|
1. G. K. Vemulapalli and S. G. Kukolich, Why does a stream of water deflect in an electric field? J. Chem. Educ. 73, 887 (1996). 2. S. T. Bramwell, Condensed-matter science: Ferroelectric ice, Nature 397, 212 (1999). 3. M. F. Toney et al. , Voltage-dependent ordering of water molecules at an electrode-electrolyte interface, Nature 368, 444 (1994). 4. W. Stumm, Reactivity at the mineral-water interface: Dissolution and inhibition,Colloid Surface A 120, 143 (1997). 5. B. Honig and A. Nicholls, Classical electrostatics in biology and chemistry, Science 268, 1144 (1995). 6. E. C. Fuchs et al. , The floating water bridge, J. Phys. D: Appl. Phys. 40, 6112 (2007). 7. G. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc. Lond. A 280, 383 (1964). 8. E. C. Fuchs et al., Neutron scattering of a floating heavy water bridge, J. Phys. D: Appl. Phys. 42, 065502 (2009).
9. E. C. Fuchs et al. , Two-dimensional neutron scattering in a floating heavy water bridge, J. Phys. D: Appl. Phys. 43, 105502 (2010). 10. D. Rai, A. D. Kulkarni, S. P. Gejji, and R. K. Pathak, Water clusters (H2O)n, n=6–8, in external electric fields, J. Chem. Phys. 128, 034310 (2008).
1. Victor M. Egu´lluz. et al. Scale-Free Brain Functional Network. PRL. 94:018102 (2005). 2. Sheng-Min Huang. et al. Inter-Strain Differences in Default Mode Network: A Resting State fMRI Study on Spontaneously Hypertensive Rat and Wistar Kyoto rat, Scientific Report, 21697 (2016). 3. Xavier Gabaix, Zipf’s Law for Cities: An Explanation. The Quarterly Journal of Economics. 739-767 (1999). 4. Reka ´ Albert. et al.Internet: Diameter of the World-Wide Web, Nature, 130–131 (1999). 5. Xavier Gabaix. et al. A theory of power-law distributions in financial market fluctuations. Nature. 267–270 (2003). 6. Heiga Zen. et al. Statistical parametric speech synthesis using deep neural networks. IEEE International Conference on Acoustics. Speech and Signal Processing, 7962-7966 (2013). 7. Usama M. Fayyad. et al. On the handling of continuous-valued attributes in decision tree generation, Machine Learning, 87-102 (1992). 8. Yong Sheng. et al. Decision Tree-Based Methodology for High Impedance Fault Detection. IEEE TRANSACTIONS ON POWER DELIVERY. 533-536 (2004). 9. Raj Kumar. et al. Recognition of Power-Quality Disturbances Using S-Transform-Based ANN Classifier and Rule-Based Decision Tree. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. 1249-1258 (2015).
10. Mai Shouman. et al. Using Decision Tree for Diagnosing Heart Disease Patients. Proceedings of the 9-th Australasian Data Mining Confere (AusDM’11). 23-29 (2011). 11. Sotiris A Pavlopoulos. et al. A decision tree – based method for the differential diagnosis of Aortic Stenosis from Mitral Regurgitation using heart sounds. BioMedical Engineering OnLine. 3: 21 (2004). 12. Yinsheng Qu. et al. Boosted Decision Tree Analysis of Surface-enhanced Laser Desorption/Ionization Mass Spectral Serum Profiles Discriminates Prostate Cancer from Noncancer Patients, Clinical Chemistry, 48:10 (2002). 13. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature. 440–442 (1998). 14. S. H. Strogatz. Exploring complex networks. Nature. 268–276 (2001). 15. Sheng-Min Huang. et al. Inter-Strain Differences in Default Mode Network: A Resting State fMRI Study on Spontaneously Hypertensive Rat and Wistar Kyoto Rat. Scientific Report. 21697 (2016). 16. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 186–198 (2009). 17. H. Akaike, in Proceedings of the Second International Sympo- sium on Information Theory, edited by B. N. Petrov and F. Csaki (Akademiai Kiado, Budapest, 1973), pp. 267–281; IEEE Trans. Automat. Control 19, 716 (1974); A Celebration of Statistics, edited by A. C. Atkinson and S. E. Fienberg (Springer, Berlin, 1985), pp. 1–24. 18. Elizabeth B. Liddle. et al. Task-relate d default mode network modulationand inhibitory control in ADH D: effects ofmotivation and methylphenidate. Journal of Child Psychology and Psychiatry, 761–771 (2011).
19. Katell Mevel. et al. The Default Mode Network in Healthy Aging and Alzheimer’s Disease. International Journal of Alzheimer’s Disease. 535816 (2011). 20. D.T. Jones, M.M. Machulda, P. Vemuri, E.M. McDade, G. Zeng, M.L. Senjem, J.L. Gunter, S.A. Przybelski, R.T. Avula, D.S. Knopman, B.F. Boeve, R.C. Petersen, C.R. Jack, The Default Mode Network in Healthy Aging and Alzheimer’s Disease, Neurology, 7 April 2011. 21. Yvette I. Shelinea. et al. The default mode network and self-referential processes in depression. PNAS. 1942-1947 (2009). 22. P. Salgado-Pineda. et al. Correlated structural and functional brain abnormalities in the default mode network in schizophrenia patients, Schizophrenia Research. 101-109 (2011). 10/11 23. Tuomo Starck. et al. Resting state fMRI reveals a default mode dissociation between retrosplenial and medial prefrontal subnetworks in ASD despite motion scrubbing, Frontiers in Human Neuroscience, 7:802 (2013). 24. A.C. Tan, D. Gilbert, Ensemble machine learning on gene expression data forcancer classification, Appl. Bioinform. 75-83 (2003). 25. X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.F. McLachlan,A. Ng, B. Liu, P.S. Yu, Z.H. Zhou, M. Steinbach, D.J. Hand, D. Steinberg. Top 10 algorithms in data mining. Knowl. Inform. Syst. 1-37 (2008). 26. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann. Los Altos. (1993). 27. Sun-Ting Tsai. et al. Power-law ansatz in complex systems: Excessive loss of information, PHYSICAL REVIEW E 92. 062925 (2015). |