帳號:guest(3.141.47.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭彰緯
作者(外文):Cheng, Chang-Wei
論文名稱(中文):從強耦合到雷射之表面電漿子晶格研究
論文名稱(外文):Study on Surface Plasmonic Lattices from Stroung Coupling to Lasing
指導教授(中文):果尚志
指導教授(外文):Gwo, Shangjr
口試委員(中文):張文豪
嚴大任
徐瑋廷
吳致盛
口試委員(外文):Chang, Wen-Hao
Yen, Ta-Jen
Hsu, Wei-Ting
Wu, Jhih-Sheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:104022512
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:147
中文關鍵詞:表面電漿子晶格表面電漿子強耦合電漿子雷射
外文關鍵詞:Surface plasmonic latticeSurface plasmonsStrong couplingPlasmonic laser
相關次數:
  • 推薦推薦:4
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
控制光物質相互作用形成極化子是未來光子和光電器件的關鍵因素。 極化子可以通過電磁模態和電子能態之間的能量交換形成。 一般來說,在強耦合狀態下,拉比分裂大於本徵光態和物質態的線寬,在離調光譜中會觀察到能量反交叉現象。 極化子是半光、半物質的準粒子具有玻色子的性質,為探索多體物理提供了可能性,包括玻色-愛因斯坦凝聚 (BEC)、極化子激光器和一些實用的極化子器件。
在此篇著作的第一部分,我們定義了電漿子材料,並給出了它們在奈米光學、生物應用和能量傳感器中的一些應用示例。再者,介紹了基本的電漿子材料及其固有的光學特性,包括Drude和Lorentz模型。為了更詳細地了解金屬中自由和束縛電子行為的起源,討論金屬電子能帶結構對束縛電子的貢獻。特別是鋁,由於其能帶結構接近自由電子能帶,在W點和K點附近只有少量束縛電子躍遷,屬於共振型躍遷,因此是類Drude材料。然而,其他基本等離子體材料的電子能帶結構相似,它們的束縛電子是從d到sp的能帶躍遷,屬於閾值型躍遷。基於了解能帶圖和光學特性的了解後,我們沉積了晶圓級金屬薄膜並測量了它們的介電常數,使用合適的介電模型來擬合這些光學響應,並提取具有物理意義參數(例如:電漿體頻率、阻尼率和帶間躍遷能)。最後,介紹了表面電漿子的背景,包括傳播表面表面電漿極化子(SPPs)和局域表面電漿子(LSPs),再來提及一些常見的電漿子共振模式,以及以品質因子為依據地電漿子材料排名。
著作中的第二部分,在室溫(~300 K)下,在c面藍寶石上使用分子磊晶生長磊晶鋁膜。隨後,我們介紹了鋁磊晶膜的晶體結構和光學性質。為了與使用低溫生長(refined two-step)的銀和鋁磊晶膜進行比較,我們分別計算了鋁磊晶膜在RT生長時的SPP和LSP品質因子,以及使用精細低溫生長(refined two-step)的銀和鋁外延膜。特別是室溫生長的鋁外延膜幾乎接近精細的兩步生長,但室溫生長更簡單,應用更實用。為了證明鋁是一種實用性電漿子材料,我們展示了可見光區域的高保真表面增強拉曼光譜基板(SERS substrate)和表面電漿子晶格(surface plasmonic lattice)。在表面增強拉曼光譜基板的部分,我們在鋁磊晶膜上製造奈米凹槽,並將WSe2/MoS2異質結構作為單分子分析物轉移,從樣品實空間掃描光譜的結果顯示出表面增強拉曼光譜基板高均勻性和強場增強。此外,由於強電漿子場增強,實驗中還可以清楚地觀察到MoS2 (452 cm-1)和WSe2 (266 cm-1)的2LA(M)峰,此來源於涉及縱向聲子的二階過程布里淵區的M點。在表面電漿子晶格(surface plasmonic lattice)部分,由於可見光範圍內的高輻射損耗,鋁奈米結構偶極子諧振器通常表現出小的品質因數(Q < 5)。在這裡,我們在鋁磊晶膜上製造鋁奈米孔陣列作為表面電漿子晶格,展示基於傳播性質的 SPP 所表現出高品質因子的表面電漿子晶格模式,其優化後的品質因子接近 ~25。
接著第三部分,我們關注電漿子銀奈米孔陣列與羅丹明6G (R6G)染料分子耦合系統,並探測動量空間中的極化子色散關係。為了更好地了解極化子系統,我們首先通過有限差分時域(FDTD)模擬近場分佈,以證明金屬和電介質界面之間存在傳播的SPP。其次,通過旋塗技術覆蓋在電漿子銀奈米孔陣列頂部的聚乙烯吡咯烷酮(PVP)層(~50 nm),通過角度分辨消光系統測量具有不同週期等離子體銀納米孔陣列的色散關係,並使用耦合模式模型(coupled-mode model)來分析實驗結果。為了討論表面電漿極化子覆蓋在電漿子銀奈米孔陣列上的R6G聚合物,並測量角度分辨消光和光致螢光光譜。在此極化子系統中,通過共振離調分別觀察到強耦合現象和極化子發射。值得一提的是,在此系統還觀察到極化子帶與能隙是通過傳播性質的極化子彼此交互作用(polariton-polariton coupling)形成的。
如今,隨著量子技術的興起,高保真拓撲數或量子數越來越受到重視。許多研究集中在本徵模工程,包括 PT 對稱、拓撲能帶結構和雷射物理中的偏振奇異點。在第四項研究中,我們將討論對稱保護的 BIC 模式、極化渦旋和拓撲電荷。再來,展示了對稱保護的穩健性,並使用此高質量因子共振模式與適當的增益介質(R6G)耦合。此外,我們展示了具有 TM 偏振拓撲電荷 (+1) 的定向、室溫和單模表面發射電漿子雷射。這一成就通過電漿子能帶工程提供了一種穩健且可調諧的機制。可應用在於光物質相互作用、定向表面發射激光器和具有穩健拓撲電荷的量子信息。該原理和分析適用於電子、聲學和聲子系統。論文最後也給出了BIC雷射的雷射報告總結和文獻對比表格。
Controlling light-matter interaction forms polariton states is a key factor of future photonic and optoelectronic devices. The polaritonic systems can be formed by strongly coherent energy exchange between electromagnetic modes and electronic transition states. Generally, Rabi splitting larger than line widths of the intrinsic light and matter states in strong coupling regime, and energy anti-crossing phenomenon will be observed in detuning spectra. Polaritons are half-light, half-matter bosonic quasiparticles and offer the possibilities to explore many-body physics including Bose-Einstein condensation (BEC), polariton laser, and some practical polaritonic devices.
In the first part, we define the plasmonic materials and give some examples of their applications in nano-optics, bio-application, and energy transducer. Later, introduced to fundamental plasmonic materials and their intrinsic optical properties including Drude and Lorentz model. In order to more realize detail of the origin of the free- and bound electron behavior in metal, discuss the bound electron contribution from electronic band structures of metal. Especially, aluminum is a Drude-like material due to its band structure being close to the free-electron band, only a little bound electron transition is at near W and K point, which is resonance type transition. However, the electronic band structures of the other fundamental plasmonic materials are similar, and their bound electron is from d to sp hybrid band transition, which is the threshold type. After realizing the band diagrams and optical properties, we deposited the wafer-scale metal film, measured their dielectric constants, and used the suitable dielectric model to fit these optical responses, and extracted some physical meaning parameters (e.g. plasma frequency, damping rate, and interband transition energy). Finally, introduction to the background of surface plasmons including propagating surface plasmon polariton (SPPs) and localized surface plasmons (LSPs), some common plasmonic modes, and the quality factor for ranking of plasmonic materials.
In the second part, using molecular beam epitaxy growth epitaxial aluminum film on c-sapphire at room temperature (~300 K). Later, we introduce structural and optical properties of the aluminum epitaxial film. For comparison with silver and aluminum epitaxial film using two-step growth, we calculated the SPP and LSP quality factors of aluminum epitaxial film at RT growth, and silver and aluminum epitaxial film using refined two-step growth. Especially, the aluminum epitaxial film at room temperature growth is almost close to refined two-step growth, but room temperature growth is simpler and practical for application. For proposing that aluminum is a practical plasmonic material, we demonstrate high-fidelity surface-enhanced Raman spectroscopy (SERS) substrates and surface plasmonic surface lattice in the visible region. In the SERS part, we fabricate a nanogrooves on aluminum epitaxial film and transfer WSe2/MoS2 heterostructure as a molecular analyte. Using spatial mapping, the results show high uniformity and enhancement. Furthermore, we can also clearly observe the 2LA(M) peaks of MoS2 (452 cm–1) and WSe2 (266 cm–1) due to the strong plasmonic field enhancement, originating from a second-order process involving the longitudinal acoustic phonons at the M point of the Brillouin zone. In the surface plasmonic lattice part, aluminum nanostructure dipolar resonators can typically exhibit a small quality factor (Q < 5) due to a high radiative loss in the visible range. Here, we fabricate aluminum nanohole arrays on the aluminum epitaxial films as the plasmonic surface lattices to demonstrate high-Q plasmonic surface lattice modes based on propagating SPPs, which optimization quality factor is close to ~25.
In the third part, we focus on the Rhodamine 6G (R6G) dye molecules coupled with the plasmonic silver nanohole arrays and probe polaritonic dispersions in the momentum space. For more realizing this open system, we firstly simulated near-field distributions by finite-different time-domain (FDTD) to evidence propagating SPPs exist between the interface of a metal and dielectric medium. Secondly, polyvinylpyrrolidone (PVP) layer (~50 nm) covered on top of plasmonic silver nanohole arrays by spin-coating technique, measuring dispersions of the plasmonic silver nanohole arrays with different pitches by the angle-resolved extinction setup, and using the coupled-mode model to analyze these results. To discuss plasmon-exciton polaritons (e.g. light-matter interaction), R6G polymer matrix covered on plasmonic silver nanohole arrays and measuring angle-resolved extinction and photoluminescence spectra. In this polaritonic system, strong coupling phenomena and polariton emission are observed by angular detuning, respectively. Furthermore, we also observed polariton bands and gaps are formed by propagating plasmon-exciton polariton.
Nowadays, with the rise of quantum technology, more and more attention is paid to high-fidelity topological numbers or quantum numbers. Many studies focus on eigenmode engineering including PT-symmetric, topological band structure, and polarization singularity in laser physics. In the fourth study, we would discuss the symmetry-protected BIC mode, polarization vortex, and topological charge. Later, we demonstrate how robust is the symmetry-protected and use the high-quality factor resonance mode to be coupling with moderate gain (Rhodamine 6G). Further, we demonstrated the directional, room temperature, and single-mode surface-emitting plasmonic laser with a TM-polarized topological charge (+1). This achievement provides a robust tunability mechanism by the plasmonic band engineering. Possible applications lie in light-matter interaction, directional surface-emitting laser, and quantum information with a robust topological charge. The principle and analysis are applicable to electronic, acoustic, and phononic systems. The laser reporting summary and the comparison table of the BIC laser are also shown at the end of the thesis.
TABLE OF CONTENTS

Abstract i
摘要 iv
致謝 vi
LIST OF FIGURES x
LIST OF TABLES xxiv
Chapter 1. Introduction 1
1.1 Fundamental of plasmonic materials 1
1.2 Light in metals 4
1.3 Electronic band structures of metals 7
1.4 Optical properties of metals 9
1.5 Background of surface plasmons 18
1.5.1 Surface plasmon polaritons (SPPs) 20
1.5.2 Localized surface plasmons (LSPs) 23
1.5.3 Introduction to plasmonic modes 26
1.5.4 Quality factor (Q) of surface plasmons 28
Chapter 2. Experimental methods 30
2.1 Growth and lithography techniques 30
2.1.1 Plasma-assisted molecular beam epitaxy (PAMBE) 30
2.1.2 Thermal evaporator 31
2.1.3 Atomic Layer Deposition (ALD) 32
2.1.4 Focused ion beam (FIB) lithography 33
2.2 Optical measurements 34
2.2.1 White light interference 34
2.2.2 Micro-Raman measurement 35
2.2.3 Confocal microscopy/spectroscopy 36
2.2.4 Angle-resolved microscopy/spectroscopy 37
Chapter 3. Epitaxial aluminum films as an alternative plasmonic material 43
3.1 Growth epitaxial aluminum films on c-sapphire by PAMBE 43
3.2 Optical properties of epitaxial aluminum film 46
3.3 Surface white light interface and plasmon propagation length 48
3.4 Surface-enhanced Raman spectroscopy 52
3.5 Plasmonic surface lattice modes and optimization quality factor (Q) 54
Chapter 4. Strong coupling between surface plasmonic lattice and Rhodamine 6G dye molecules 58
4.1 Strong coupling and coupled mode model: 58
4.1.1 Coupling of classical harmonic oscillators 58
4.1.2 Strong coupling in classical description 60
4.1.3 Jaynes-Cummings model 62
4.2 Growth silver films on c-sapphire by thermal evaporator 64
4.3 Surface plasmonic lattice 66
4.3.1 Surface plasmon polaritons (SPPs) excited by periodic lattice:
66
4.3.2 Definition of transverse electric (TE) and transverse magnetic (TM) mode: 69
4.3.3 Coupled mode model including all first Bragg reflected mode:
70
4.3.4 Ag nanohole array as the surface plasmonic lattice: 72
4.3.5 Field distributions in near-field regime: 75
4.3.6 Reduce symmetry of lattice: 76
4.4 Plasmon-exciton polariton: 77
4.4.1 Principle and Design 77
4.4.2 Theoretical and Experimental observation from weak to strong coupling 80
4.4.3 Polariton Emissions and Polariton-Polariton Interaction 86
Chapter 5. Surface-emitting plasmonic laser with a topological charge
88
5.1 A brief review of plasmonic lasers: 88
5.2 Fundamental principle of bound states in the continuum (BIC):
91
5.2.1 Temporal coupled-mode theory 92
5.2.2 Measurement and observation the BIC modes 94
5.2.3 Imperfect reflection and symmetry broken 94
5.3 Topological Properties of optical BIC modes 96
5.3.1 Polarization field in momentum space 96
5.3.2 Polarization vortex in momentum space 97
5.4 Surface-emitting plasmonic laser with a topological charge 98
5.4.1 Principle and Design 98
5.4.2 Observation of the symmetry-protected BIC mode 101
5.4.3 Near-field simulations of the symmetry-protected BIC mode 103
5.4.4 TM-polarized topological charge (+1) 105
5.4.5 Lasing action in the symmetry-protected BIC mode 110
5.4.6 Conclusions 112
References 115
Curriculum Vitae (Chang-Wei Cheng) 142



1. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424 (6950), 824-830.
2. Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X., Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects. Science 2007, 315 (5819), 1686-1686.
3. Lu, Y.-J.; Wang, C.-Y.; Kim, J.; Chen, H.-Y.; Lu, M.-Y.; Chen, Y.-C.; Chang, W.-H.; Chen, L.-J.; Stockman, M. I.; Shih, C.-K.; Gwo, S., All-Color Plasmonic Nanolasers with Ultralow Thresholds: Autotuning Mechanism for Single-Mode Lasing. Nano Letters 2014, 14 (8), 4381-4388.
4. Yu, N.; Aieta, F.; Genevet, P.; Kats, M. A.; Gaburro, Z.; Capasso, F., A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Letters 2012, 12 (12), 6328-6333.
5. Chen, H. Y.; Lin, M. H.; Wang, C. Y.; Chang, Y. M.; Gwo, S., Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. Journal of the American Chemical Society 2015, 137 (42), 13698-13705.
6. Mejía-Salazar, J. R.; Oliveira, O. N., Plasmonic Biosensing. Chemical Reviews 2018, 118 (20), 10617-10625.
7. Lal, S.; Clare, S. E.; Halas, N. J., Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact. Accounts Chem Res 2008, 41 (12), 1842-1851.
8. Tagliabue, G.; DuChene, J. S.; Habib, A.; Sundararaman, R.; Atwater, H. A., Hot-Hole versus Hot-Electron Transport at Cu/GaN Heterojunction Interfaces. ACS Nano 2020, 14 (5), 5788-5797.
9. Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J., Photodetection with Active Optical Antennas. Science 2011, 332 (6030), 702-704.
10. DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W.-H.; Atwater, H. A., Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. Nano Letters 2018, 18 (4), 2545-2550.
11. Levine, I.; Yoffe, A.; Salomon, A.; Li, W. J.; Feldman, Y.; Vilan, A., Epitaxial two dimensional aluminum films on silicon (111) by ultra-fast thermal deposition. J Appl Phys 2012, 111 (12).
12. Park, J. H.; Ambwani, P.; Manno, M.; Lindquist, N. C.; Nagpal, P.; Oh, S.-H.; Leighton, C.; Norris, D. J., Single-Crystalline Silver Films for Plasmonics. Advanced Materials 2012, 24 (29), 3988-3992.
13. Lin, S. W.; Wu, J. Y.; Lin, S. D.; Lo, M. C.; Lin, M. H.; Liang, C. T., Characterization of Single-Crystalline Aluminum Thin Film on (100) GaAs Substrate. Japanese Journal of Applied Physics 2013, 52 (4).
14. Wu, Y.; Zhang, C.; Estakhri, N. M.; Zhao, Y.; Kim, J.; Zhang, M.; Liu, X.-X.; Pribil, G. K.; Alù, A.; Shih, C.-K.; Li, X., Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver. Advanced Materials 2014, 26 (35), 6054-6055.
15. Cheng, F.; Su, P.-H.; Choi, J.; Gwo, S.; Li, X.; Shih, C.-K., Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties. ACS Nano 2016.
16. Zhu, Y. N.; Wang, W. L.; Yang, W. J.; Wang, H. Y.; Gao, J. N.; Li, G. Q., Nucleation mechanism for epitaxial growth of aluminum films on sapphire substrates by molecular beam epitaxy. Mat Sci Semicon Proc 2016, 54, 70-76.
17. Dutta, S.; Biser, J. M.; Vinci, R. P.; Chan, H. M., Solid State Annealing Behavior of Aluminum Thin Films on Sapphire. J Am Ceram Soc 2012, 95 (2), 823-830.
18. Cheng, C. W.; Liao, Y. J.; Liu, C. Y.; Wu, B. H.; Raja, S. S.; Wang, C. Y.; Li, X. Q.; Shih, C. K.; Chen, L. J.; Gwo, S., Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions. Acs Photonics 2018, 5 (7), 2624-2630.
19. Tsai, Y. H.; Wu, Y. H.; Ting, Y. Y.; Wu, C. C.; Wu, J. S.; Lin, S. D., Nano- to atomic-scale epitaxial aluminum films on Si substrate grown by molecular beam epitaxy. Aip Adv 2019, 9 (10).
20. Cheng, F.; Lee, C.-J.; Choi, J.; Wang, C.-Y.; Zhang, Q.; Zhang, H.; Gwo, S.; Chang, W.-H.; Li, X.; Shih, C.-K., Epitaxial Growth of Optically Thick, Single Crystalline Silver Films for Plasmonics. Acs Appl Mater Inter 2019, 11 (3), 3189-3195.
21. Law, K. M.; Budhathoki, S.; Ranjit, S.; Martin, F.; Thind, A. S.; Mishra, R.; Hauser, A. J., Demonstration of nearly pinhole-free epitaxial aluminum thin films by sputter beam epitaxy. Scientific Reports 2020, 10 (1), 18357.
22. Zhang, K. D.; Xia, S. J.; Li, C.; Pan, J. H.; Ding, Y. F.; Lu, M. H.; Lu, H.; Chen, Y. F., Interface Engineering and Epitaxial Growth of Single-Crystalline Aluminum Films on Semiconductors. Adv Mater Interfaces 2020.
23. Wang, C.-Y.; Chen, H.-Y.; Sun, L.; Chen, W.-L.; Chang, Y.-M.; Ahn, H.; Li, X.; Gwo, S., Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nature Communications 2015, 6 (1), 7734.
24. Jacobson, C. R.; Solti, D.; Renard, D.; Yuan, L.; Lou, M.; Halas, N. J., Shining Light on Aluminum Nanoparticle Synthesis. Accounts Chem Res 2020, 53 (9), 2020-2030.
25. Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers, M.; Hofer, F.; Aussenegg, F. R.; Krenn, J. R., Silver Nanowires as Surface Plasmon Resonators. Physical Review Letters 2005, 95 (25), 257403.
26. Allione, M.; Temnov, V. V.; Fedutik, Y.; Woggon, U.; Artemyev, M. V., Surface Plasmon Mediated Interference Phenomena in Low-Q Silver Nanowire Cavities. Nano Letters 2008, 8 (1), 31-35.
27. Huang, J.-S.; Callegari, V.; Geisler, P.; Brüning, C.; Kern, J.; Prangsma, J. C.; Wu, X.; Feichtner, T.; Ziegler, J.; Weinmann, P.; Kamp, M.; Forchel, A.; Biagioni, P.; Sennhauser, U.; Hecht, B., Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications 2010, 1 (1), 150.
28. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011, 111 (6), 3669-3712.
29. Meziani, M. J.; Bunker, C. E.; Lu, F.; Li, H.; Wang, W.; Guliants, E. A.; Quinn, R. A.; Sun, Y.-P., Formation and Properties of Stabilized Aluminum Nanoparticles. Acs Appl Mater Inter 2009, 1 (3), 703-709.
30. McClain, M. J.; Schlather, A. E.; Ringe, E.; King, N. S.; Liu, L.; Manjavacas, A.; Knight, M. W.; Kumar, I.; Whitmire, K. H.; Everitt, H. O.; Nordlander, P.; Halas, N. J., Aluminum Nanocrystals. Nano Letters 2015, 15 (4), 2751-2755.
31. Zhou, L.; Zhang, C.; McClain, M. J.; Manjavacas, A.; Krauter, C. M.; Tian, S.; Berg, F.; Everitt, H. O.; Carter, E. A.; Nordlander, P.; Halas, N. J., Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation. Nano Letters 2016, 16 (2), 1478-1484.
32. Tian, S.; Neumann, O.; McClain, M. J.; Yang, X.; Zhou, L.; Zhang, C.; Nordlander, P.; Halas, N. J., Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Letters 2017, 17 (8), 5071-5077.
33. Blaber, M. G.; Arnold, M. D.; Ford, M. J., A review of the optical properties of alloys and intermetallics for plasmonics. Journal of Physics: Condensed Matter 2010, 22 (14), 143201.
34. Zwilling, M.; Schmidt, P. C.; Weiss, A., Experimental and theoretical studies of optical properties on alloys of the intermetallic systems Li2Ag2−xInxand Li2Cd2−xInx. Applied physics 1978, 16 (3), 255-269.
35. Wang, Y.; Yu, J.; Mao, Y.-F.; Chen, J.; Wang, S.; Chen, H.-Z.; Zhang, Y.; Wang, S.-Y.; Chen, X.; Li, T.; Zhou, L.; Ma, R.-M.; Zhu, S.; Cai, W.; Zhu, J., Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 2020, 581 (7809), 401-405.
36. Guo, W. P.; Mishra, R.; Cheng, C. W.; Wu, B. H.; Chen, L. J.; Lin, M. T.; Gwo, S., Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold. Acs Photonics 2019, 6 (8), 1848-1854.
37. Naik, G. V.; Schroeder, J. L.; Ni, X.; Kildishev, A. V.; Sands, T. D.; Boltasseva, A., Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2012, 2 (4), 478-489.
38. Patsalas, P.; Logothetidis, S., Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films. J Appl Phys 2001, 90 (9), 4725-4734.
39. Chen, N. C.; Lien, W. C.; Liu, C. R.; Huang, Y. L.; Lin, Y. R.; Chou, C.; Chang, S. Y.; Ho, C. W., Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry. J Appl Phys 2011, 109 (4), 043104-043104-7.
40. Naik, G. V.; Saha, B.; Liu, J.; Saber, S. M.; Stach, E. A.; Irudayaraj, J. M. K.; Sands, T. D.; Shalaev, V. M.; Boltasseva, A., Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proceedings of the National Academy of Sciences 2014, 111 (21), 7546.
41. Shah, D.; Reddy, H.; Kinsey, N.; Shalaev, V. M.; Boltasseva, A., Optical Properties of Plasmonic Ultrathin TiN Films. Advanced Optical Materials 2017, 5 (13), 1700065.
42. Murai, S.; Fujita, K.; Daido, Y.; Yasuhara, R.; Kamakura, R.; Tanaka, K., Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films. Opt. Express 2016, 24 (2), 1143-1153.
43. Langereis, E.; Heil, S. B. S.; Sanden, M. C. M. v. d.; Kessels, W. M. M., In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma-assisted atomic layer deposition. J Appl Phys 2006, 100 (2), 023534.
44. Catellani, A.; Calzolari, A., Plasmonic properties of refractory titanium nitride. Physical Review B 2017, 95 (11), 115145.
45. Vertchenko, L.; Leandro, L.; Shkondin, E.; Takayama, O.; Bondarev, I. V.; Akopian, N.; Lavrinenko, A. V., Cryogenic characterization of titanium nitride thin films. Opt Mater Express 2019, 9 (5), 2117-2127.
46. Karl, P.; Mennle, S.; Ubl, M.; Flad, P.; Yang, J.-W.; Peng, T.-Y.; Lu, Y.-J.; Giessen, H., Niobium nitride plasmonic perfect absorbers for tunable infrared superconducting nanowire photodetection. Opt. Express 2021, 29 (11), 17087-17096.
47. Karl, P.; Ubl, M.; Hentschel, M.; Flad, P.; Chiao, Z.-Y.; Yang, J.-W.; Lu, Y.-J.; Giessen, H., Optical properties of niobium nitride plasmonic nanoantennas for the near- and mid-infrared spectral range. Opt Mater Express 2020, 10 (10), 2597-2606.
48. Michelotti, F.; Dominici, L.; Descrovi, E.; Danz, N.; Menchini, F., Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm. Opt. Lett. 2009, 34 (6), 839-841.
49. Rhodes, C.; Franzen, S.; Maria, J.-P.; Losego, M.; Leonard, D. N.; Laughlin, B.; Duscher, G.; Weibel, S., Surface plasmon resonance in conducting metal oxides. J Appl Phys 2006, 100 (5), 054905.
50. Franzen, S., Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold. The Journal of Physical Chemistry C 2008, 112 (15), 6027-6032.
51. Kim, H.; Piqué, A.; Horwitz, J. S.; Murata, H.; Kafafi, Z. H.; Gilmore, C. M.; Chrisey, D. B., Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films 2000, 377-378, 798-802.
52. Agura, H.; Suzuki, A.; Matsushita, T.; Aoki, T.; Okuda, M., Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 2003, 445 (2), 263-267.
53. Kim, K. H.; Park, K. C.; Ma, D. Y., Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J Appl Phys 1997, 81 (12), 7764-7772.
54. Hiramatsu, M.; Imaeda, K.; Horio, N.; Nawata, M., Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS 1998, 16 (2), 669-673.
55. Singh, A. V.; Mehra, R. M.; Buthrath, N.; Wakahara, A.; Yoshida, A., Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient. J Appl Phys 2001, 90 (11), 5661-5665.
56. Yoon, M. H.; Lee, S. H.; Park, H. L.; Kim, H. K.; Jang, M. S., Solid solubility limits of Ga and Al in ZnO. JOURNAL OF MATERIALS SCIENCE LETTERS 2002, 21 (21), 1703-1704.
57. Lu, J. G.; Ye, Z. Z.; Zeng, Y. J.; Zhu, L. P.; Wang, L.; Yuan, J.; Zhao, B. H.; Liang, Q. L., Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions. J Appl Phys 2006, 100 (7).
58. Hanson, G. W., Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 2008, 103 (6), 064302.
59. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. SCIENCE 2004, 306 (5696), 666-669.
60. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. NATURE 2005, 438 (7065), 197-200.
61. Geim, A. K.; Novoselov, K. S., The rise of graphene. NATURE MATERIALS 2007, 6 (3), 183-191.
62. Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Seyller, T., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. NATURE MATERIALS 2009, 8 (3), 203-207.
63. Ryzhii, V.; Satou, A.; Otsuji, T., Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J Appl Phys 2007, 101 (2).
64. Rana, F., Graphene terahertz plasmon oscillators. Ieee T Nanotechnol 2008, 7 (1), 91-99.
65. Boltasseva, A.; Atwater, H. A., Low-Loss Plasmonic Metamaterials. Science 2011, 331 (6015), 290-291.
66. Johnson, P. B.; Christy, R. W., Optical Constants of the Noble Metals. Physical Review B 1972, 6 (12), 4370-4379.
67. Ehrenreich, H.; Philipp, H. R.; Segall, B., Optical Properties of Aluminum. Physical Review 1963, 132 (5), 1918-1928.
68. Ehrenreich, H.; Philipp, H. R., Optical Properties of Ag and Cu. Physical Review 1962, 128 (4), 1622-1629.
69. Kaxiras, E.; Joannopoulos, J. D., Quantum Theory of Materials. Cambridge University Press: Cambridge, 2019.
70. Søndergård, E.; Kerjan, O.; Barreteau, C.; Jupille, J., Structure and growth of titanium buffer layers on Al2O3(0001). Surf Sci 2004, 559, 131-140.
71. Wooten, F., Chapter 5 - INTERBAND TRANSITIONS. In Optical Properties of Solids, Wooten, F., Ed. Academic Press: 1972; pp 108-172.
72. Rakic, A. D.; Djurisic, A. B.; Elazar, J. M.; Majewski, M. L., Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics 1998, 37 (22), 5271-5283.
73. Cooper, B. R.; Ehrenreich, H.; Philipp, H. R., Optical Properties of Noble Metals. II. Physical Review 1965, 138 (2A), A494-A507.
74. Lewis, P. E.; Lee, P. M., Band Structure and Electronic Properties of Silver. Physical Review 1968, 175 (3), 795-804.
75. Taft, E. A.; Philipp, H. R., Optical Constants of Silver. Physical Review 1961, 121 (4), 1100-1103.
76. Segall, B., Fermi Surface and Energy Bands of Copper. Physical Review 1962, 125 (1), 109-122.
77. Roberts, S., Optical Properties of Copper. Physical Review 1960, 118 (6), 1509-1518.
78. Segall, B., Energy Bands of Aluminum. Physical Review 1961, 124 (6), 1797-1806.
79. Dold, B.; Mecke, R., OPTISCHE EIGENSCHAFTEN VON EDELMETALLEN UBERGANGSMETALLEN UND DEREN LEGIERUNGEN IM INFRAROT .1. Optik 1965, 22 (6), 435-&.
80. Thèye, M.-L., Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films. Physical Review B 1970, 2 (8), 3060-3078.
81. Winsemius, P.; Lengkeek, H. P.; Van Kampen, F. F., Structure dependence of the optical properties of Cu, Ag and Au. Physica B+C 1975, 79 (6), 529-546.
82. Leveque, G.; Olson, C. G.; Lynch, D. W., Reflectance spectra and dielectric functions for Ag in the region of interband transitions. Physical Review B 1983, 27 (8), 4654-4660.
83. Hagemann, H. J.; Gudat, W.; Kunz, C., Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 1975, 65 (6), 742-744.
84. Ordal, M. A.; Bell, R. J.; Alexander, R. W.; Long, L. L.; Querry, M. R., Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics 1985, 24 (24), 4493-4499.
85. Nash, D. J.; Sambles, J. R., Surface Plasmon-polariton Study of the Optical Dielectric Function of Copper. J Mod Optic 1995, 42 (8), 1639-1647.
86. Rakić, A. D., Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Applied Optics 1995, 34 (22), 4755-4767.
87. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films. Physical Review 1957, 106 (5), 874-881.
88. Choi, J. H.; Cheng, F.; Cleary, J. W.; Sun, L. Y.; Dass, C. K.; Hendrickson, J. R.; Wang, C. Y.; Gwo, S.; Shih, C. K.; Li, X. Q., Optical dielectric constants of single crystalline silver films in the long wavelength range. Opt Mater Express 2020, 10 (2), 693-703.
89. Wang, C. Y.; Chen, H. Y.; Sun, L. Y.; Chen, W. L.; Chang, Y. M.; Ahn, H.; Li, X. Q.; Gwo, S., Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nature Communications 2015, 6.
90. Nagpal, P.; Lindquist, N. C.; Oh, S.-H.; Norris, D. J., Ultrasmooth Patterned Metals for Plasmonics and Metamaterials. Science 2009, 325 (5940), 594.
91. Cheng, C.-W.; Raja, S. S.; Chang, C.-W.; Zhang, X.-Q.; Liu, P.-Y.; Lee, Y.-H.; Shih, C.-K.; Gwo, S., Epitaxial aluminum plasmonics covering full visible spectrum. Nanophotonics-Berlin 2021, 10 (1), 627-637.
92. Raja, S. S.; Cheng, C.-W.; Gwo, S., Low-loss aluminum epitaxial film for scalable and sustainable plasmonics: direct comparison with silver epitaxial film. Nanoscale 2020, 12 (46), 23809-23816.
93. Chang, C.-W.; Lin, F.-C.; Chiu, C.-Y.; Su, C.-Y.; Huang, J.-S.; Perng, T.-P.; Yen, T.-J., HNO3-Assisted Polyol Synthesis of Ultralarge Single-Crystalline Ag Microplates and Their Far Propagation Length of Surface Plasmon Polariton. Acs Appl Mater Inter 2014, 6 (14), 11791-11798.
94. Baburin, A. S.; Kalmykov, A. S.; Kirtaev, R. V.; Negrov, D. V.; Moskalev, D. O.; Ryzhikov, I. A.; Melentiev, P. N.; Rodionov, I. A.; Balykin, V. I., Toward a theoretically limited SPP propagation length above two hundred microns on an ultra-smooth silver surface [Invited]. Opt Mater Express 2018, 8 (11), 3254-3261.
95. Sun, L. Y.; Zhang, C. D.; Wang, C. Y.; Su, P. H.; Zhang, M.; Gwo, S.; Shih, C. K.; Li, X. Q.; Wu, Y. W., Enhancement of Plasmonic Performance in Epitaxial Silver at Low Temperature. Scientific Reports 2017, 7.
96. Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X., Plasmon lasers at deep subwavelength scale. Nature 2009, 461 (7264), 629-632.
97. Oulton, R. F.; Sorger, V. J.; Genov, D. A.; Pile, D. F. P.; Zhang, X., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photon 2008, 2 (8), 496-500.
98. Lu, Y.-J.; Kim, J.; Chen, H.-Y.; Wu, C.; Dabidian, N.; Sanders, C. E.; Wang, C.-Y.; Lu, M.-Y.; Li, B.-H.; Qiu, X.; Chang, W.-H.; Chen, L.-J.; Shvets, G.; Shih, C.-K.; Gwo, S., Plasmonic Nanolaser Using Epitaxially Grown Silver Film. Science 2012, 337 (6093), 450-453.
99. Zhang, Q.; Li, G.; Liu, X.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q., A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat Commun 2014, 5.
100. Sidiropoulos, T. P. H.; Roder, R.; Geburt, S.; Hess, O.; Maier, S. A.; Ronning, C.; Oulton, R. F., Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat Phys 2014, 10 (11), 870-876.
101. Chou, Y.-H.; Chou, B.-T.; Chiang, C.-K.; Lai, Y.-Y.; Yang, C.-T.; Li, H.; Lin, T.-R.; Lin, C.-C.; Kuo, H.-C.; Wang, S.-C.; Lu, T.-C., Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers. ACS Nano 2015, 9 (4), 3978-3983.
102. Chou, Y.-H.; Wu, Y.-M.; Hong, K.-B.; Chou, B.-T.; Shih, J.-H.; Chung, Y.-C.; Chen, P.-Y.; Lin, T.-R.; Lin, C.-C.; Lin, S.-D.; Lu, T.-C., High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum. Nano Letters 2016, 16 (5), 3179-3186.
103. Ma, R.-M.; Oulton, R. F.; Sorger, V. J.; Bartal, G.; Zhang, X., Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Materials 2011, 10 (2), 110-113.
104. Ho, J.; Tatebayashi, J.; Sergent, S.; Fong, C. F.; Iwamoto, S.; Arakawa, Y., Low-Threshold near-Infrared GaAs–AlGaAs Core–Shell Nanowire Plasmon Laser. ACS Photonics 2015, 2 (1), 165-171.
105. Liao, Y. J.; Cheng, C. W.; Wu, B. H.; Wang, C. Y.; Chen, C. Y.; Gwo, S.; Chen, L. J., Low threshold room-temperature UV surface plasmon polariton lasers with ZnO nanowires on single-crystal aluminum films with Al2O3 interlayers. Rsc Adv 2019, 9 (24), 13600-13607.
106. Agarwal, A.; Tien, W. Y.; Huang, Y. S.; Mishra, R.; Cheng, C. W.; Gwo, S.; Lu, M. Y.; Chen, L. J., ZnO Nanowires on Single-Crystalline Aluminum Film Coupled with an Insulating WO3 Interlayer Manifesting Low Threshold SPP Laser Operation. Nanomaterials-Basel 2020, 10 (9).
107. Maniyara, R. A.; Rodrigo, D.; Yu, R.; Canet-Ferrer, J.; Ghosh, D. S.; Yongsunthon, R.; Baker, D. E.; Rezikyan, A.; García de Abajo, F. J.; Pruneri, V., Tunable plasmons in ultrathin metal films. Nature Photonics 2019, 13 (5), 328-333.
108. Abd El-Fattah, Z. M.; Mkhitaryan, V.; Brede, J.; Fernández, L.; Li, C.; Guo, Q.; Ghosh, A.; Echarri, A. R.; Naveh, D.; Xia, F.; Ortega, J. E.; García de Abajo, F. J., Plasmonics in Atomically Thin Crystalline Silver Films. ACS Nano 2019, 13 (7), 7771-7779.
109. Moreno, E.; Rodrigo, S. G.; Bozhevolnyi, S. I.; Martín-Moreno, L.; García-Vidal, F. J., Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons. Physical Review Letters 2008, 100 (2), 023901.
110. Moreno, E.; Garcia-Vidal, F. J.; Rodrigo, S. G.; Martin-Moreno, L.; Bozhevolnyi, S. I., Channel plasmon-polaritons: modal shape, dispersion, and losses. Opt. Lett. 2006, 31 (23), 3447-3449.
111. Shi, J. W.; Liang, W. Y.; Raja, S. S.; Sang, Y. G.; Zhang, X. Q.; Chen, C. A.; Wang, Y. R.; Yang, X. Y.; Lee, Y. H.; Ahn, H.; Gwo, S., Plasmonic Enhancement and Manipulation of Optical Nonlinearity in Monolayer Tungsten Disulfide. Laser & Photonics Reviews 2018, 12 (10).
112. Li, G.-C.; Zhang, Q.; Maier, S. A.; Lei, D., Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics-Berlin 2018, 7 (12), 1865-1889.
113. Baranov, D. G.; Munkhbat, B.; Zhukova, E.; Bisht, A.; Canales, A.; Rousseaux, B.; Johansson, G.; Antosiewicz, T. J.; Shegai, T., Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions. Nature Communications 2020, 11 (1), 2715.
114. Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J., Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127.
115. Qin, J.; Chen, Y.-H.; Zhang, Z.; Zhang, Y.; Blaikie, R. J.; Ding, B.; Qiu, M., Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions. Physical Review Letters 2020, 124 (6), 063902.
116. Benz, F.; Schmidt, M. K.; Dreismann, A.; Chikkaraddy, R.; Zhang, Y.; Demetriadou, A.; Carnegie, C.; Ohadi, H.; Nijs, B. d.; Esteban, R.; Aizpurua, J.; Baumberg, J. J., Single-molecule optomechanics in “picocavities”. Science 2016, 354 (6313), 726-729.
117. Feng, S.; Halterman, K., Coherent perfect absorption in epsilon-near-zero metamaterials. Physical Review B 2012, 86 (16), 165103.
118. Luk, T. S.; Campione, S.; Kim, I.; Feng, S.; Jun, Y. C.; Liu, S.; Wright, J. B.; Brener, I.; Catrysse, P. B.; Fan, S.; Sinclair, M. B., Directional perfect absorption using deep subwavelength low-permittivity films. Physical Review B 2014, 90 (8), 085411.
119. Anopchenko, A.; Tao, L.; Arndt, C.; Lee, H. W. H., Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness. ACS Photonics 2018, 5 (7), 2631-2637.
120. Zhang, J.; Yang, J.; Schell, M.; Anopchenko, A.; Tao, L.; Yu, Z.; Lee, H. W. H., Gate-tunable optical filter based on conducting oxide metasurface heterostructure. Opt. Lett. 2019, 44 (15), 3653-3656.
121. Anopchenko, A.; Gurung, S.; Tao, L.; Arndt, C.; Lee, H. W. H., Atomic layer deposition of ultra-thin and smooth Al-doped ZnO for zero-index photonics. Materials Research Express 2018, 5 (1), 014012.
122. Vassant, S.; Archambault, A.; Marquier, F.; Pardo, F.; Gennser, U.; Cavanna, A.; Pelouard, J. L.; Greffet, J. J., Epsilon-Near-Zero Mode for Active Optoelectronic Devices. Physical Review Letters 2012, 109 (23), 237401.
123. Vassant, S.; Doyen, I. M.; Marquier, F.; Pardo, F.; Gennser, U.; Cavanna, A.; Pelouard, J. L.; Greffet, J. J., Electrical modulation of emissivity. Applied Physics Letters 2013, 102 (8), 081125.
124. Jackson, J. D., Classical electrodynamics. Third edition. New York : Wiley, [1999] ©1999: 1999.
125. Wang, F.; Shen, Y. R., General Properties of Local Plasmons in Metal Nanostructures. Physical Review Letters 2006, 97 (20), 206806.
126. Cho, A. Y.; Arthur, J. R., Molecular beam epitaxy. Progress in Solid State Chemistry 1975, 10, 157-191.
127. McPeak, K. M.; Jayanti, S. V.; Kress, S. J. P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D. J., Plasmonic Films Can Easily Be Better: Rules and Recipes. Acs Photonics 2015, 2 (3), 326-333.
128. Hecht, E., Optics. Fourth edition. Reading, Mass. : Addison-Wesley, [2002] ©2002: 2002.
129. Zhang, Y.; Zhao, M.; Wang, J.; Liu, W.; Wang, B.; Hu, S.; Lu, G.; Chen, A.; Cui, J.; Zhang, W.; Hsu, C. W.; Liu, X.; Shi, L.; Yin, H.; Zi, J., Momentum-space imaging spectroscopy for the study of nanophotonic materials. Sci Bull 2020.
130. Painter, O.; Lee, R. K.; Scherer, A.; Yariv, A.; O'Brien, J. D.; Dapkus, P. D.; Kim, I., Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science 1999, 284 (5421), 1819-1821.
131. Park, H.-G.; Kim, S.-H.; Kwon, S.-H.; Ju, Y.-G.; Yang, J.-K.; Baek, J.-H.; Kim, S.-B.; Lee, Y.-H., Electrically Driven Single-Cell Photonic Crystal Laser. Science 2004, 305 (5689), 1444-1447.
132. Liu, J.; Garcia, P. D.; Ek, S.; Gregersen, N.; Suhr, T.; Schubert, M.; Mørk, J.; Stobbe, S.; Lodahl, P., Random nanolasing in the Anderson localized regime. Nature Nanotechnology 2014, 9 (4), 285-289.
133. Shelby, R. A.; Smith, D. R.; Schultz, S., Experimental Verification of a Negative Index of Refraction. Science 2001, 292 (5514), 77-79.
134. Lal, S.; Link, S.; Halas, N. J., Nano-optics from sensing to waveguiding. Nature Photonics 2007, 1 (11), 641-648.
135. Nair, R. V.; Vijaya, R., Photonic crystal sensors: An overview. Progress in Quantum Electronics 2010, 34 (3), 89-134.
136. Yu, X.; Shi, L.; Han, D.; Zi, J.; Braun, P. V., High Quality Factor Metallodielectric Hybrid Plasmonic–Photonic Crystals. Adv Funct Mater 2010, 20 (12), 1910-1916.
137. Fang, Y.; Sun, M., Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications 2015, 4 (6), e294-e294.
138. Chizari, A.; Abdollahramezani, S.; Jamali, M. V.; Salehi, J. A., Analog optical computing based on a dielectric meta-reflect array. Opt. Lett. 2016, 41 (15), 3451-3454.
139. Shen, Y.; Harris, N. C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; Soljačić, M., Deep learning with coherent nanophotonic circuits. Nature Photonics 2017, 11 (7), 441-446.
140. Qu, Y.; Zhu, H.; Shen, Y.; Zhang, J.; Tao, C.; Ghosh, P.; Qiu, M., Inverse design of an integrated-nanophotonics optical neural network. Sci Bull 2020, 65 (14), 1177-1183.
141. Lai, C. W.; Kim, N. Y.; Utsunomiya, S.; Roumpos, G.; Deng, H.; Fraser, M. D.; Byrnes, T.; Recher, P.; Kumada, N.; Fujisawa, T.; Yamamoto, Y., Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 2007, 450 (7169), 529-532.
142. Shi, L.; Hakala, T. K.; Rekola, H. T.; Martikainen, J. P.; Moerland, R. J.; Torma, P., Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes. Physical Review Letters 2014, 112 (15).
143. Wang, C.-Y.; Sang, Y.; Yang, X.; Raja, S. S.; Cheng, C.-W.; Li, H.; Ding, Y.; Sun, S.; Ahn, H.; Shih, C.-K.; Gwo, S.; Shi, J., Engineering Giant Rabi Splitting via Strong Coupling between Localized and Propagating Plasmon Modes on Metal Surface Lattices: Observation of √N Scaling Rule. Nano Letters 2021, 21 (1), 605-611.
144. Lu, L.; Joannopoulos, J. D.; Soljačić, M., Topological photonics. Nature Photonics 2014, 8 (11), 821-829.
145. Lu, L.; Joannopoulos, J. D.; Soljačić, M., Topological states in photonic systems. Nature Physics 2016, 12 (7), 626-629.
146. Cao, T.; Fang, L.; Cao, Y.; Li, N.; Fan, Z.; Tao, Z., Dynamically reconfigurable topological edge state in phase change photonic crystals. Sci Bull 2019, 64 (12), 814-822.
147. Chen, W.-J.; Jiang, S.-J.; Chen, X.-D.; Zhu, B.; Zhou, L.; Dong, J.-W.; Chan, C. T., Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nature Communications 2014, 5 (1), 5782.
148. Ge, L.; Wang, L.; Xiao, M.; Wen, W.; Chan, C. T.; Han, D., Topological edge modes in multilayer graphene systems. Opt. Express 2015, 23 (17), 21585-21595.
149. Dong, J.-W.; Chen, X.-D.; Zhu, H.; Wang, Y.; Zhang, X., Valley photonic crystals for control of spin and topology. Nature Materials 2017, 16 (3), 298-302.
150. Doeleman, H. M.; Monticone, F.; den Hollander, W.; Alu, A.; Koenderink, A. F., Experimental observation of a polarization vortex at an optical bound state in the continuum. Nature Photonics 2018, 12 (7), 397-+.
151. Zhen, B.; Hsu, C. W.; Lu, L.; Stone, A. D.; Soljacic, M., Topological Nature of Optical Bound States in the Continuum. Physical Review Letters 2014, 113 (25).
152. Wu, X.; Meng, Y.; Tian, J.; Huang, Y.; Xiang, H.; Han, D.; Wen, W., Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nature Communications 2017, 8 (1), 1304.
153. Sang, Y.; Wang, C.-Y.; Raja, S. S.; Cheng, C.-W.; Huang, C.-T.; Chen, C.-A.; Zhang, X.-Q.; Ahn, H.; Shih, C.-K.; Lee, Y.-H.; Shi, J.; Gwo, S., Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System. Nano Letters 2021, 21 (6), 2596-2602.
154. Sun, S.; Ding, Y.; Li, H.; Hu, P.; Cheng, C.-W.; Sang, Y.; Cao, F.; Hu, Y.; Alù, A.; Liu, D.; Wang, Z.; Gwo, S.; Han, D.; Shi, J., Tunable plasmonic bound states in the continuum in the visible range. Physical Review B 2021, 103 (4), 045416.
155. Zhen, B.; Hsu, C. W.; Igarashi, Y.; Lu, L.; Kaminer, I.; Pick, A.; Chua, S.-L.; Joannopoulos, J. D.; Soljačić, M., Spawning rings of exceptional points out of Dirac cones. Nature 2015, 525 (7569), 354-358.
156. Shen, H.; Zhen, B.; Fu, L., Topological Band Theory for Non-Hermitian Hamiltonians. Physical Review Letters 2018, 120 (14), 146402.
157. Zhou, H.; Peng, C.; Yoon, Y.; Hsu, C. W.; Nelson, K. A.; Fu, L.; Joannopoulos, J. D.; Soljačić, M.; Zhen, B., Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 2018, 359 (6379), 1009-1012.
158. Wu, Y.; Zhang, C.; Estakhri, N. M.; Zhao, Y.; Kim, J.; Zhang, M.; Liu, X.-X.; Pribil, G. K.; Alù, A.; Shih, C.-K.; Li, X., Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver. Advanced Materials 2014, 26 (35), 6106-6110.
159. Naik, G. V.; Shalaev, V. M.; Boltasseva, A., Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials 2013, 25 (24), 3264-3294.
160. Resonator Optics. In Fundamentals of Photonics, 1991; pp 310-341.
161. Raja, S. S.; Cheng, C.-W.; Sang, Y.; Chen, C.-A.; Zhang, X.-Q.; Dubey, A.; Yen, T.-J.; Chang, Y.-M.; Lee, Y.-H.; Gwo, S., Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization. ACS Nano 2020.
162. Li, R.; Wang, D.; Guan, J.; Wang, W.; Ao, X.; Schatz, G. C.; Schaller, R.; Odom, T. W., - Plasmon nanolasing with aluminum nanoparticle arrays [Invited].
163. Zhu, X.; Imran Hossain, G. M.; George, M.; Farhang, A.; Cicek, A.; Yanik, A. A., Beyond Noble Metals: High Q-Factor Aluminum Nanoplasmonics. ACS Photonics 2020, 7 (2), 416-424.
164. Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N., Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chemical Reviews 2018, 118 (12), 5912-5951.
165. Knight, M. W.; King, N. S.; Liu, L.; Everitt, H. O.; Nordlander, P.; Halas, N. J., Aluminum for Plasmonics. ACS Nano 2014, 8 (1), 834-840.
166. Sobhani, A.; Manjavacas, A.; Cao, Y.; McClain, M. J.; García de Abajo, F. J.; Nordlander, P.; Halas, N. J., Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. Nano Letters 2015, 15 (10), 6946-6951.
167. Rodriguez, S. R. K.; Abass, A.; Maes, B.; Janssen, O. T. A.; Vecchi, G.; Gómez Rivas, J., Coupling Bright and Dark Plasmonic Lattice Resonances. Physical Review X 2011, 1 (2), 021019.
168. Hakala, T. K.; Rekola, H. T.; Väkeväinen, A. I.; Martikainen, J. P.; Nečada, M.; Moilanen, A. J.; Törmä, P., Lasing in dark and bright modes of a finite-sized plasmonic lattice. Nature Communications 2017, 8 (1), 13687.
169. Rodriguez, S. R. K.; Schaafsma, M. C.; Berrier, A.; Gómez Rivas, J., Collective resonances in plasmonic crystals: Size matters. Physica B: Condensed Matter 2012, 407 (20), 4081-4085.
170. Novotny, L., Strong coupling, energy splitting, and level crossings: A classical perspective. American Journal of Physics 2010, 78 (11), 1199-1202.
171. Scully, M. O.; Zubairy, M. S., Quantum Optics. Cambridge University Press: Cambridge, 1997.
172. Törmä, P.; Barnes, W. L., Strong coupling between surface plasmon polaritons and emitters: a review. Reports on Progress in Physics 2014, 78 (1), 013901.
173. Eckerlin, P.; Kandler, H. Crystal symmetry tables: Datasheet from Landolt-Börnstein - Group III Condensed Matter · Volume 6: "Structure Data of Elements and Intermetallic Phases" in SpringerMaterials (https://doi.org/10.1007/10201454_2), Springer-Verlag Berlin Heidelberg.
174. Hakala, T. K.; Toppari, J. J.; Kuzyk, A.; Pettersson, M.; Tikkanen, H.; Kunttu, H.; Törmä, P., Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules. Physical Review Letters 2009, 103 (5), 053602.
175. Winkler, J. M.; Rabouw, F. T.; Rossinelli, A. A.; Jayanti, S. V.; McPeak, K. M.; Kim, D. K.; le Feber, B.; Prins, F.; Norris, D. J., Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters 2019, 19 (1), 108-115.
176. Wang, S.; Li, S.; Chervy, T.; Shalabney, A.; Azzini, S.; Orgiu, E.; Hutchison, J. A.; Genet, C.; Samorì, P.; Ebbesen, T. W., Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. Nano Letters 2016, 16 (7), 4368-4374.
177. Han, X.; Wang, K.; Xing, X.; Wang, M.; Lu, P., Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature. ACS Photonics 2018, 5 (10), 3970-3976.
178. Wen, J.; Wang, H.; Wang, W.; Deng, Z.; Zhuang, C.; Zhang, Y.; Liu, F.; She, J.; Chen, J.; Chen, H.; Deng, S.; Xu, N., Room-Temperature Strong Light–Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals. Nano Letters 2017, 17 (8), 4689-4697.
179. Zheng, D.; Zhang, S.; Deng, Q.; Kang, M.; Nordlander, P.; Xu, H., Manipulating Coherent Plasmon–Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2. Nano Letters 2017, 17 (6), 3809-3814.
180. Liang, K.; Guo, J.; Wu, F.; Huang, Y.; Yu, L., Dynamic Control of Quantum Emitters Strongly Coupled to the Isolated Plasmon Cavity by the Microfluidic Device. The Journal of Physical Chemistry C 2021, 125 (31), 17303-17310.
181. Munkhbat, B.; Baranov, D. G.; Bisht, A.; Hoque, M. A.; Karpiak, B.; Dash, S. P.; Shegai, T., Electrical Control of Hybrid Monolayer Tungsten Disulfide–Plasmonic Nanoantenna Light–Matter States at Cryogenic and Room Temperatures. ACS Nano 2020, 14 (1), 1196-1206.
182. Geisler, M.; Cui, X.; Wang, J.; Rindzevicius, T.; Gammelgaard, L.; Jessen, B. S.; Gonçalves, P. A. D.; Todisco, F.; Bøggild, P.; Boisen, A.; Wubs, M.; Mortensen, N. A.; Xiao, S.; Stenger, N., Single-Crystalline Gold Nanodisks on WS2 Mono- and Multilayers for Strong Coupling at Room Temperature. ACS Photonics 2019, 6 (4), 994-1001.
183. Sun, J.; Hu, H.; Zheng, D.; Zhang, D.; Deng, Q.; Zhang, S.; Xu, H., Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano 2018, 12 (10), 10393-10402.
184. Hou, S.; Tobing, L. Y. M.; Wang, X.; Xie, Z.; Yu, J.; Zhou, J.; Zhang, D.; Dang, C.; Coquet, P.; Tay, B. K.; Birowosuto, M. D.; Teo, E. H. T.; Wang, H., Manipulating Coherent Light–Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS2 Monolayer Coupled with Plasmonic Nanocavities. Advanced Optical Materials 2019, 7 (22), 1900857.
185. Wang, M.; Krasnok, A.; Zhang, T.; Scarabelli, L.; Liu, H.; Wu, Z.; Liz-Marzán, L. M.; Terrones, M.; Alù, A.; Zheng, Y., Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature. Advanced Materials 2018, 30 (22), 1705779.
186. Vakevainen, A. I.; Moerland, R. J.; Rekola, H. T.; Eskelinen, A. P.; Martikainen, J. P.; Kim, D. H.; Torma, P., Plasmonic Surface Lattice Resonances at the Strong Coupling Regime. Nano Letters 2014, 14 (4), 1721-1727.
187. Levshin, L. V.; Reva, M. G.; Ryzhikov, B. D., Effect of intermolecular interactions on the electronic spectra of rhodamine 6G. J Appl Spectrosc+ 1977, 26, 48-51.
188. Bojarski, P., Concentration quenching and depolarization of rhodamine 6G in the presence of fluorescent dimers in polyvinyl alcohol films. Chem Phys Lett 1997, 278 (4), 225-232.
189. Gordon, J. P.; Zeiger, H. J.; Townes, C. H., The Maser---New Type of Microwave Amplifier, Frequency Standard, and Spectrometer. Physical Review 1955, 99 (4), 1264-1274.
190. Schawlow, A. L.; Townes, C. H., Infrared and Optical Masers. Physical Review 1958, 112 (6), 1940-1949.
191. Maiman, T. H.; Hoskins, R. H.; D'Haenens, I. J.; Asawa, C. K.; Evtuhov, V., Stimulated Optical Emission in Fluorescent Solids. II. Spectroscopy and Stimulated Emission in Ruby. Physical Review 1961, 123 (4), 1151-1157.
192. Vahala, K. J., Optical microcavities. Nature 2003, 424 (6950), 839-846.
193. Noda, S., Seeking the Ultimate Nanolaser. Science 2006, 314 (5797), 260-261.
194. Hill, M. T.; Gather, M. C., Advances in small lasers. Nature Photonics 2014, 8, 908.
195. Liang, Y.; Li, C.; Huang, Y.-Z.; Zhang, Q., Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges. ACS Nano 2020, 14 (11), 14375-14390.
196. Ma, R.-M.; Oulton, R. F.; Sorger, V. J.; Zhang, X., Plasmon lasers: coherent light source at molecular scales. Laser & Photonics Reviews 2013, 7 (1), 1-21.
197. Wang, D.; Wang, W.; Knudson, M. P.; Schatz, G. C.; Odom, T. W., Structural Engineering in Plasmon Nanolasers. Chemical Reviews 2018, 118 (6), 2865-2881.
198. Wu, H.; Gao, Y. X.; Xu, P. Z.; Guo, X.; Wang, P.; Dai, D. X.; Tong, L. M., Plasmonic Nanolasers: Pursuing Extreme Lasing Conditions on Nanoscale. Advanced Optical Materials 2019, 7 (17).
199. Sirtori, C.; Gmachl, C.; Capasso, F.; Faist, J.; Sivco, D. L.; Hutchinson, A. L.; Cho, A. Y., Long-wavelength (? ? 8–11.5??µm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 1998, 23 (17), 1366-1368.
200. Bergman, D. J.; Stockman, M. I., Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Physical Review Letters 2003, 90 (2), 027402.
201. Stockman, M. I., Spasers explained. Nature Photonics 2008, 2 (6), 327-329.
202. Mark, I. S., The spaser as a nanoscale quantum generator and ultrafast amplifier. Journal of Optics 2010, 12 (2), 024004.
203. Galanzha, E. I.; Weingold, R.; Nedosekin, D. A.; Sarimollaoglu, M.; Nolan, J.; Harrington, W.; Kuchyanov, A. S.; Parkhomenko, R. G.; Watanabe, F.; Nima, Z.; Biris, A. S.; Plekhanov, A. I.; Stockman, M. I.; Zharov, V. P., Spaser as a biological probe. Nature Communications 2017, 8 (1), 15528.
204. Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Bakker, R.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U., Demonstration of a spaser-based nanolaser. Nature 2009, 460 (7259), 1110-1112.
205. Meng, X.; Kildishev, A. V.; Fujita, K.; Tanaka, K.; Shalaev, V. M., Wavelength-Tunable Spasing in the Visible. Nano Letters 2013, 13 (9), 4106-4112.
206. Ziegler, J.; Wörister, C.; Vidal, C.; Hrelescu, C.; Klar, T. A., Plasmonic Nanostars as Efficient Broadband Scatterers for Random Lasing. ACS Photonics 2016, 3 (6), 919-923.
207. Wang, Z.; Meng, X.; Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M., Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers. Laser & Photonics Reviews 2017, 11 (6), 1700212.
208. Kress, S. J. P.; Cui, J.; Rohner, P.; Kim, D. K.; Antolinez, F. V.; Zaininger, K.-A.; Jayanti, S. V.; Richner, P.; McPeak, K. M.; Poulikakos, D.; Norris, D. J., A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers. Science Advances 2017, 3 (9), e1700688.
209. Bermúdez-Ureña, E.; Tutuncuoglu, G.; Cuerda, J.; Smith, C. L. C.; Bravo-Abad, J.; Bozhevolnyi, S. I.; Fontcuberta i Morral, A.; García-Vidal, F. J.; Quidant, R., Plasmonic Waveguide-Integrated Nanowire Laser. Nano Letters 2017, 17 (2), 747-754.
210. Röder, R.; Sidiropoulos, T. P. H.; Tessarek, C.; Christiansen, S.; Oulton, R. F.; Ronning, C., Ultrafast Dynamics of Lasing Semiconductor Nanowires. Nano Letters 2015, 15 (7), 4637-4643.
211. Lee, C.-J.; Yeh, H.; Cheng, F.; Su, P.-H.; Her, T.-H.; Chen, Y.-C.; Wang, C.-Y.; Gwo, S.; Bank, S. R.; Shih, C.-K.; Chang, W.-H., Low-Threshold Plasmonic Lasers on a Single-Crystalline Epitaxial Silver Platform at Telecom Wavelength. ACS Photonics 2017, 4 (6), 1431-1439.
212. Kwon, S.-H.; Kang, J.-H.; Seassal, C.; Kim, S.-K.; Regreny, P.; Lee, Y.-H.; Lieber, C. M.; Park, H.-G., Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity. Nano Letters 2010, 10 (9), 3679-3683.
213. Lu, Y.-J.; Shen, T. L.; Peng, K.-N.; Cheng, P.-J.; Chang, S.-W.; Lu, M.-Y.; Chu, C. W.; Guo, T.-F.; Atwater, H. A., Upconversion Plasmonic Lasing from an Organolead Trihalide Perovskite Nanocrystal with Low Threshold. ACS Photonics 2021, 8 (1), 335-342.
214. Hsieh, Y.-H.; Hsu, B.-W.; Peng, K.-N.; Lee, K.-W.; Chu, C. W.; Chang, S.-W.; Lin, H.-W.; Yen, T.-J.; Lu, Y.-J., Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold. ACS Nano 2020, 14 (9), 11670-11676.
215. Wang, S.; Wang, X. Y.; Li, B.; Chen, H. Z.; Wang, Y. L.; Dai, L.; Oulton, R. F.; Ma, R. M., Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit. Nature Communications 2017, 8.
216. Chou, Y. H.; Wu, Y. M.; Hong, K. B.; Chou, B. T.; Shih, J. H.; Chung, Y. C.; Chen, P. Y.; Lin, T. R.; Lin, C. C.; Lin, S. D.; Lu, T. C., High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum. Nano Letters 2016, 16 (5), 3179-3186.
217. Yang, X.; Ni, P.-N.; Jing, P.-T.; Zhang, L.-G.; Ma, R.-M.; Shan, C.-X.; Shen, D.-Z.; Genevet, P., Room Temperature Electrically Driven Ultraviolet Plasmonic Lasers. Advanced Optical Materials 2019, 7 (10), 1801681.
218. Ho, Y.-L.; Clark, J. K.; Kamal, A. S. A.; Delaunay, J.-J., On-Chip Monolithically Fabricated Plasmonic-Waveguide Nanolaser. Nano Letters 2018, 18 (12), 7769-7776.
219. Lee, C. J.; Yeh, H.; Cheng, F.; Su, P. H.; Her, T. H.; Chen, Y. C.; Wang, C. Y.; Gwo, S.; Bank, S. R.; Shih, C. K.; Chang, W. H., Low-Threshold Plasmonic Lasers on a Single-Crystalline Epitaxial Silver Platform at Telecom Wavelength. Acs Photonics 2017, 4 (6), 1431-1439.
220. Khajavikhan, M.; Simic, A.; Katz, M.; Lee, J. H.; Slutsky, B.; Mizrahi, A.; Lomakin, V.; Fainman, Y., Thresholdless nanoscale coaxial lasers. Nature 2012, 482 (7384), 204-207.
221. Hill, M. T.; Oei, Y.-S.; Smalbrugge, B.; Zhu, Y.; de Vries, T.; van Veldhoven, P. J.; van Otten, F. W. M.; Eijkemans, T. J.; Turkiewicz, J. P.; de Waardt, H.; Geluk, E. J.; Kwon, S.-H.; Lee, Y.-H.; Nötzel, R.; Smit, M. K., Lasing in metallic-coated nanocavities. Nature Photonics 2007, 1 (10), 589-594.
222. Hill, M. T.; Marell, M.; Leong, E. S. P.; Smalbrugge, B.; Zhu, Y.; Sun, M.; van Veldhoven, P. J.; Geluk, E. J.; Karouta, F.; Oei, Y.-S.; Nötzel, R.; Ning, C.-Z.; Smit, M. K., Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 2009, 17 (13), 11107-11112.
223. Ding, K.; Liu, Z. C.; Yin, L. J.; Hill, M. T.; Marell, M. J. H.; van Veldhoven, P. J.; Nöetzel, R.; Ning, C. Z., Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Physical Review B 2012, 85 (4), 041301.
224. Ding, K.; Hill, M. T.; Liu, Z. C.; Yin, L. J.; van Veldhoven, P. J.; Ning, C. Z., Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 2013, 21 (4), 4728-4733.
225. Wu, X.; Xiao, Y.; Meng, C.; Zhang, X.; Yu, S.; Wang, Y.; Yang, C.; Guo, X.; Ning, C. Z.; Tong, L., Hybrid Photon-Plasmon Nanowire Lasers. Nano Letters 2013, 13 (11), 5654-5659.
226. Li, Y. J.; Lv, Y.; Zou, C.-L.; Zhang, W.; Yao, J.; Zhao, Y. S., Output Coupling of Perovskite Lasers from Embedded Nanoscale Plasmonic Waveguides. Journal of the American Chemical Society 2016, 138 (7), 2122-2125.
227. Shangjr, G.; Chih-Kang, S., Semiconductor plasmonic nanolasers: current status and perspectives. Reports on Progress in Physics 2016, 79 (8), 086501.
228. Wang, W.; Ramezani, M.; Väkeväinen, A. I.; Törmä, P.; Rivas, J. G.; Odom, T. W., The rich photonic world of plasmonic nanoparticle arrays. Materials Today 2018, 21 (3), 303-314.
229. Suh, J. Y.; Kim, C. H.; Zhou, W.; Huntington, M. D.; Co, D. T.; Wasielewski, M. R.; Odom, T. W., Plasmonic Bowtie Nanolaser Arrays. Nano Letters 2012, 12 (11), 5769-5774.
230. Zhou, W.; Dridi, M.; Suh, J. Y.; Kim, C. H.; Co, D. T.; Wasielewski, M. R.; Schatz, G. C.; Odom, T. W., Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology 2013, 8 (7), 506-511.
231. Schokker, A. H.; Koenderink, A. F., Lasing at the band edges of plasmonic lattices. Physical Review B 2014, 90 (15), 155452.
232. Yang, A.; Hoang, T. B.; Dridi, M.; Deeb, C.; Mikkelsen, M. H.; Schatz, G. C.; Odom, T. W., Real-time tunable lasing from plasmonic nanocavity arrays. Nature Communications 2015, 6 (1), 6939.
233. Schokker, A. H.; Koenderink, A. F., Statistics of Randomized Plasmonic Lattice Lasers. ACS Photonics 2015, 2 (9), 1289-1297.
234. Yang, A.; Li, Z.; Knudson, M. P.; Hryn, A. J.; Wang, W.; Aydin, K.; Odom, T. W., Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals. ACS Nano 2015, 9 (12), 11582-11588.
235. Schokker, A. H.; Koenderink, A. F., Lasing in quasi-periodic and aperiodic plasmon lattices. Optica 2016, 3 (7), 686-693.
236. Wang, D.; Yang, A.; Wang, W.; Hua, Y.; Schaller, R. D.; Schatz, G. C.; Odom, T. W., Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nature Nanotechnology 2017, 12 (9), 889-894.
237. Deeb, C.; Guo, Z.; Yang, A.; Huang, L.; Odom, T. W., Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays. Nano Letters 2018, 18 (2), 1454-1459.
238. Guo, K.; Koenderink, A. F., Spatial Intensity Distribution in Plasmonic Particle Array Lasers. Phys Rev Appl 2019, 11 (2), 024025.
239. Guo, R.; Nečada, M.; Hakala, T. K.; Väkeväinen, A. I.; Törmä, P., Lasing at $K$ Points of a Honeycomb Plasmonic Lattice. Physical Review Letters 2019, 122 (1), 013901.
240. Rekola, H. T.; Hakala, T. K.; Törmä, P., One-Dimensional Plasmonic Nanoparticle Chain Lasers. ACS Photonics 2018, 5 (5), 1822-1826.
241. Pourjamal, S.; Hakala, T. K.; Nečada, M.; Freire-Fernández, F.; Kataja, M.; Rekola, H.; Martikainen, J.-P.; Törmä, P.; van Dijken, S., Lasing in Ni Nanodisk Arrays. ACS Nano 2019, 13 (5), 5686-5692.
242. Ha, S. T.; Fu, Y. H.; Emani, N. K.; Pan, Z.; Bakker, R. M.; Paniagua-Domínguez, R.; Kuznetsov, A. I., Directional lasing in resonant semiconductor nanoantenna arrays. Nature Nanotechnology 2018, 13 (11), 1042-1047.
243. van Beijnum, F.; van Veldhoven, P. J.; Geluk, E. J.; de Dood, M. J. A.; ’t Hooft, G. W.; van Exter, M. P., Surface Plasmon Lasing Observed in Metal Hole Arrays. Physical Review Letters 2013, 110 (20), 206802.
244. van Exter, M. P.; Tenner, V. T.; van Beijnum, F.; de Dood, M. J. A.; van Veldhoven, P. J.; Geluk, E. J.; ’t Hooft, G. W., Surface plasmon dispersion in metal hole array lasers. Opt. Express 2013, 21 (22), 27422-27437.
245. Tenner, V. T.; Delft, A. N. v.; Dood, M. J. A. d.; Exter, M. P. v., Loss and scattering of surface plasmon polaritons on optically-pumped hole arrays. Journal of Optics 2014, 16 (11), 114019.
246. Tenner, V. T.; de Dood, M. J. A.; van Exter, M. P., Two-mode surface plasmon lasing in hexagonal arrays. Opt. Lett. 2018, 43 (2), 166-169.
247. Meng, X.; Liu, J.; Kildishev, A. V.; Shalaev, V. M., Highly directional spaser array for the red wavelength region. Laser & Photonics Reviews 2014, 8 (6), 896-903.
248. Qi, B.; Chen, H.-Z.; Ge, L.; Berini, P.; Ma, R.-M., Parity–Time Symmetry Synthetic Lasers: Physics and Devices. Advanced Optical Materials 2019, 7 (22), 1900694.
249. Feng, L.; Wong, Z. J.; Ma, R.-M.; Wang, Y.; Zhang, X., Single-mode laser by parity-time symmetry breaking. Science 2014, 346 (6212), 972.
250. Yang, Z.-Q.; Shao, Z.-K.; Chen, H.-Z.; Mao, X.-R.; Ma, R.-M., Spin-Momentum-Locked Edge Mode for Topological Vortex Lasing. Physical Review Letters 2020, 125 (1), 013903.
251. Shao, Z.-K.; Chen, H.-Z.; Wang, S.; Mao, X.-R.; Yang, Z.-Q.; Wang, S.-L.; Wang, X.-X.; Hu, X.; Ma, R.-M., A high-performance topological bulk laser based on band-inversion-induced reflection. Nature Nanotechnology 2020, 15 (1), 67-72.
252. Wu, J.-S.; Apalkov, V.; Stockman, M. I., Topological Spaser. Physical Review Letters 2020, 124 (1), 017701.
253. Ghimire, R.; Nematollahi, F.; Wu, J.-S.; Apalkov, V.; Stockman, M. I., TMDC-Based Topological Nanospaser: Single and Double Threshold Behavior. ACS Photonics 2021, 8 (3), 907-915.
254. Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kanté, B., Lasing action from photonic bound states in continuum. Nature 2017, 541 (7636), 196-199.
255. Hwang, M.-S.; Lee, H.-C.; Kim, K.-H.; Jeong, K.-Y.; Kwon, S.-H.; Koshelev, K.; Kivshar, Y.; Park, H.-G., Ultralow-threshold laser using super-bound states in the continuum. Nature Communications 2021, 12 (1), 4135.
256. Huang, C.; Zhang, C.; Xiao, S.; Wang, Y.; Fan, Y.; Liu, Y.; Zhang, N.; Qu, G.; Ji, H.; Han, J.; Ge, L.; Kivshar, Y.; Song, Q., Ultrafast control of vortex microlasers. Science 2020, 367 (6481), 1018-1021.
257. Hsu, C. W.; Zhen, B.; Stone, A. D.; Joannopoulos, J. D.; Soljačić, M., Bound states in the continuum. Nature Reviews Materials 2016, 1 (9), 16048.
258. Hsu, C. W.; Zhen, B.; Lee, J.; Chua, S.-L.; Johnson, S. G.; Joannopoulos, J. D.; Soljačić, M., Observation of trapped light within the radiation continuum. Nature 2013, 499 (7457), 188-191.
259. Zhang, Y.; Chen, A.; Liu, W.; Hsu, C. W.; Wang, B.; Guan, F.; Liu, X.; Shi, L.; Lu, L.; Zi, J., Observation of Polarization Vortices in Momentum Space. Physical Review Letters 2018, 120 (18), 186103.
260. Fan, S.; Suh, W.; Joannopoulos, J. D., Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20 (3), 569-572.
261. Hsu, C. W.; Zhen, B.; Chua, S.-L.; Johnson, S. G.; Joannopoulos, J. D.; Soljačić, M., Bloch surface eigenstates within the radiation continuum. Light: Science & Applications 2013, 2 (7), e84-e84.
262. Yamamoto, N.; Saito, H., Size dependence of band structures in a two-dimensional plasmonic crystal with a square lattice. Opt. Express 2014, 22 (24), 29761-29777.
263. Wu, M.; Ha, S. T.; Shendre, S.; Durmusoglu, E. G.; Koh, W.-K.; Abujetas, D. R.; Sánchez-Gil, J. A.; Paniagua-Domínguez, R.; Demir, H. V.; Kuznetsov, A. I., Room-Temperature Lasing in Colloidal Nanoplatelets via Mie-Resonant Bound States in the Continuum. Nano Letters 2020, 20 (8), 6005-6011.
264. Yang, J.-H.; Huang, Z.-T.; Maksimov, D. N.; Pankin, P. S.; Timofeev, I. V.; Hong, K.-B.; Li, H.; Chen, J.-W.; Hsu, C.-Y.; Liu, Y.-Y.; Lu, T.-C.; Lin, T.-R.; Yang, C.-S.; Chen, K.-P., Low-Threshold Bound State in the Continuum Lasers in Hybrid Lattice Resonance Metasurfaces. Laser & Photonics Reviews 2021, 15 (10), 2100118.
265. Guan, J.; Sagar, L. K.; Li, R.; Wang, D.; Bappi, G.; Watkins, N. E.; Bourgeois, M. R.; Levina, L.; Fan, F.; Hoogland, S.; Voznyy, O.; Martins de Pina, J.; Schaller, R. D.; Schatz, G. C.; Sargent, E. H.; Odom, T. W., Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. Nano Letters 2020, 20 (2), 1468-1474.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *