heterostructure. Opt. Lett. 2019, 44 (15), 3653-3656. 121. Anopchenko, A.; Gurung, S.; Tao, L.; Arndt, C.; Lee, H. W. H., Atomic layer deposition of ultra-thin and smooth Al-doped ZnO for zero-index photonics. Materials Research Express 2018, 5 (1), 014012. 122. Vassant, S.; Archambault, A.; Marquier, F.; Pardo, F.; Gennser, U.; Cavanna, A.; Pelouard, J. L.; Greffet, J. J., Epsilon-Near-Zero Mode for Active Optoelectronic Devices. Physical Review Letters 2012, 109 (23), 237401. 123. Vassant, S.; Doyen, I. M.; Marquier, F.; Pardo, F.; Gennser, U.; Cavanna, A.; Pelouard, J. L.; Greffet, J. J., Electrical modulation of emissivity. Applied Physics Letters 2013, 102 (8), 081125. 124. Jackson, J. D., Classical electrodynamics. Third edition. New York : Wiley, [1999] ©1999: 1999. 125. Wang, F.; Shen, Y. R., General Properties of Local Plasmons in Metal Nanostructures. Physical Review Letters 2006, 97 (20), 206806. 126. Cho, A. Y.; Arthur, J. R., Molecular beam epitaxy. Progress in Solid State Chemistry 1975, 10, 157-191. 127. McPeak, K. M.; Jayanti, S. V.; Kress, S. J. P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D. J., Plasmonic Films Can Easily Be Better: Rules and Recipes. Acs Photonics 2015, 2 (3), 326-333. 128. Hecht, E., Optics. Fourth edition. Reading, Mass. : Addison-Wesley, [2002] ©2002: 2002. 129. Zhang, Y.; Zhao, M.; Wang, J.; Liu, W.; Wang, B.; Hu, S.; Lu, G.; Chen, A.; Cui, J.; Zhang, W.; Hsu, C. W.; Liu, X.; Shi, L.; Yin, H.; Zi, J., Momentum-space imaging spectroscopy for the study of nanophotonic materials. Sci Bull 2020. 130. Painter, O.; Lee, R. K.; Scherer, A.; Yariv, A.; O'Brien, J. D.; Dapkus, P. D.; Kim, I., Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science 1999, 284 (5421), 1819-1821. 131. Park, H.-G.; Kim, S.-H.; Kwon, S.-H.; Ju, Y.-G.; Yang, J.-K.; Baek, J.-H.; Kim, S.-B.; Lee, Y.-H., Electrically Driven Single-Cell Photonic Crystal Laser. Science 2004, 305 (5689), 1444-1447. 132. Liu, J.; Garcia, P. D.; Ek, S.; Gregersen, N.; Suhr, T.; Schubert, M.; Mørk, J.; Stobbe, S.; Lodahl, P., Random nanolasing in the Anderson localized regime. Nature Nanotechnology 2014, 9 (4), 285-289. 133. Shelby, R. A.; Smith, D. R.; Schultz, S., Experimental Verification of a Negative Index of Refraction. Science 2001, 292 (5514), 77-79. 134. Lal, S.; Link, S.; Halas, N. J., Nano-optics from sensing to waveguiding. Nature Photonics 2007, 1 (11), 641-648. 135. Nair, R. V.; Vijaya, R., Photonic crystal sensors: An overview. Progress in Quantum Electronics 2010, 34 (3), 89-134. 136. Yu, X.; Shi, L.; Han, D.; Zi, J.; Braun, P. V., High Quality Factor Metallodielectric Hybrid Plasmonic–Photonic Crystals. Adv Funct Mater 2010, 20 (12), 1910-1916. 137. Fang, Y.; Sun, M., Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications 2015, 4 (6), e294-e294. 138. Chizari, A.; Abdollahramezani, S.; Jamali, M. V.; Salehi, J. A., Analog optical computing based on a dielectric meta-reflect array. Opt. Lett. 2016, 41 (15), 3451-3454. 139. Shen, Y.; Harris, N. C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; Soljačić, M., Deep learning with coherent nanophotonic circuits. Nature Photonics 2017, 11 (7), 441-446. 140. Qu, Y.; Zhu, H.; Shen, Y.; Zhang, J.; Tao, C.; Ghosh, P.; Qiu, M., Inverse design of an integrated-nanophotonics optical neural network. Sci Bull 2020, 65 (14), 1177-1183. 141. Lai, C. W.; Kim, N. Y.; Utsunomiya, S.; Roumpos, G.; Deng, H.; Fraser, M. D.; Byrnes, T.; Recher, P.; Kumada, N.; Fujisawa, T.; Yamamoto, Y., Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 2007, 450 (7169), 529-532. 142. Shi, L.; Hakala, T. K.; Rekola, H. T.; Martikainen, J. P.; Moerland, R. J.; Torma, P., Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes. Physical Review Letters 2014, 112 (15). 143. Wang, C.-Y.; Sang, Y.; Yang, X.; Raja, S. S.; Cheng, C.-W.; Li, H.; Ding, Y.; Sun, S.; Ahn, H.; Shih, C.-K.; Gwo, S.; Shi, J., Engineering Giant Rabi Splitting via Strong Coupling between Localized and Propagating Plasmon Modes on Metal Surface Lattices: Observation of √N Scaling Rule. Nano Letters 2021, 21 (1), 605-611. 144. Lu, L.; Joannopoulos, J. D.; Soljačić, M., Topological photonics. Nature Photonics 2014, 8 (11), 821-829. 145. Lu, L.; Joannopoulos, J. D.; Soljačić, M., Topological states in photonic systems. Nature Physics 2016, 12 (7), 626-629. 146. Cao, T.; Fang, L.; Cao, Y.; Li, N.; Fan, Z.; Tao, Z., Dynamically reconfigurable topological edge state in phase change photonic crystals. Sci Bull 2019, 64 (12), 814-822. 147. Chen, W.-J.; Jiang, S.-J.; Chen, X.-D.; Zhu, B.; Zhou, L.; Dong, J.-W.; Chan, C. T., Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nature Communications 2014, 5 (1), 5782. 148. Ge, L.; Wang, L.; Xiao, M.; Wen, W.; Chan, C. T.; Han, D., Topological edge modes in multilayer graphene systems. Opt. Express 2015, 23 (17), 21585-21595. 149. Dong, J.-W.; Chen, X.-D.; Zhu, H.; Wang, Y.; Zhang, X., Valley photonic crystals for control of spin and topology. Nature Materials 2017, 16 (3), 298-302. 150. Doeleman, H. M.; Monticone, F.; den Hollander, W.; Alu, A.; Koenderink, A. F., Experimental observation of a polarization vortex at an optical bound state in the continuum. Nature Photonics 2018, 12 (7), 397-+. 151. Zhen, B.; Hsu, C. W.; Lu, L.; Stone, A. D.; Soljacic, M., Topological Nature of Optical Bound States in the Continuum. Physical Review Letters 2014, 113 (25). 152. Wu, X.; Meng, Y.; Tian, J.; Huang, Y.; Xiang, H.; Han, D.; Wen, W., Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nature Communications 2017, 8 (1), 1304. 153. Sang, Y.; Wang, C.-Y.; Raja, S. S.; Cheng, C.-W.; Huang, C.-T.; Chen, C.-A.; Zhang, X.-Q.; Ahn, H.; Shih, C.-K.; Lee, Y.-H.; Shi, J.; Gwo, S., Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System. Nano Letters 2021, 21 (6), 2596-2602. 154. Sun, S.; Ding, Y.; Li, H.; Hu, P.; Cheng, C.-W.; Sang, Y.; Cao, F.; Hu, Y.; Alù, A.; Liu, D.; Wang, Z.; Gwo, S.; Han, D.; Shi, J., Tunable plasmonic bound states in the continuum in the visible range. Physical Review B 2021, 103 (4), 045416. 155. Zhen, B.; Hsu, C. W.; Igarashi, Y.; Lu, L.; Kaminer, I.; Pick, A.; Chua, S.-L.; Joannopoulos, J. D.; Soljačić, M., Spawning rings of exceptional points out of Dirac cones. Nature 2015, 525 (7569), 354-358. 156. Shen, H.; Zhen, B.; Fu, L., Topological Band Theory for Non-Hermitian Hamiltonians. Physical Review Letters 2018, 120 (14), 146402. 157. Zhou, H.; Peng, C.; Yoon, Y.; Hsu, C. W.; Nelson, K. A.; Fu, L.; Joannopoulos, J. D.; Soljačić, M.; Zhen, B., Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 2018, 359 (6379), 1009-1012. 158. Wu, Y.; Zhang, C.; Estakhri, N. M.; Zhao, Y.; Kim, J.; Zhang, M.; Liu, X.-X.; Pribil, G. K.; Alù, A.; Shih, C.-K.; Li, X., Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver. Advanced Materials 2014, 26 (35), 6106-6110. 159. Naik, G. V.; Shalaev, V. M.; Boltasseva, A., Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials 2013, 25 (24), 3264-3294. 160. Resonator Optics. In Fundamentals of Photonics, 1991; pp 310-341. 161. Raja, S. S.; Cheng, C.-W.; Sang, Y.; Chen, C.-A.; Zhang, X.-Q.; Dubey, A.; Yen, T.-J.; Chang, Y.-M.; Lee, Y.-H.; Gwo, S., Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization. ACS Nano 2020. 162. Li, R.; Wang, D.; Guan, J.; Wang, W.; Ao, X.; Schatz, G. C.; Schaller, R.; Odom, T. W., - Plasmon nanolasing with aluminum nanoparticle arrays [Invited]. 163. Zhu, X.; Imran Hossain, G. M.; George, M.; Farhang, A.; Cicek, A.; Yanik, A. A., Beyond Noble Metals: High Q-Factor Aluminum Nanoplasmonics. ACS Photonics 2020, 7 (2), 416-424. 164. Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N., Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chemical Reviews 2018, 118 (12), 5912-5951. 165. Knight, M. W.; King, N. S.; Liu, L.; Everitt, H. O.; Nordlander, P.; Halas, N. J., Aluminum for Plasmonics. ACS Nano 2014, 8 (1), 834-840. 166. Sobhani, A.; Manjavacas, A.; Cao, Y.; McClain, M. J.; García de Abajo, F. J.; Nordlander, P.; Halas, N. J., Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. Nano Letters 2015, 15 (10), 6946-6951. 167. Rodriguez, S. R. K.; Abass, A.; Maes, B.; Janssen, O. T. A.; Vecchi, G.; Gómez Rivas, J., Coupling Bright and Dark Plasmonic Lattice Resonances. Physical Review X 2011, 1 (2), 021019. 168. Hakala, T. K.; Rekola, H. T.; Väkeväinen, A. I.; Martikainen, J. P.; Nečada, M.; Moilanen, A. J.; Törmä, P., Lasing in dark and bright modes of a finite-sized plasmonic lattice. Nature Communications 2017, 8 (1), 13687. 169. Rodriguez, S. R. K.; Schaafsma, M. C.; Berrier, A.; Gómez Rivas, J., Collective resonances in plasmonic crystals: Size matters. Physica B: Condensed Matter 2012, 407 (20), 4081-4085. 170. Novotny, L., Strong coupling, energy splitting, and level crossings: A classical perspective. American Journal of Physics 2010, 78 (11), 1199-1202. 171. Scully, M. O.; Zubairy, M. S., Quantum Optics. Cambridge University Press: Cambridge, 1997. 172. Törmä, P.; Barnes, W. L., Strong coupling between surface plasmon polaritons and emitters: a review. Reports on Progress in Physics 2014, 78 (1), 013901. 173. Eckerlin, P.; Kandler, H. Crystal symmetry tables: Datasheet from Landolt-Börnstein - Group III Condensed Matter · Volume 6: "Structure Data of Elements and Intermetallic Phases" in SpringerMaterials (https://doi.org/10.1007/10201454_2), Springer-Verlag Berlin Heidelberg. 174. Hakala, T. K.; Toppari, J. J.; Kuzyk, A.; Pettersson, M.; Tikkanen, H.; Kunttu, H.; Törmä, P., Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules. Physical Review Letters 2009, 103 (5), 053602. 175. Winkler, J. M.; Rabouw, F. T.; Rossinelli, A. A.; Jayanti, S. V.; McPeak, K. M.; Kim, D. K.; le Feber, B.; Prins, F.; Norris, D. J., Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters 2019, 19 (1), 108-115. 176. Wang, S.; Li, S.; Chervy, T.; Shalabney, A.; Azzini, S.; Orgiu, E.; Hutchison, J. A.; Genet, C.; Samorì, P.; Ebbesen, T. W., Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. Nano Letters 2016, 16 (7), 4368-4374. 177. Han, X.; Wang, K.; Xing, X.; Wang, M.; Lu, P., Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature. ACS Photonics 2018, 5 (10), 3970-3976. 178. Wen, J.; Wang, H.; Wang, W.; Deng, Z.; Zhuang, C.; Zhang, Y.; Liu, F.; She, J.; Chen, J.; Chen, H.; Deng, S.; Xu, N., Room-Temperature Strong Light–Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals. Nano Letters 2017, 17 (8), 4689-4697. 179. Zheng, D.; Zhang, S.; Deng, Q.; Kang, M.; Nordlander, P.; Xu, H., Manipulating Coherent Plasmon–Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2. Nano Letters 2017, 17 (6), 3809-3814. 180. Liang, K.; Guo, J.; Wu, F.; Huang, Y.; Yu, L., Dynamic Control of Quantum Emitters Strongly Coupled to the Isolated Plasmon Cavity by the Microfluidic Device. The Journal of Physical Chemistry C 2021, 125 (31), 17303-17310. 181. Munkhbat, B.; Baranov, D. G.; Bisht, A.; Hoque, M. A.; Karpiak, B.; Dash, S. P.; Shegai, T., Electrical Control of Hybrid Monolayer Tungsten Disulfide–Plasmonic Nanoantenna Light–Matter States at Cryogenic and Room Temperatures. ACS Nano 2020, 14 (1), 1196-1206. 182. Geisler, M.; Cui, X.; Wang, J.; Rindzevicius, T.; Gammelgaard, L.; Jessen, B. S.; Gonçalves, P. A. D.; Todisco, F.; Bøggild, P.; Boisen, A.; Wubs, M.; Mortensen, N. A.; Xiao, S.; Stenger, N., Single-Crystalline Gold Nanodisks on WS2 Mono- and Multilayers for Strong Coupling at Room Temperature. ACS Photonics 2019, 6 (4), 994-1001. 183. Sun, J.; Hu, H.; Zheng, D.; Zhang, D.; Deng, Q.; Zhang, S.; Xu, H., Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano 2018, 12 (10), 10393-10402. 184. Hou, S.; Tobing, L. Y. M.; Wang, X.; Xie, Z.; Yu, J.; Zhou, J.; Zhang, D.; Dang, C.; Coquet, P.; Tay, B. K.; Birowosuto, M. D.; Teo, E. H. T.; Wang, H., Manipulating Coherent Light–Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS2 Monolayer Coupled with Plasmonic Nanocavities. Advanced Optical Materials 2019, 7 (22), 1900857. 185. Wang, M.; Krasnok, A.; Zhang, T.; Scarabelli, L.; Liu, H.; Wu, Z.; Liz-Marzán, L. M.; Terrones, M.; Alù, A.; Zheng, Y., Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature. Advanced Materials 2018, 30 (22), 1705779. 186. Vakevainen, A. I.; Moerland, R. J.; Rekola, H. T.; Eskelinen, A. P.; Martikainen, J. P.; Kim, D. H.; Torma, P., Plasmonic Surface Lattice Resonances at the Strong Coupling Regime. Nano Letters 2014, 14 (4), 1721-1727. 187. Levshin, L. V.; Reva, M. G.; Ryzhikov, B. D., Effect of intermolecular interactions on the electronic spectra of rhodamine 6G. J Appl Spectrosc+ 1977, 26, 48-51. 188. Bojarski, P., Concentration quenching and depolarization of rhodamine 6G in the presence of fluorescent dimers in polyvinyl alcohol films. Chem Phys Lett 1997, 278 (4), 225-232. 189. Gordon, J. P.; Zeiger, H. J.; Townes, C. H., The Maser---New Type of Microwave Amplifier, Frequency Standard, and Spectrometer. Physical Review 1955, 99 (4), 1264-1274. 190. Schawlow, A. L.; Townes, C. H., Infrared and Optical Masers. Physical Review 1958, 112 (6), 1940-1949. 191. Maiman, T. H.; Hoskins, R. H.; D'Haenens, I. J.; Asawa, C. K.; Evtuhov, V., Stimulated Optical Emission in Fluorescent Solids. II. Spectroscopy and Stimulated Emission in Ruby. Physical Review 1961, 123 (4), 1151-1157. 192. Vahala, K. J., Optical microcavities. Nature 2003, 424 (6950), 839-846. 193. Noda, S., Seeking the Ultimate Nanolaser. Science 2006, 314 (5797), 260-261. 194. Hill, M. T.; Gather, M. C., Advances in small lasers. Nature Photonics 2014, 8, 908. 195. Liang, Y.; Li, C.; Huang, Y.-Z.; Zhang, Q., Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges. ACS Nano 2020, 14 (11), 14375-14390. 196. Ma, R.-M.; Oulton, R. F.; Sorger, V. J.; Zhang, X., Plasmon lasers: coherent light source at molecular scales. Laser & Photonics Reviews 2013, 7 (1), 1-21. 197. Wang, D.; Wang, W.; Knudson, M. P.; Schatz, G. C.; Odom, T. W., Structural Engineering in Plasmon Nanolasers. Chemical Reviews 2018, 118 (6), 2865-2881. 198. Wu, H.; Gao, Y. X.; Xu, P. Z.; Guo, X.; Wang, P.; Dai, D. X.; Tong, L. M., Plasmonic Nanolasers: Pursuing Extreme Lasing Conditions on Nanoscale. Advanced Optical Materials 2019, 7 (17). 199. Sirtori, C.; Gmachl, C.; Capasso, F.; Faist, J.; Sivco, D. L.; Hutchinson, A. L.; Cho, A. Y., Long-wavelength (? ? 8–11.5??µm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 1998, 23 (17), 1366-1368. 200. Bergman, D. J.; Stockman, M. I., Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Physical Review Letters 2003, 90 (2), 027402. 201. Stockman, M. I., Spasers explained. Nature Photonics 2008, 2 (6), 327-329. 202. Mark, I. S., The spaser as a nanoscale quantum generator and ultrafast amplifier. Journal of Optics 2010, 12 (2), 024004. 203. Galanzha, E. I.; Weingold, R.; Nedosekin, D. A.; Sarimollaoglu, M.; Nolan, J.; Harrington, W.; Kuchyanov, A. S.; Parkhomenko, R. G.; Watanabe, F.; Nima, Z.; Biris, A. S.; Plekhanov, A. I.; Stockman, M. I.; Zharov, V. P., Spaser as a biological probe. Nature Communications 2017, 8 (1), 15528. 204. Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Bakker, R.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U., Demonstration of a spaser-based nanolaser. Nature 2009, 460 (7259), 1110-1112. 205. Meng, X.; Kildishev, A. V.; Fujita, K.; Tanaka, K.; Shalaev, V. M., Wavelength-Tunable Spasing in the Visible. Nano Letters 2013, 13 (9), 4106-4112. 206. Ziegler, J.; Wörister, C.; Vidal, C.; Hrelescu, C.; Klar, T. A., Plasmonic Nanostars as Efficient Broadband Scatterers for Random Lasing. ACS Photonics 2016, 3 (6), 919-923. 207. Wang, Z.; Meng, X.; Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M., Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers. Laser & Photonics Reviews 2017, 11 (6), 1700212. 208. Kress, S. J. P.; Cui, J.; Rohner, P.; Kim, D. K.; Antolinez, F. V.; Zaininger, K.-A.; Jayanti, S. V.; Richner, P.; McPeak, K. M.; Poulikakos, D.; Norris, D. J., A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers. Science Advances 2017, 3 (9), e1700688. 209. Bermúdez-Ureña, E.; Tutuncuoglu, G.; Cuerda, J.; Smith, C. L. C.; Bravo-Abad, J.; Bozhevolnyi, S. I.; Fontcuberta i Morral, A.; García-Vidal, F. J.; Quidant, R., Plasmonic Waveguide-Integrated Nanowire Laser. Nano Letters 2017, 17 (2), 747-754. 210. Röder, R.; Sidiropoulos, T. P. H.; Tessarek, C.; Christiansen, S.; Oulton, R. F.; Ronning, C., Ultrafast Dynamics of Lasing Semiconductor Nanowires. Nano Letters 2015, 15 (7), 4637-4643. 211. Lee, C.-J.; Yeh, H.; Cheng, F.; Su, P.-H.; Her, T.-H.; Chen, Y.-C.; Wang, C.-Y.; Gwo, S.; Bank, S. R.; Shih, C.-K.; Chang, W.-H., Low-Threshold Plasmonic Lasers on a Single-Crystalline Epitaxial Silver Platform at Telecom Wavelength. ACS Photonics 2017, 4 (6), 1431-1439. 212. Kwon, S.-H.; Kang, J.-H.; Seassal, C.; Kim, S.-K.; Regreny, P.; Lee, Y.-H.; Lieber, C. M.; Park, H.-G., Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity. Nano Letters 2010, 10 (9), 3679-3683. 213. Lu, Y.-J.; Shen, T. L.; Peng, K.-N.; Cheng, P.-J.; Chang, S.-W.; Lu, M.-Y.; Chu, C. W.; Guo, T.-F.; Atwater, H. A., Upconversion Plasmonic Lasing from an Organolead Trihalide Perovskite Nanocrystal with Low Threshold. ACS Photonics 2021, 8 (1), 335-342. 214. Hsieh, Y.-H.; Hsu, B.-W.; Peng, K.-N.; Lee, K.-W.; Chu, C. W.; Chang, S.-W.; Lin, H.-W.; Yen, T.-J.; Lu, Y.-J., Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold. ACS Nano 2020, 14 (9), 11670-11676. 215. Wang, S.; Wang, X. Y.; Li, B.; Chen, H. Z.; Wang, Y. L.; Dai, L.; Oulton, R. F.; Ma, R. M., Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit. Nature Communications 2017, 8. 216. Chou, Y. H.; Wu, Y. M.; Hong, K. B.; Chou, B. T.; Shih, J. H.; Chung, Y. C.; Chen, P. Y.; Lin, T. R.; Lin, C. C.; Lin, S. D.; Lu, T. C., High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum. Nano Letters 2016, 16 (5), 3179-3186. 217. Yang, X.; Ni, P.-N.; Jing, P.-T.; Zhang, L.-G.; Ma, R.-M.; Shan, C.-X.; Shen, D.-Z.; Genevet, P., Room Temperature Electrically Driven Ultraviolet Plasmonic Lasers. Advanced Optical Materials 2019, 7 (10), 1801681. 218. Ho, Y.-L.; Clark, J. K.; Kamal, A. S. A.; Delaunay, J.-J., On-Chip Monolithically Fabricated Plasmonic-Waveguide Nanolaser. Nano Letters 2018, 18 (12), 7769-7776. 219. Lee, C. J.; Yeh, H.; Cheng, F.; Su, P. H.; Her, T. H.; Chen, Y. C.; Wang, C. Y.; Gwo, S.; Bank, S. R.; Shih, C. K.; Chang, W. H., Low-Threshold Plasmonic Lasers on a Single-Crystalline Epitaxial Silver Platform at Telecom Wavelength. Acs Photonics 2017, 4 (6), 1431-1439. 220. Khajavikhan, M.; Simic, A.; Katz, M.; Lee, J. H.; Slutsky, B.; Mizrahi, A.; Lomakin, V.; Fainman, Y., Thresholdless nanoscale coaxial lasers. Nature 2012, 482 (7384), 204-207. 221. Hill, M. T.; Oei, Y.-S.; Smalbrugge, B.; Zhu, Y.; de Vries, T.; van Veldhoven, P. J.; van Otten, F. W. M.; Eijkemans, T. J.; Turkiewicz, J. P.; de Waardt, H.; Geluk, E. J.; Kwon, S.-H.; Lee, Y.-H.; Nötzel, R.; Smit, M. K., Lasing in metallic-coated nanocavities. Nature Photonics 2007, 1 (10), 589-594. 222. Hill, M. T.; Marell, M.; Leong, E. S. P.; Smalbrugge, B.; Zhu, Y.; Sun, M.; van Veldhoven, P. J.; Geluk, E. J.; Karouta, F.; Oei, Y.-S.; Nötzel, R.; Ning, C.-Z.; Smit, M. K., Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 2009, 17 (13), 11107-11112. 223. Ding, K.; Liu, Z. C.; Yin, L. J.; Hill, M. T.; Marell, M. J. H.; van Veldhoven, P. J.; Nöetzel, R.; Ning, C. Z., Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Physical Review B 2012, 85 (4), 041301. 224. Ding, K.; Hill, M. T.; Liu, Z. C.; Yin, L. J.; van Veldhoven, P. J.; Ning, C. Z., Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 2013, 21 (4), 4728-4733. 225. Wu, X.; Xiao, Y.; Meng, C.; Zhang, X.; Yu, S.; Wang, Y.; Yang, C.; Guo, X.; Ning, C. Z.; Tong, L., Hybrid Photon-Plasmon Nanowire Lasers. Nano Letters 2013, 13 (11), 5654-5659. 226. Li, Y. J.; Lv, Y.; Zou, C.-L.; Zhang, W.; Yao, J.; Zhao, Y. S., Output Coupling of Perovskite Lasers from Embedded Nanoscale Plasmonic Waveguides. Journal of the American Chemical Society 2016, 138 (7), 2122-2125. 227. Shangjr, G.; Chih-Kang, S., Semiconductor plasmonic nanolasers: current status and perspectives. Reports on Progress in Physics 2016, 79 (8), 086501. 228. Wang, W.; Ramezani, M.; Väkeväinen, A. I.; Törmä, P.; Rivas, J. G.; Odom, T. W., The rich photonic world of plasmonic nanoparticle arrays. Materials Today 2018, 21 (3), 303-314. 229. Suh, J. Y.; Kim, C. H.; Zhou, W.; Huntington, M. D.; Co, D. T.; Wasielewski, M. R.; Odom, T. W., Plasmonic Bowtie Nanolaser Arrays. Nano Letters 2012, 12 (11), 5769-5774. 230. Zhou, W.; Dridi, M.; Suh, J. Y.; Kim, C. H.; Co, D. T.; Wasielewski, M. R.; Schatz, G. C.; Odom, T. W., Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology 2013, 8 (7), 506-511. 231. Schokker, A. H.; Koenderink, A. F., Lasing at the band edges of plasmonic lattices. Physical Review B 2014, 90 (15), 155452. 232. Yang, A.; Hoang, T. B.; Dridi, M.; Deeb, C.; Mikkelsen, M. H.; Schatz, G. C.; Odom, T. W., Real-time tunable lasing from plasmonic nanocavity arrays. Nature Communications 2015, 6 (1), 6939. 233. Schokker, A. H.; Koenderink, A. F., Statistics of Randomized Plasmonic Lattice Lasers. ACS Photonics 2015, 2 (9), 1289-1297. 234. Yang, A.; Li, Z.; Knudson, M. P.; Hryn, A. J.; Wang, W.; Aydin, K.; Odom, T. W., Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals. ACS Nano 2015, 9 (12), 11582-11588. 235. Schokker, A. H.; Koenderink, A. F., Lasing in quasi-periodic and aperiodic plasmon lattices. Optica 2016, 3 (7), 686-693. 236. Wang, D.; Yang, A.; Wang, W.; Hua, Y.; Schaller, R. D.; Schatz, G. C.; Odom, T. W., Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nature Nanotechnology 2017, 12 (9), 889-894. 237. Deeb, C.; Guo, Z.; Yang, A.; Huang, L.; Odom, T. W., Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays. Nano Letters 2018, 18 (2), 1454-1459. 238. Guo, K.; Koenderink, A. F., Spatial Intensity Distribution in Plasmonic Particle Array Lasers. Phys Rev Appl 2019, 11 (2), 024025. 239. Guo, R.; Nečada, M.; Hakala, T. K.; Väkeväinen, A. I.; Törmä, P., Lasing at $K$ Points of a Honeycomb Plasmonic Lattice. Physical Review Letters 2019, 122 (1), 013901. 240. Rekola, H. T.; Hakala, T. K.; Törmä, P., One-Dimensional Plasmonic Nanoparticle Chain Lasers. ACS Photonics 2018, 5 (5), 1822-1826. 241. Pourjamal, S.; Hakala, T. K.; Nečada, M.; Freire-Fernández, F.; Kataja, M.; Rekola, H.; Martikainen, J.-P.; Törmä, P.; van Dijken, S., Lasing in Ni Nanodisk Arrays. ACS Nano 2019, 13 (5), 5686-5692. 242. Ha, S. T.; Fu, Y. H.; Emani, N. K.; Pan, Z.; Bakker, R. M.; Paniagua-Domínguez, R.; Kuznetsov, A. I., Directional lasing in resonant semiconductor nanoantenna arrays. Nature Nanotechnology 2018, 13 (11), 1042-1047. 243. van Beijnum, F.; van Veldhoven, P. J.; Geluk, E. J.; de Dood, M. J. A.; ’t Hooft, G. W.; van Exter, M. P., Surface Plasmon Lasing Observed in Metal Hole Arrays. Physical Review Letters 2013, 110 (20), 206802. 244. van Exter, M. P.; Tenner, V. T.; van Beijnum, F.; de Dood, M. J. A.; van Veldhoven, P. J.; Geluk, E. J.; ’t Hooft, G. W., Surface plasmon dispersion in metal hole array lasers. Opt. Express 2013, 21 (22), 27422-27437. 245. Tenner, V. T.; Delft, A. N. v.; Dood, M. J. A. d.; Exter, M. P. v., Loss and scattering of surface plasmon polaritons on optically-pumped hole arrays. Journal of Optics 2014, 16 (11), 114019. 246. Tenner, V. T.; de Dood, M. J. A.; van Exter, M. P., Two-mode surface plasmon lasing in hexagonal arrays. Opt. Lett. 2018, 43 (2), 166-169. 247. Meng, X.; Liu, J.; Kildishev, A. V.; Shalaev, V. M., Highly directional spaser array for the red wavelength region. Laser & Photonics Reviews 2014, 8 (6), 896-903. 248. Qi, B.; Chen, H.-Z.; Ge, L.; Berini, P.; Ma, R.-M., Parity–Time Symmetry Synthetic Lasers: Physics and Devices. Advanced Optical Materials 2019, 7 (22), 1900694. 249. Feng, L.; Wong, Z. J.; Ma, R.-M.; Wang, Y.; Zhang, X., Single-mode laser by parity-time symmetry breaking. Science 2014, 346 (6212), 972. 250. Yang, Z.-Q.; Shao, Z.-K.; Chen, H.-Z.; Mao, X.-R.; Ma, R.-M., Spin-Momentum-Locked Edge Mode for Topological Vortex Lasing. Physical Review Letters 2020, 125 (1), 013903. 251. Shao, Z.-K.; Chen, H.-Z.; Wang, S.; Mao, X.-R.; Yang, Z.-Q.; Wang, S.-L.; Wang, X.-X.; Hu, X.; Ma, R.-M., A high-performance topological bulk laser based on band-inversion-induced reflection. Nature Nanotechnology 2020, 15 (1), 67-72. 252. Wu, J.-S.; Apalkov, V.; Stockman, M. I., Topological Spaser. Physical Review Letters 2020, 124 (1), 017701. 253. Ghimire, R.; Nematollahi, F.; Wu, J.-S.; Apalkov, V.; Stockman, M. I., TMDC-Based Topological Nanospaser: Single and Double Threshold Behavior. ACS Photonics 2021, 8 (3), 907-915. 254. Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kanté, B., Lasing action from photonic bound states in continuum. Nature 2017, 541 (7636), 196-199. 255. Hwang, M.-S.; Lee, H.-C.; Kim, K.-H.; Jeong, K.-Y.; Kwon, S.-H.; Koshelev, K.; Kivshar, Y.; Park, H.-G., Ultralow-threshold laser using super-bound states in the continuum. Nature Communications 2021, 12 (1), 4135. 256. Huang, C.; Zhang, C.; Xiao, S.; Wang, Y.; Fan, Y.; Liu, Y.; Zhang, N.; Qu, G.; Ji, H.; Han, J.; Ge, L.; Kivshar, Y.; Song, Q., Ultrafast control of vortex microlasers. Science 2020, 367 (6481), 1018-1021. 257. Hsu, C. W.; Zhen, B.; Stone, A. D.; Joannopoulos, J. D.; Soljačić, M., Bound states in the continuum. Nature Reviews Materials 2016, 1 (9), 16048. 258. Hsu, C. W.; Zhen, B.; Lee, J.; Chua, S.-L.; Johnson, S. G.; Joannopoulos, J. D.; Soljačić, M., Observation of trapped light within the radiation continuum. Nature 2013, 499 (7457), 188-191. 259. Zhang, Y.; Chen, A.; Liu, W.; Hsu, C. W.; Wang, B.; Guan, F.; Liu, X.; Shi, L.; Lu, L.; Zi, J., Observation of Polarization Vortices in Momentum Space. Physical Review Letters 2018, 120 (18), 186103. 260. Fan, S.; Suh, W.; Joannopoulos, J. D., Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20 (3), 569-572. 261. Hsu, C. W.; Zhen, B.; Chua, S.-L.; Johnson, S. G.; Joannopoulos, J. D.; Soljačić, M., Bloch surface eigenstates within the radiation continuum. Light: Science & Applications 2013, 2 (7), e84-e84. 262. Yamamoto, N.; Saito, H., Size dependence of band structures in a two-dimensional plasmonic crystal with a square lattice. Opt. Express 2014, 22 (24), 29761-29777. 263. Wu, M.; Ha, S. T.; Shendre, S.; Durmusoglu, E. G.; Koh, W.-K.; Abujetas, D. R.; Sánchez-Gil, J. A.; Paniagua-Domínguez, R.; Demir, H. V.; Kuznetsov, A. I., Room-Temperature Lasing in Colloidal Nanoplatelets via Mie-Resonant Bound States in the Continuum. Nano Letters 2020, 20 (8), 6005-6011. 264. Yang, J.-H.; Huang, Z.-T.; Maksimov, D. N.; Pankin, P. S.; Timofeev, I. V.; Hong, K.-B.; Li, H.; Chen, J.-W.; Hsu, C.-Y.; Liu, Y.-Y.; Lu, T.-C.; Lin, T.-R.; Yang, C.-S.; Chen, K.-P., Low-Threshold Bound State in the Continuum Lasers in Hybrid Lattice Resonance Metasurfaces. Laser & Photonics Reviews 2021, 15 (10), 2100118. 265. Guan, J.; Sagar, L. K.; Li, R.; Wang, D.; Bappi, G.; Watkins, N. E.; Bourgeois, M. R.; Levina, L.; Fan, F.; Hoogland, S.; Voznyy, O.; Martins de Pina, J.; Schaller, R. D.; Schatz, G. C.; Sargent, E. H.; Odom, T. W., Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. Nano Letters 2020, 20 (2), 1468-1474.
|