帳號:guest(18.188.224.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許景隆
作者(外文):Hsu, Ching-Lung.
論文名稱(中文):無序混沌下SK模型上的中央極限定理
論文名稱(外文):A central limit theorem for the overlaps in disorder chaos SK model
指導教授(中文):許元春
鄭志豪
指導教授(外文):Sheu, Yuan-Chung
Teh, Jyh-Haur
口試委員(中文):陳冠宇
陳隆奇
口試委員(外文):Chen, Guan-Yu
Chen, Lung-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:104021603
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:23
中文關鍵詞:混沌重疊量中央極限定理
外文關鍵詞:ChaosOverlapCentral limit theorem
相關次數:
  • 推薦推薦:0
  • 點閱點閱:149
  • 評分評分:*****
  • 下載下載:33
  • 收藏收藏:0
這篇論文我們証明了在無序混沌下Sherrington-Kirkpatrick模型上的一個極限定理。這個定理主要是在描述來自兩個相關Gibbs測度的自旋結構重疊量的行為。我們將藉由Cavity方法來導出在給定一個無序態的時候,一群經過適當調整的重疊量在會在漸進行為上與高斯函數非常相像。
In this paper we consider a limiting theorem in disorder chaos Sherrington Kirkpatrick model. It is about the behavior of the overlaps between spin configurations sampled from two different correlated Gibbs measures. We use th cavity method to show that for a typical realization of the disorder, a family of the modified overlaps would behave asymptotically like an independent family of Gaussian random variables.
Contents
1 Introduction 1
2 A technical inequality 5
3 Proof of Main Theorem 10
4 References 23
[BM87] AJ Bray and MA Moore. Chaotic nature of the spin-glass phase. Physical review letters, 58(1):57, 1987.

[Cha09] Sourav Chatterjee. Disorder chaos and multiple valleys in spin glasses. arXiv preprint arXiv:0907.3381, 2009.

[FH86] Daniel S Fisher and David A Huse. Ordered phase of short-range ising spin-glasses. Physical review letters, 56(15):1601, 1986.

[Riz09] T Rizzo. Spin glasses: statics and dynamics: summer school, paris 2007. Progr. Probab, 62:143–157, 2009.

[Tal11]Michel Talagrand. Mean eld models for spin glasses. Volume I, volume 54 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer- Verlag, Berlin, 2011. Basic examples.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *