帳號:guest(3.149.239.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭 驥
作者(外文):Guo, Ji
論文名稱(中文):整函數的整除問題
論文名稱(外文):Quotient Problems for Entire Functions
指導教授(中文):王姿月
張介玉
指導教授(外文):Wang, Julie Tzu-Yue
Chang, Chieh-Yu
口試委員(中文):于靖
夏良忠
李華介
汝敏
口試委員(外文):Yu, Jing
Hsia, Liang-Chung
Li, Hua-Chieh
Ru, Min
學位類別:博士
校院名稱:國立清華大學
系所名稱:數學系
學號:104021881
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:73
中文關鍵詞:整函數整除線性遞推數列
外文關鍵詞:Entirequotientrecurrences
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
對於互素的遞歸數列$\{{\bf F}(n)\}_{n\in\mathbb N}$和$\{{\bf G}(n)\}_{n\in\mathbb N}$,我們知道僅有有限多個正整數$n$使得${\bf F}(n)$被${\bf G}(n)$整除。本文中我們將研究該整除問題在複變函數中的類比。

首先,假設$f$和$g$是乘法獨立的整函數。我們希望研究是否存在無窮多個正整數$n$使得$f^n-1$會被$g^n-1$整除。這一問題需要對$f^n-1$和$g^n-1$公因子上界進行一個合適的估計。為了得到這一估計,我們需要把\cite{hussein2018general}中的主要結果改進成truncated version。然後我們會把定理中的variety取為$\PP^1\times\PP^1$的blow-up,並且計算該定理中相應的常數。

接下來,我們會推廣上述整除問題。準確地說,我們將研究$F(n)=a_0+a_1f_1^n+\cdots+a_lf_l^n$是否會被$ G(n)=b_0+b_1g_1^n+\cdots+b_mg_m^n$整除,其中,$f_i$和$g_j$都是非常數的整函數,而除了$a_0$可能為零以外,$a_i$和$b_j$都是非零常數。我們的結論是如果對於不全是零的整數組$(i_1,\dots,i_l,j_1,\dots,j_m)$,$f_1^{i_1} \cdots f_l^{i_l}g_1^{j_1}\dots g_m^{j_m}$都不是整數,那麼$\mathcal N=\{n\in\NN |F(n)/G(n)\text{ 仍然是一個整函數}\} $是一個有限集合。我們接下來考慮更一般的情況。假設$a_i$和$b_j$相對於$(g_1,\dots,g_m)$緩慢增長的,那麼我們有類似的結論。
Let $\{{\bf F}(n)\}_{n\in\mathbb N}$ and $\{{\bf G}(n)\}_{n\in\mathbb N}$ be linear recurrence sequences. It is a well-known diophantine problem to decide the finiteness of the set $\mathcal N$ of natural numbers such that their ratio ${\bf F}(n)/{\bf G}(n)$ is an integer. In this thesis, we study an analogue of such a quotient problem in the complex situation.

First, let $f$ and $g$ be entire functions which are multiplicatively independent. We want to determine whether $f^n-1$ is divisible by $g^n-1$ for infinitely many $n$. This is an application of the GCD estimate of $f^n-1$ and $g^n-1$, i.e. the Nevanlinna counting function for the common zeros of these two sequences of functions. For this estimate, we need to formulate a truncated Nevanlinna second main theorem for effective divisors by modifying a theorem in \cite{hussein2018general} and explicitly computing the constants involved for a blow-up of $ \mathbb{P}^1\times \mathbb{P}^1$ along a point.

Next, we generalize the quotient problem to a multi-variable version. Precisely, we are concerned with the divisibility problem (in the sense of complex entire functions) for two sequences $F(n)=a_0+a_1f_1^n+\cdots+a_lf_l^n$ and $ G(n)=b_0+b_1g_1^n+\cdots+b_mg_m^n$, where the $f_i$ and $g_j$ are nonconstant entire functions and the $a_i$ and $b_j$ are non-zero constants except that $a_0$ can be zero. We will show that the set $\mathcal N=\{n\in\NN |F(n)/G(n)\text{ is an entire function}\}$ is finite under the assumption that $f_1^{i_1} \cdots f_l^{i_l}g_1^{j_1}\dots g_m^{j_m}$ is not constant for any non-trivial index set $(i_1,\dots,i_l,j_1,\dots,j_m)\in\mathbb Z^{l+m}$. We also consider the generalization of this problem in which we allow $a_i$ and $b_j$ to be slow growth entire functions with respect to $(g_1,\dots,g_m)$ by modifying the second main theorem with moving targets to a truncated version.
1 Introduction 1
1.1 The Quotient Problem for Linear Recurrences . . . . . . . . . . . . . . 2
1.2 The GCD Problem of Linear Recurrences . . . . . . . . . . . . . . . . 3
1.3 Main Results on the Quotients of Entire Functions . . . . . . . . . . . . 6
1.3.1 Divisibility of fn 􀀀 1 and gn 􀀀 1 . . . . . . . . . . . . . . . . 7
1.3.2 Quotient Problem for Entire Functions . . . . . . . . . . . . . . 8
1.3.3 Quotient Problem for Entire Functions with Moving Targets . . 9
2 Preliminaries 11
2.1 Nevanlinna Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Roth’s Theorem and the Subspace Theorem . . . . . . . . . . . . . . . 18
2.3 Vojta’s Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Further Results in Nevanlinna Theory 23
3.1 Second Main Theorem for Divisors in Subgeneral Position . . . . . . . 23
3.2 Nevanlinna theory with moving targets . . . . . . . . . . . . . . . . . . 27
3.2.1 A Second Main Theorem with Moving Targets . . . . . . . . . 27
3.2.2 Borel’s lemma and Green’s theorem with moving targets . . . . 33
4 The Asymptotic GCD for Entire Functions fn 􀀀 1 and gn 􀀀 1 37
4.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 The Proof of Theorem 1.11 . . . . . . . . . . . . . . . . . . . . . . . . 40
5 Quotient Problems for Entire Functions 45
5.1 The Quotient for fn 􀀀 1 and gn 􀀀 1 . . . . . . . . . . . . . . . . . . . 45
5.1.1 Unit Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Proof of Theorem 1.12 . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Proof of Corollary 1.14 and Theorem 1.13 . . . . . . . . . . . . . . . . 58
A Exponential Polynomials 66
Bibliography 68
[1] L. M. Adleman, C. Pomerance and R. S. Rumely, On Distinguishing Prime Numbers from Composite Numbers, Annals of Mathematics 117 (1983) no. 1, 173–206.
[2] E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical Monographs 4, Cambridge University Press, 2006.
[3] E. Borel, Sur les zéros des fonctions entières, Acta mathematica 20 (1897) no. 1, 357–396.
[4] Y. Bugeaud, P. Corvaja and U. Zannier, An upper bound for the GCD of an-1and bn-1, Mathematische Zeitschrift 243 (2003) no. 1, 79–84.
[5] P. Corvaja and U. Zannier, Finiteness of integral values for the ratio of two linear recurrences, Inventiones mathematicae 149 (2002) no. 2, 431–451.
[6] P. Corvaja and J. Noguchi, A new unicity theorem and Erdös’problem for polarized semi-abelian varieties, Mathematische Annalen 353 (2012) no. 2, 439–464.
[7] P. Corvaja and U. Zannier, Diophantine equations with power sums and universal Hilbert sets, Indagationes Mathematicae 9 (1998) no. 3, 317–332.
[8] J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Mathematica 53 (1984) no. 2, 225–244.
[9] C. Fuchs, An upper bound for the GCD of two linear recurring sequences, Mathematica Slovaca 53 (2003) no. 1, 21–42.
[10] C. Fuchs, Diophantine problems with linear recurrences via the subspace theorem, Integers: Electronic Journal of Combinatorial Number Theory 5 (2005) no. 3. 69
[11] E. Gourin, On irreducible polynomials in several variables which become reducible when the variables are replaced by powers of themselves, Transactions of the American Mathematical Society 32 (1930) no. 3, 485–501.
[12] M. L. Green, Some Picard theorems for holomorphic maps to algebraic varieties, American Journal of Mathematics 97 (1975) no. 1, 43–75.
[13] N. Grieve and J. T.-Y. Wang, Greatest common divisors with moving targets and linear recurrence sequences, arxiv 1902.09109.
[14] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag New York, 1977.
[15] M. Hindry and J. H. Silverman, Diophantine Geometry: An Introduction, Graduate Texts in Mathematics 201, Springer-Verlag New York, 2000.
[16] S. Hussein and M. Ru, A general defect relation and height inequality for divisors in subgeneral position, Asian Journal of Mathematics 22 (2018) no. 3, 477–492.
[17] S. L. Kleiman, Toward a numerical theory of ampleness, Annals of Mathematics 84 (1966) no. 3, 293–344.
[18] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer Science & Business Media, 1987.
[19] S. Lang, Fundamentals of Diophantine geometry, Springer Science & Business Media, 1983.
[20] P. D. Lax, The quotient of exponential polynomials, Duke Mathematical Journal 15 (1948) no. 4, 967–970.
[21] A. Levin, On the Schmidt subspace theorem for algebraic points, Duke Mathematical Journal 163 (2014) no. 15, 2841–2885.
[22] A. Levin, Greatest common divisors and Vojta’s conjecture for blowups of algebraic tori, Inventiones mathematicae 215 (2019) no. 2, 493–533. 70
[23] F. Luca, On the Greatest Common Divisor of u 􀀀 1 and v 􀀀 1 with u and v Near I-units, Monatshefte für Mathematik 146 (2005) no. 3, 239–256.
[24] L. MacColl, A factorization theory for polynomials in x and in functions e x, Bulletin of the American Mathematical Society 41 (1935) no. 2, 104–109.
[25] M. R. Murty and V. K. Murty, On a problem of Ruderman, The American Mathematical Monthly 118 (2011) no. 7, 644–650.
[26] J. Noguchi, J. Winkelmann and K. Yamanoi, The second main theorem for holomorphic curves into semiabelian varieties II, Forum Mathematicum 20 (2008) no. 3, 469–503.
[27] C. F. Osgood, A number theoretic-differential equations approach to generalizing Nevanlinna theory, Indian Journal of Mathematics 23 (1981) no. 1-3, 1–15.
[28] C. F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna
bounds, or better, Journal of Number Theory 21 (1985) no. 3, 347–389.
[29] H. Pasten and J. T.-Y. Wang, GCD bounds for analytic functions, International Mathematics Research Notices 160 (2017) no. 1, 47–95.
[30] A. van der Poorten, Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles, Comptes Rendus Mathématique. Académie des Sciences. Paris 302 (1988), 97–102.
[31] A. Van der Poorten and H. Schlickewei, The growth conditions for recurrence sequences, Macquarie University Mathematical Reports 82 (1982) no. 0041.
[32] A. Van der Poorten and R. Tijdeman, On common zeros of exponential polynomials, L’Enseignement Mathématique. Revue Internationale. 2e Série 21 (1975) no. 1, 57–67.
[33] A. van der Poorten, Some facts that should be better known, especially about rational functions, Number theory and applications (Banff, AB, 1988) 265 (1989), 497–528. 71
[34] Q. I. Rahman, The quotient of finite exponential sums, Tohoku Mathematical Journal, Second Series 12 (1960) no. 2, 345–348.
[35] J. F. Ritt, A factorization theory for functions , Transactions of the
American Mathematical Society 29 (1927) no. 3, 584–596.
[36] J. F. Ritt, On the zeros of exponential polynomials, Transactions of the American Mathematical Society 31 (1929) no. 4, 680–686.
[37] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955) no. 1, 1–20.
[38] M. Ru, On a general form of the second main theorem, Transactions of the American Mathematical Society 349 (1997) no. 12, 5093–5105.
[39] M. Ru, Nevanlinna Theory and Its Relation to Diophantine Approximation, World Scientific, 2001.
[40] M. Ru and J. T.-Y. Wang, Truncated second main theorem with moving targets, Transactions of the American Mathematical Society 356 (2004) no. 2, 557–571.
[41] M. Ru and W. Stoll, The second main theorem for moving targets, The Journal of Geometric Analysis 1 (1991) no. 2, 99–138.
[42] M. Ru and P. Vojta, A birational Nevanlinna constant and its consequences, arxiv 1608.05382.
[43] M. Ru and J. T.-Y. Wang, A subspace theorem for subvarieties, Algebra & Number Theory 11 (2017) no. 10, 2323–2337.
[44] R. Rumely, Notes on van der Poorten’s proof of the Hadamard Quotient Theorem, Séminaire de Théorie des Nombres, Paris 1986–87, Progress in Math 75 (1988), 349–409.
[45] W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer, 1980. 72
[46] H. S. Shapiro, The expansion of mean-periodic functions in series of exponentials, Communications on pure and applied mathematics 11 (1958) no. 1, 1–21.
[47] L. Shi and M. Ru, An improvement of Chen-Ru-Yan’s degenerated second main theorem, Science China Mathematics 58 (2015) no. 12, 2517–2530.
[48] J. H. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups, Monatshefte für Mathematik 145 (2005) no. 4, 333–350.
[49] R. Steinmetz, Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes, Journal für die reine und angewandte Mathematik 368 (1986), 134–141.
[50] P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics 1239, Springer, 1987.
[51] P. Vojta, On Cartan’s theorem and Cartan’s conjecture, American Journal of Mathematics 119 (1997) no. 1, 1–17.
[52] P. Vojta, Diophantine approximation and Nevanlinna theory, Lecture Notes in Mathematics 2009, Springer, 2011.
[53] J. T.-Y. Wang, An effective Roth’s theorem for function fields, The Rocky Mountain Journal of Mathematics 26 (1996) no. 3, 1225–1234.
[54] U. Zannier, Diophantine equations with linear recurrences An overview of some recent progress, Journal de Théorie des Nombres de Bordeaux 17 (2005), 423–435.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *