帳號:guest(3.149.23.182)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊佳晉
作者(外文):Yang, Jia-Jin
論文名稱(中文):曲線上的偏微分方程式之體積延拓與其應用
論文名稱(外文):Volumetric Extension of PDE on Curves and Its Applications
指導教授(中文):朱家杰
指導教授(外文):Chu, Chia-Chieh
口試委員(中文):王偉成
吳金典
口試委員(外文):Wang, Wei-Cheng
Wu, Chin-Tien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:104021604
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:19
中文關鍵詞:偏微分方程時域有限差分法完美匹配層體積延拓
外文關鍵詞:PDEFDTDPMLVolumetric extensionclosest point method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:103
  • 評分評分:*****
  • 下載下載:61
  • 收藏收藏:0
這篇文章主要探討曲線上偏微分方程數值解的一個新方法,其計算域將會是曲 線周圍的管狀區域,並且使用歐氏空間的等距分割點來離散化,Neumann 邊界條 件則是使用插值法來處理。即使是未參數化的曲線,也能輕易適用此方法。我們將 使用此方法來模擬天線模型,此模型結合了 Telegrapher 方程式和 Maxwell 方程 式,並且描述電線中的電流如何和空間中的電磁場產生交互作用。其中,我們使 用時域有限差分法,並搭配 Perfectly Matched Layer 邊界條件來解 Maxwell 方程 式,而 Telegrapher 方程式則是使用我們所提出的新方法來處理。文內亦提出一些 應用此方法的範例。
In this thesis, we propose a new method using volumetric extension to solve PDEs on a curve. The computational domain is a narrow tubular region surrounding the curve. Our method uses Cartesian grids on the narrow tube and the Neumann boundary condition is taken care by interpolation treatment. Therefore it is easy to implement, even for complicated curves without given parametrization. We apply our method for thin-wire model equations. The model combines the telegrapher's equations with the Maxwell's equations, and it describes how an electrical wire reacts with nearby electric and magnetic fields. The Maxwell's equations are solved by Finite-Difference Time-Domain (FD-TD) method with perfectly matched layer (PML) boundary condition and the telegrapher's equations are solved by our approach. Some numerical examples are presented.
1 Introduction 1
2 FD-TD method 3
2.1 Algorithm................................... 3 2.2 Boundaryconditions ............................. 5
3 Volumetric extension of PDEs 6
3.1 Outline..................................... 6 3.2 Maintheoremsandproofs .......................... 7
4 Numerical examples 11
4.1 Poissonequationonacurve ......................... 11 4.2 Heatequationonacurve........................... 13 4.3 Telegrapher’sequationsontheunitcircle . . . . . . . . . . . . . . . . . . 14
5 Coupling between the wire and the space 15
[1] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics, 114(2):185–200, 1994.
[2] J. Chu and R. Tsai. Volumetric variational principles for a class of partial differential equations defined on surfaces and curves. ArXiv e-prints, June 2017.
[3] Manfredo P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
[4] Gunnar Ledfelt. Hybrid time-domain methods and wire models for computational electromagnetics, 2001.
[5] Steven J Ruuth and Barry Merriman. A simple embedding method for solving partial differential equations on surfaces. Journal of Computational Physics, 227(3):1943– 1961, 2008.
[6] Dennis M. Sullivan. Electromagnetic Simulation Using the FDTD Method. IEEE Press, 2000.
[7] Kane S. Yee. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas and Propagation, pages 302–307, 1966.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *