帳號:guest(18.221.61.135)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡秉叡
作者(外文):Tsai, Ping-Jui
論文名稱(中文):1.水橋現象及相關效應之探討 2.利用統計方法分析SHR以及WKY老鼠
論文名稱(外文):1.New Phenomenon and Evidence in Project of Water Bridge 2.Defining States of Mental Disorder via Statistical Methods on SHR and WKY
指導教授(中文):洪在明
指導教授(外文):Hong, Tzay-Ming
口試委員(中文):周亞謙
張家靖
徐鏞元
口試委員(外文):Chou, Ya-Chang
Chang, Chia-Ching
Hsu, Yung-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:104022509
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:69
中文關鍵詞:水橋決策樹病理分析老鼠電偶極電容
外文關鍵詞:capacitancedecision treeelectric dipolemental disorderratwater bridge
相關次數:
  • 推薦推薦:0
  • 點閱點閱:570
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
摘要
  此篇論文探討水橋(water thread or water bridge)現象,攸關無雜質的去離子水,在高電壓下的物理現象。此現象是William Armstrong在1893年首次發現的,實驗裝置是在兩個燒杯口,距離不為零的情況,串聯600伏特直流電壓,正極端的去離子水會主動噴出水柱(cone jet),在燒杯間搭建起一條抵抗重力的水橋。雖然已經有許多有關水橋現象的實驗與理論,我們希望藉由特殊的實驗設計來間接證實及探討其完整的物理意義,這包括以下兩個面向:
首先是垂涎現象,它是指當我們使用注射幫浦(syringe pump),將水滴落降在水橋上。如果這個撞擊超過水橋的支撐能耐,會出現一連串的排水現象,將多餘的水排出水橋;當水橋漸漸恢復原狀,取而代之的是具有再現性的滴水現象,透過每秒1000張的高速攝影機,可以清晰看見不同電壓造成的不同垂涎長度以及隨後的抬升行為,我們暱稱其為垂涎現象。
其次是當我們把電壓移除或是將燒杯距離加大,導致水橋斷裂,會發現在水橋中間產生一個帶電水團,這個現象有助於了解,在燒杯口是否有累積電荷?換言之,可否將這兩個燒杯視為一等效電容?我們使用高速攝影機以及外加電場來測量水團的帶電量,並改變燒杯口的幾何形狀,來驗證等效電容這個假設模型,能否正確地預測實驗上觀測到的水團電性。
結合物理、生醫及統計領域的第二主題,專注在提出並探討一個新的方法論,俾
使科學家在神經網路特性中,能找出一套可以兼具定性及定量的數值,來定義不同的
老鼠病理狀態。之後,再藉由這個狀態,使用統計方法來找出一套能夠篩選多個狀態
以及病理的機制,在狀態分類上,分為生理和外在作用-生理狀態計有WKY(一般情
形)及SHR(過動症情形)兩種,在外在作用的情況,我們選用麻醉劑,以IOS(麻醉劑)濃度的量值來區分高與低麻醉,藉此分類不同型態的實驗鼠,並加以分析。
Abstrct

Up to now, Although scientist offer many theories trying to solve, but all theories are all incomplete, in this post, we will show two and more experiments and theory to make complete - Capacitance effect, Saliva phenomenon and film.

In the past two decades neuroscience has offered many popular methods for the analysis mental disorder, such as seed-based analysis, ICA, and graph methods. They are widely used in the study of brain network. We offered a new procedure that can simplify the analysis and has a high ROC index over 9. This method is based on graph methods to build a connectivity network, which is characterized by degrees in this paper and measures the number of effective links for each voxel. When the degree is ranked from low to high, the network equation can be fit by the power-law distribution. It has been proposed that human behavior can be differentiated by distinct and yet robust exponents of the power law. Using the mentally disordered SHR and WKY rats as our samples, We used chi-square distribution and decision tree to analyze the statistical properties of this power law and identify its different math traits. This is more concise, precise, and useful than the majority of conventional approaches.

Keywords: Capacitance; Decision Tree; Electric Dipole; Mental Disorder; Rat; Water Bridge.
第一主題目錄
第一章 水橋簡介 1
1.1 研究動機 1
1.2 Taylor jet 2
1.3 Plasma 4
1.4 水橋相關現象的定性描述 6
1.4.1 水橋的成因 6
1.4.2 混入甘油的水橋 9
1.4.3水橋的內外流向 11
1.4.4水橋的垂涎現象 15
1.4.5水橋移動式斷裂後水珠帶電性 17
1.4.6利用帶電平行板了解水橋斷裂後,等效電容如何影響水珠電性 17
1.4.7電容特性對於水橋穩定的必要性 17
1.4.8藉由水滴轟擊水橋表面的穿透狀況探討極化現象 18
1.4.9藉由水橋拉出光學凹凸透鏡薄膜 19
第二章 儀器與相關程式工作原理 21
2.1 高電壓裝置 21
2.1.1高電壓電源供應器與實驗校準 21
2.2 高速攝影機 22
2.2.1進行拍攝影像部分 23
2.2.2觀看已拍攝的影像部分 23
2.2.3 比例尺 24
2.3基礎水橋系統的架設 25
2.4 特殊實驗相關設置 25
2.4.1 樣品準備 25
2.4.2實驗設置-水橋的垂涎現象 26
2.4.3實驗設置-水橋移動式斷裂後,水珠的帶電性實驗設置 27
2.4.4實驗設置-水橋斷裂後,藉由實驗控制來決定水珠的電性 27
2.4.5實驗設置-利用帶電平行板了解水橋斷裂後,等效電容如何影響水珠電性 28
2.4.6實驗設置-利用水橋的水分子聚集特性,拉出具有可塑性的液態薄膜 28
2.5 相關的電腦模擬 28
2.5.1 利用給定的條件檢測垂涎長度 28
2.5.2蒙地卡羅模擬檢測表面流向 29
第三章 實驗結果與討論 30
3.1 垂涎現象數據分析 30
3.2 水橋移動式斷裂後,水珠的帶電性 35
3.3水橋雙邊斷電式斷裂後,水珠的帶電性探討 35
3.4 水橋拉出薄膜成果 38
3.5 蒙地卡羅數據呈現 42
第四章 結論 44
第五章 水橋參考文獻 47
第六章 水橋相關文獻 49

第二主題目錄

CH-1 Introduction 51
CH-2 Results 55
CH-3 Discussion 57
CH-4 Materials and Methods 64
CH-5 References 66
CH-6 Author contributions 69
1. G. K. Vemulapalli and S. G. Kukolich, Why does a stream of
water deflect in an electric field? J. Chem. Educ. 73, 887
(1996).
2. S. T. Bramwell, Condensed-matter science: Ferroelectric ice,
Nature 397, 212 (1999).
3. M. F. Toney et al. , Voltage-dependent ordering of water
molecules at an electrode-electrolyte interface, Nature 368,
444 (1994).
4. W. Stumm, Reactivity at the mineral-water interface:
Dissolution and inhibition,Colloid Surface A 120, 143 (1997).
5. B. Honig and A. Nicholls, Classical electrostatics in
biology and chemistry, Science 268, 1144 (1995).
6. E. C. Fuchs et al. , The floating water bridge, J. Phys. D:
Appl. Phys. 40, 6112 (2007).
7. G. Taylor, Disintegration of water drops in an electric field,
Proc. R. Soc. Lond. A 280, 383 (1964).
8. E. C. Fuchs et al., Neutron scattering of a floating heavy
water bridge, J. Phys. D: Appl. Phys. 42, 065502 (2009).

9. E. C. Fuchs et al. , Two-dimensional neutron scattering in
a floating heavy water bridge, J. Phys. D: Appl. Phys. 43,
105502 (2010).
10. D. Rai, A. D. Kulkarni, S. P. Gejji, and R. K. Pathak, Water
clusters (H2O)n, n=6–8, in external electric fields, J. Chem.
Phys. 128, 034310 (2008).


1. Victor M. Egu´lluz. et al. Scale-Free Brain Functional Network. PRL. 94:018102 (2005). 2. Sheng-Min Huang. et al. Inter-Strain Differences in Default Mode Network: A Resting State fMRI Study on Spontaneously Hypertensive Rat and Wistar Kyoto rat, Scientific Report, 21697 (2016). 3. Xavier Gabaix, Zipf’s Law for Cities: An Explanation. The Quarterly Journal of Economics. 739-767 (1999). 4. Reka ´ Albert. et al.Internet: Diameter of the World-Wide Web, Nature, 130–131 (1999). 5. Xavier Gabaix. et al. A theory of power-law distributions in financial market fluctuations. Nature. 267–270 (2003). 6. Heiga Zen. et al. Statistical parametric speech synthesis using deep neural networks. IEEE International Conference on Acoustics. Speech and Signal Processing, 7962-7966 (2013). 7. Usama M. Fayyad. et al. On the handling of continuous-valued attributes in decision tree generation, Machine Learning, 87-102 (1992). 8. Yong Sheng. et al. Decision Tree-Based Methodology for High Impedance Fault Detection. IEEE TRANSACTIONS ON POWER DELIVERY. 533-536 (2004). 9. Raj Kumar. et al. Recognition of Power-Quality Disturbances Using S-Transform-Based ANN Classifier and Rule-Based Decision Tree. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. 1249-1258 (2015).

10. Mai Shouman. et al. Using Decision Tree for Diagnosing Heart Disease Patients. Proceedings of the 9-th Australasian Data Mining Confere (AusDM’11). 23-29 (2011). 11. Sotiris A Pavlopoulos. et al. A decision tree – based method for the differential diagnosis of Aortic Stenosis from Mitral Regurgitation using heart sounds. BioMedical Engineering OnLine. 3: 21 (2004). 12. Yinsheng Qu. et al. Boosted Decision Tree Analysis of Surface-enhanced Laser Desorption/Ionization Mass Spectral Serum Profiles Discriminates Prostate Cancer from Noncancer Patients, Clinical Chemistry, 48:10 (2002). 13. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature. 440–442 (1998). 14. S. H. Strogatz. Exploring complex networks. Nature. 268–276 (2001). 15. Sheng-Min Huang. et al. Inter-Strain Differences in Default Mode Network: A Resting State fMRI Study on Spontaneously Hypertensive Rat and Wistar Kyoto Rat. Scientific Report. 21697 (2016). 16. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 186–198 (2009). 17. H. Akaike, in Proceedings of the Second International Sympo- sium on Information Theory, edited by B. N. Petrov and F. Csaki (Akademiai Kiado, Budapest, 1973), pp. 267–281; IEEE Trans. Automat. Control 19, 716 (1974); A Celebration of Statistics, edited by A. C. Atkinson and S. E. Fienberg (Springer, Berlin, 1985), pp. 1–24. 18. Elizabeth B. Liddle. et al. Task-relate d default mode network modulationand inhibitory control in ADH D: effects ofmotivation and methylphenidate. Journal of Child Psychology and Psychiatry, 761–771 (2011).

19. Katell Mevel. et al. The Default Mode Network in Healthy Aging and Alzheimer’s Disease. International Journal of Alzheimer’s Disease. 535816 (2011). 20. D.T. Jones, M.M. Machulda, P. Vemuri, E.M. McDade, G. Zeng, M.L. Senjem, J.L. Gunter, S.A. Przybelski, R.T. Avula, D.S. Knopman, B.F. Boeve, R.C. Petersen, C.R. Jack, The Default Mode Network in Healthy Aging and Alzheimer’s Disease, Neurology, 7 April 2011. 21. Yvette I. Shelinea. et al. The default mode network and self-referential processes in depression. PNAS. 1942-1947 (2009). 22. P. Salgado-Pineda. et al. Correlated structural and functional brain abnormalities in the default mode network in schizophrenia patients, Schizophrenia Research. 101-109 (2011). 10/11 23. Tuomo Starck. et al. Resting state fMRI reveals a default mode dissociation between retrosplenial and medial prefrontal subnetworks in ASD despite motion scrubbing, Frontiers in Human Neuroscience, 7:802 (2013). 24. A.C. Tan, D. Gilbert, Ensemble machine learning on gene expression data forcancer classification, Appl. Bioinform. 75-83 (2003). 25. X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.F. McLachlan,A. Ng, B. Liu, P.S. Yu, Z.H. Zhou, M. Steinbach, D.J. Hand, D. Steinberg. Top 10 algorithms in data mining. Knowl. Inform. Syst. 1-37 (2008). 26. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann. Los Altos. (1993).
27. Sun-Ting Tsai. et al. Power-law ansatz in complex systems: Excessive loss of information, PHYSICAL REVIEW E 92. 062925 (2015).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *