帳號:guest(3.144.222.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王譽憲
作者(外文):Wang, Yu-Xian
論文名稱(中文):二維過渡金屬硫屬化合物異質結構之電子能帶結構與介面極化效應
論文名稱(外文):Electronic Band Structure of Transition Metal Dichalcogenide Heterostructures and Interface Polarization Effect
指導教授(中文):果尚志
陳家浩
指導教授(外文):Gwo, Shangjr
Chen, Chia-Hao
口試委員(中文):李奕賢
陳力俊
口試委員(外文):Lee, Yi-Hsien
Chen, Lih-Juann
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:104022503
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:二維材料過渡金屬硫屬化合物異質結構凡得瓦堆疊結構能帶結構光電子能譜
外文關鍵詞:2D-materialsTMDC heterostructureVan der Waals stackinginterlayer couplingspontaneous polarizationXPS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:487
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
二維過渡金屬硫屬化合物 (Two-dimensional transition metal dichalcogenide, 2D -TMDC) 為一具有半導體特性之二維材料,它是由雙層的硫屬族原子如:硫,硒等 (S, Se etc.) 以共價鍵夾著一層過渡金屬原子如:鎢、鉬等 (W, Mo etc.) 所形成。其結構特性亦有如石墨烯般,層與層之間為凡得瓦力 (Van der Waals force) 鍵結,此二維材料擁有獨特的半導體能帶結構,及位於可見光波段的優異的光學特性促使眾人對其介面、表面科學、電性、光學特性等投入研究心力。在半導體元件或光電元件應用端,由此衍生出的二維材料異質結構 (2D material heterostructures) 的介面特性研究及元件發展潛力,如可調變之電子性質更是引人注目。
本文重點在於對二維材料裡,二硫化鎢 (WS2)、二硫化鉬 (MoS2) 組成之垂直堆疊 (Vertical stacking) 的異質結構,藉由高解析掃描式光電子能譜顯微術 (Scaning photoelectron microscopy/spectrroscopy),對層狀垂直堆疊的相同材料 (WS2/MoS2與MoS2/WS2),但具有相反順序堆疊於矽基板與金薄膜表面的進行介面能帶結構研究。另外,TMDC異質結構間的光學、振動等特性亦是我們感興趣的課題,藉由光激發螢光光譜及拉曼光譜研究兩材料間的介面間的耦合交互作用 (Interlayer coupling) ,輔以能譜結果加上文獻比較,發現在此二維材料異質結構的電荷轉移 (Charge transfer) 與自發極化結果並加以建立模型,了解此二維異質結構的介面物理與電子能帶結構等特性,相信對二維材料半導體光電元件的開發上會有所貢獻。

The discovery of the two-dimensional (2D) layered semiconductors, as transition metal dichalcogenide (TMDC), have gained interests due to their remarkable electronic and optical properties. The TMDC heterostructures offer a new platform for exploring new physics as well as future device applications. Therefore, the study of electronic structures of the TMDC heterostructures is crucial for potential usage in practical devices.
In this study, we have performed the scanning photoelectron microscopy /spectroscopy measurements to investigate the electronic structure of vertical stacked WS2/MoS2 and MoS2/WS2 heterojunctions on the Si substrate and Au film surface. We investigated the interlayer coupling effect in TMDC heterostructures via photoluminescence and Raman spectroscopy. In addition, We have determined the band alignments of two vertical stacking TMDC heterostructures- WS2/MoS2 and MoS2/WS2 by van der Waals attraction. Moreover, the spontaneous polarization model in TMDC heterostructures was established by X-ray photoelectron spectroscopy. These results and findings open up venues to creating new material systems with rich functionalities and novel physics.

摘要 I
Abstract II
誌謝辭 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1前言 1
1.2研究動機 3
第二章 文獻回顧 5
2.1 TMDCs材料特性 5
2.1.1 TMDCs晶體結構與能帶特性 5
2.1.2 TMDCs 光學及振動特性 9
2.2 TMDCs之垂直堆疊異質結構 11
2.2.1垂直堆疊異質結構之光學特性 11
2.2.2垂直堆疊異質結構之振動特性 14
2.2.3垂直堆疊異質結構之能帶特性 15
第三章 實驗儀器原理及方法 21
3.1同步輻射光源 (Synchrotron Radiation Light Source) [42, 43] 21
3.2同步輻射原理 22
3.3 X光光電子能譜術 (X-ray Photoemission Spectroscopy; XPS) 25
3.3.1 XPS基本原理 25
3.3.2能量分析儀及能量校準 27
3.3.3光電子能譜分析 29
3.4掃描式光電子顯微能譜術 (Scanning Photoelectron Microscopy & Spectroscopy; SPEM/S) [42, 54] 32
3.5光激發螢光光譜 (Photoluminescence Spectrum) 34
3.5.1 激子基本物理[56] 34
3.5.2 半導體之光激發螢光光譜 35
3.6拉曼光譜 (Raman Spectrum) 37
第四章 TMDC異質結構實驗結果分析 38
4.1實驗樣品設計 38
4.2 WS2/MoS2異質結構(Vertical heterostructures) 40
4.2.1拉曼光譜分析 40
4.2.2光激發螢光光譜分析 42
4.2.3光電子能譜分析 45
4.3 MoS2/WS2異質結構(Vertical heterostructures) 52
4.3.1拉曼光譜分析 52
4.3.2光激發螢光光譜分析 53
4.3.3光電子能譜分析 54
第五章 討論:TMDC異質介面物理 60
5.1 WS2/MoS2與MoS2/WS2介面電偶極(Interface dipoles) 60
5.2 WS2/MoS2與MoS2/WS2異質結構能帶圖 (Band Diagram) 66
第六章 結論 68
第七章 參考文獻 69

[1] K. S. Novoselov et al., Electric field effect in atomically
thin carbon films, Science, 306, 666-669 (2004).
[2] Qing Hua Wang et al., Electronics and optoelectronics of two-
dimensional transition metal dichalcogenides, Nature
Nanotechnology, 7, 699-712 (2012).
[3] Ruitao Lv et al., Two-dimensional transition metal
dichalcogenides: Clusters, ribbons, sheets and more, Nano
Today, 10, 559-592 (2015).
[4] Xi Ling et al., The renaissance of black phosphorus, PNAS,
112, 4523-4530 (2015).
[5] B. Radisavljevic et al., Single-layer MoS2 transistors, Nature
Nanotechnology, 6, 147-150 (2011).
[6] Oriol Lopez-Sanchez et al., Ultrasensitive photodetectors
based on monolayer MoS2, Nature Nanotechnology, 8, 497-501
(2013).
[7] A. K. Geim and I. V. Grigorieva, Van der Waals
heterostructures, Nature, 499, 419-425 (2013).
[8] Heather M. Hill et al., Band alignment in MoS2/WS2 transition
metal dichalcogenide heterostructures probed by scanning
tunneling microscopy and spectroscopy, Nano Letters, 16, 4831-
4837 (2016).
[9] Ming-Hui Chiu et al., Determination of band alignment in the
single-layer MoS2/WSe2 heterojunction, Nature Communications,
6, 7666 (2015).
[10] Yu Kobayashi, Modulation of electrical potential and
conductivity in an atomic-layer semiconductor heterojunction,
Scientific Reports, 6, 31223 (2016).
[11] Chendong Zhang et al., Visualizing band offsets and edge
states in bilayer-monolayer transition metal dichalcogenides
lateral heterojunction, Nature Communications, 7, 10349
(2016).
[12] Hoseok Heo et al., Interlayer orientation-dependent light
absorption and emission in monolayer semiconductor stacks,
Nature Communications, 6, 7372 (2015).
[13] N. Zibouche A. Kuc, and T. Heine, Influence of quantum
confinement on the electronic structure of the transition
metal sulfide TS2, Phys. Rev. B, 83, 245213 (2011).
[14] Kin Fai Mak et al., Atomically thin MoS2: A new direct-gap
semiconductor, Phys. Rev. B, 105, 136805 (2010).
[15] Yi Zhang et al., Direct observation of the transition from
indirect to direct bandgap in atomically thin epitaxial
MoSe2, Nature Nanotechnology, 9, 112-115 (2014).
[16] L. Britnell et al., Strong light-matter interactions in heterostructures of atomically thin films, Science, 340, 1311-1314 (2013).
[17] Andrea Splendiani et al., Emerging photoluminescence in monolayer MoS2, Nano Letters, 10, 1271-1275 (2010).
[18] Andor Kormányos et al., k·p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D materials, 2, 022001 (2015).
[19] Weijie Zhao et al., Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets, ACS Accounts of chemical reasearch, 48, 91-99 (2015).
[20] Changgu Lee et al., Anomalous lattice vibrations of single and few-layer MoS2, ACS Nano, 4, 2695-2700 (2010).
[21] Yongji Gong et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers, Nature Materials, 13, 1135-1142 (2014).
[22] Xiaoping Hong et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nature Nanotechnology, 9, 682-686 (2014).
[23] Sefaattin Tongay et al., Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers, Nano Letters, 14, 3185-3190 (2014).
[24] Yifei Yu et al., Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures, Nano Letters, 15, 486-491 (2015).
[25] Jiangtan Yuan et al., Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus, ACS Nano, 9, 555-563 (2015).
[26] Jing Zhang et al., Observation of strong interlayer coupling in MoS2/WS2 heterostructures, Advanced Materials, 28, 1950-1956 (2016).
[27] Jianping Shi et al., Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications, Advanced Materials, 28, 10664-10672 (2016).
[28] Ming-Hui Chiu et al., Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking, ACS Nano, 8, 9649-9656 (2014).
[29] Hui Fang et al., Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, PNAS, 111, 6198-6202 (2014).
[30] Yu-Chuan Lin et al., Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures, Nature Communications, 6, 7311 (2015).
[31] Frank Ceballos et al., Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure, Nanoscale, 7, 17523-17528 (2015).
[32] Frank Ceballos et al., Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure, ACS Nano, 8, 12717-12724 (2014).
[33] Kai Wang et al., Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy, ACS Nano, 10, 6612-6622 (2016).
[34] Pasqual Rivera et al., Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures, Nature Communications, 6, 6242 (2015).
[35] Neil R. Wilson et al., Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures, Science Advances, 3, e1601832 (2017).
[36] Hailong Chen et al., Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures, Nature Communications, 7, 12512 (2016).
[37] K. Kośmider1 and J. Fernández-Rossier, Electronic properties of the MoS2-WS2 heterojunction, Phys. Rev. B, 87, 075451 (2013).
[38] Hannu-Pekka Komsa and Arkady V. Krasheninnikov, Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles, Phys. Rev. B, 88, 085318 (2013).
[39] Ashwin Ramasubramaniam, Tunable band gaps in bilayer transition-metal dichalcogenides, Phys. Rev. B, 84, 205325 (2011).
[40] Dennis Huang and Efthimios Kaxiras, Electric field tuning of band offsets in transition metal dichalcogenides, Phys. Rev. B, 94, 241303(R) (2016).
[41] Huili Zhu et al., Effects of interlayer polarization field on the band structures of the WS2/MoS2 and WSe2/MoSe2 heterostructures, ELSEVIER Surface Science, 661, 1-9 (2017).
[42] 張羅嶽, 非接觸式化學微影應用於矽烷分子的研究, 碩士論文, 國立清華大學, 10-20 (2009).
[43] 辜翊航, 異質介面之電子能帶結構研究-石墨烯/氧化鋅與二硫化鉬/二硫化鎢, 碩士論文, 國立清華大學, 23-37 (2016).
[44] 國家同步輻射中心, http://www.nsrrc.org.tw/, NSRRC, Resources- Synchrotron Radiation (Retrieved 2017/5/14).
[45] J. D. Jackson, Classical Electrodynamics, 3rd ed., (Wiley, New York), Chap. 14 (1998).
[46] Consortium for the Exploitation of the Synchrotron Light Laboratory, https://www.cells.es/en/accelerators/insertion-devices, CELLS-ALBA, Acceleraters- Insertion Devices (Retrieved 2017/5/14).
[47] A. Einstein, On a heuristic point of view about the creatidn and conversion of light, Ann. Phys., 17, 132-148 (1905).
[48] Friedrich Reinert and Stefan Hüfner, Photoemission spectroscopy—from early days to recent applications, New Journal of Physics, 7, 97 (2005).
[49] Stephan Hüfner, Photoelectron Spectroscopy: Principles and Applications, 3rd ed., (Springer, New York), (2003).
[50] 麻茂生, 電子能譜及其應用, 中國科學技術大學, Chap. 2 page 23.
[51] Gabor A.Somorjai, Chemistry in two dimensions: surfaces, (Cornell University Press, Ithaca, N.Y.), (1981).
[52] John C. Vickerman, Surface Analysis: The Principal Techniques, 2nd ed., (Wiley, New York), Chap. 3 (2009).
[53] K. Horn, Semiconductor interface studies using core and valence level photoemission, Applied Physics A, 289-304 (1990).
[54] 陳家浩, 從光電效應到光電子顯微術, 物理雙月刊, 27, 666-669 (2005).
[55] Jinghua Guo, X-Rays in Nanoscience: Spectroscopy, Spectromicroscopy, and Scattering Techniques, (Wiley-VCH Verlag GmbH & Co. KGaA), (2010).
[56] Charles Kittel, Introduction to Solid State Physics, 8th ed., (John Wiley & Sons, Inc), (2005).
[57] Ayse Berkdemir et al., Identification of individual and few layers of WS2 using Raman Spectroscopy, Scientific Reports, 3, 1755 (2013).
[58] Sefaattin Tongay et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating, Nano Letters, 13, 2831-2836 (2013).
[59] Yuxuan Lin, Dielectric Screening of Excitons and Trions in Single-Layer MoS2, Nano Letters, 14, 5569-5576 (2014).
[60] Nils Scheuschner, Photoluminescence of freestanding single- and few-layer MoS2, Phys. Rev. B, (2014).
[61] William F. Stickle John F. Moulder, Peter E.Sobol, and Kenneth D. Bomben., Handbook of X-ray photoelectron spectroscopy- A reference book of standard spectra for identification and interpretation of XPS data, (Physical Electronics, Inc. Eden Prairie, Minnesota, USA), (1992).
[62] M M Benameur et al., Visibility of dichalcogenide nanolayers, Nanotechnology, 22, 125706 (2011).
[63] Hui Pan Hongliang Shi, Yong-Wei Zhang, and Boris I. Yakobson, Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2, Phys. Rev. B, 87, 155304 (2013).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *