|
[1] L. M. Adleman, C. Pomerance and R. S. Rumely, On Distinguishing Prime Numbers from Composite Numbers, Annals of Mathematics 117 (1983) no. 1, 173–206. [2] E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical Monographs 4, Cambridge University Press, 2006. [3] E. Borel, Sur les zéros des fonctions entières, Acta mathematica 20 (1897) no. 1, 357–396. [4] Y. Bugeaud, P. Corvaja and U. Zannier, An upper bound for the GCD of an-1and bn-1, Mathematische Zeitschrift 243 (2003) no. 1, 79–84. [5] P. Corvaja and U. Zannier, Finiteness of integral values for the ratio of two linear recurrences, Inventiones mathematicae 149 (2002) no. 2, 431–451. [6] P. Corvaja and J. Noguchi, A new unicity theorem and Erdös’problem for polarized semi-abelian varieties, Mathematische Annalen 353 (2012) no. 2, 439–464. [7] P. Corvaja and U. Zannier, Diophantine equations with power sums and universal Hilbert sets, Indagationes Mathematicae 9 (1998) no. 3, 317–332. [8] J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Mathematica 53 (1984) no. 2, 225–244. [9] C. Fuchs, An upper bound for the GCD of two linear recurring sequences, Mathematica Slovaca 53 (2003) no. 1, 21–42. [10] C. Fuchs, Diophantine problems with linear recurrences via the subspace theorem, Integers: Electronic Journal of Combinatorial Number Theory 5 (2005) no. 3. 69 [11] E. Gourin, On irreducible polynomials in several variables which become reducible when the variables are replaced by powers of themselves, Transactions of the American Mathematical Society 32 (1930) no. 3, 485–501. [12] M. L. Green, Some Picard theorems for holomorphic maps to algebraic varieties, American Journal of Mathematics 97 (1975) no. 1, 43–75. [13] N. Grieve and J. T.-Y. Wang, Greatest common divisors with moving targets and linear recurrence sequences, arxiv 1902.09109. [14] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag New York, 1977. [15] M. Hindry and J. H. Silverman, Diophantine Geometry: An Introduction, Graduate Texts in Mathematics 201, Springer-Verlag New York, 2000. [16] S. Hussein and M. Ru, A general defect relation and height inequality for divisors in subgeneral position, Asian Journal of Mathematics 22 (2018) no. 3, 477–492. [17] S. L. Kleiman, Toward a numerical theory of ampleness, Annals of Mathematics 84 (1966) no. 3, 293–344. [18] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer Science & Business Media, 1987. [19] S. Lang, Fundamentals of Diophantine geometry, Springer Science & Business Media, 1983. [20] P. D. Lax, The quotient of exponential polynomials, Duke Mathematical Journal 15 (1948) no. 4, 967–970. [21] A. Levin, On the Schmidt subspace theorem for algebraic points, Duke Mathematical Journal 163 (2014) no. 15, 2841–2885. [22] A. Levin, Greatest common divisors and Vojta’s conjecture for blowups of algebraic tori, Inventiones mathematicae 215 (2019) no. 2, 493–533. 70 [23] F. Luca, On the Greatest Common Divisor of u 1 and v 1 with u and v Near I-units, Monatshefte für Mathematik 146 (2005) no. 3, 239–256. [24] L. MacColl, A factorization theory for polynomials in x and in functions ex, Bulletin of the American Mathematical Society 41 (1935) no. 2, 104–109. [25] M. R. Murty and V. K. Murty, On a problem of Ruderman, The American Mathematical Monthly 118 (2011) no. 7, 644–650. [26] J. Noguchi, J. Winkelmann and K. Yamanoi, The second main theorem for holomorphic curves into semiabelian varieties II, Forum Mathematicum 20 (2008) no. 3, 469–503. [27] C. F. Osgood, A number theoretic-differential equations approach to generalizing Nevanlinna theory, Indian Journal of Mathematics 23 (1981) no. 1-3, 1–15. [28] C. F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, Journal of Number Theory 21 (1985) no. 3, 347–389. [29] H. Pasten and J. T.-Y. Wang, GCD bounds for analytic functions, International Mathematics Research Notices 160 (2017) no. 1, 47–95. [30] A. van der Poorten, Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles, Comptes Rendus Mathématique. Académie des Sciences. Paris 302 (1988), 97–102. [31] A. Van der Poorten and H. Schlickewei, The growth conditions for recurrence sequences, Macquarie University Mathematical Reports 82 (1982) no. 0041. [32] A. Van der Poorten and R. Tijdeman, On common zeros of exponential polynomials, L’Enseignement Mathématique. Revue Internationale. 2e Série 21 (1975) no. 1, 57–67. [33] A. van der Poorten, Some facts that should be better known, especially about rational functions, Number theory and applications (Banff, AB, 1988) 265 (1989), 497–528. 71 [34] Q. I. Rahman, The quotient of finite exponential sums, Tohoku Mathematical Journal, Second Series 12 (1960) no. 2, 345–348. [35] J. F. Ritt, A factorization theory for functions , Transactions of the American Mathematical Society 29 (1927) no. 3, 584–596. [36] J. F. Ritt, On the zeros of exponential polynomials, Transactions of the American Mathematical Society 31 (1929) no. 4, 680–686. [37] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955) no. 1, 1–20. [38] M. Ru, On a general form of the second main theorem, Transactions of the American Mathematical Society 349 (1997) no. 12, 5093–5105. [39] M. Ru, Nevanlinna Theory and Its Relation to Diophantine Approximation, World Scientific, 2001. [40] M. Ru and J. T.-Y. Wang, Truncated second main theorem with moving targets, Transactions of the American Mathematical Society 356 (2004) no. 2, 557–571. [41] M. Ru and W. Stoll, The second main theorem for moving targets, The Journal of Geometric Analysis 1 (1991) no. 2, 99–138. [42] M. Ru and P. Vojta, A birational Nevanlinna constant and its consequences, arxiv 1608.05382. [43] M. Ru and J. T.-Y. Wang, A subspace theorem for subvarieties, Algebra & Number Theory 11 (2017) no. 10, 2323–2337. [44] R. Rumely, Notes on van der Poorten’s proof of the Hadamard Quotient Theorem, Séminaire de Théorie des Nombres, Paris 1986–87, Progress in Math 75 (1988), 349–409. [45] W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer, 1980. 72 [46] H. S. Shapiro, The expansion of mean-periodic functions in series of exponentials, Communications on pure and applied mathematics 11 (1958) no. 1, 1–21. [47] L. Shi and M. Ru, An improvement of Chen-Ru-Yan’s degenerated second main theorem, Science China Mathematics 58 (2015) no. 12, 2517–2530. [48] J. H. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups, Monatshefte für Mathematik 145 (2005) no. 4, 333–350. [49] R. Steinmetz, Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes, Journal für die reine und angewandte Mathematik 368 (1986), 134–141. [50] P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics 1239, Springer, 1987. [51] P. Vojta, On Cartan’s theorem and Cartan’s conjecture, American Journal of Mathematics 119 (1997) no. 1, 1–17. [52] P. Vojta, Diophantine approximation and Nevanlinna theory, Lecture Notes in Mathematics 2009, Springer, 2011. [53] J. T.-Y. Wang, An effective Roth’s theorem for function fields, The Rocky Mountain Journal of Mathematics 26 (1996) no. 3, 1225–1234. [54] U. Zannier, Diophantine equations with linear recurrences An overview of some recent progress, Journal de Théorie des Nombres de Bordeaux 17 (2005), 423–435. |