帳號:guest(13.59.197.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):伯歐吉
作者(外文):Bright, Uchenna-Oparaji
論文名稱(中文):不確定度量化分析的代理人模型 及其在核工的應用
論文名稱(外文):Robust Surrogate Models for Uncertainty Quantification and Nuclear Engineering Applications
指導教授(中文):許榮鈞
Edoardo, Patelli
指導教授(外文):Sheu, Rong-Jiun
Edoardo, Patelli
口試委員(中文):趙椿長
李敏
口試委員(外文):Piero, Baraldi
Scott, Ferson
Bruno, Merk
學位類別:博士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:104013891
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:150
中文關鍵詞:代理人模型不確定度量化核工應用
外文關鍵詞:Surrogate modelUncertainty quantificationNuclear applications
相關次數:
  • 推薦推薦:0
  • 點閱點閱:61
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
當今,數學模型被廣泛的應用在設計越來越複雜的系統并判定這些系統的性能。這些模型旨在通過求解複雜的數學方程來重現物理過程。它們利用可用的計算資源來解出複雜的數學方程,往往在模型的進行運算可能花費數小時甚至數天的時間來計算出所需的數量。主要於模型的參數通常是不確定的,但它們是由數據中被推導出來,透過模型進行概率性數值遞迴分析計算。然而,對於複雜且高度可靠的模型和系統來說,通過數學模型來傳播參數不確定性的代價非常高昂。易於加速求解的過程,從而評估函數的替代模型被用來取代原本的數學模型。另一方面,替代模型的使用引入了額外的模型不確定性,其來源包括:(朱)訓練數據集的變異性,(朲)隨機模型參數,(朳)模型結構,導致錯誤估計了所需的數量。因而,本論文提出了幾個框架來量化模型不確定性的來源。在提出的第一個框架中,模型的不確定性來源於訓練數據集的可變性,即訓練數據輸入域的採樣算法。採樣算法通常傾向於輸入空間的高概率區域採樣,而忽略了低概率區域。這導致了培訓替代模型的重要培訓數據點的遺漏,從而減少了模型的泛化屬性。因此,這種方法的基本原理是從原始的訓練數據集中生成隨機的樣本,用這種引導數據來訓練一組代理模型,從而推斷出從哪裡獲得數據集的總體。隨後,從而展示該框架的有效性,依據計算一個穩健的置信區間,量化上述數量的不確定性的來源,前饋人工神經網絡(杆杆札杁李李)被作為代替模型用來測試了該框架的各種分析性能及其對一個坐落在塞拉菲爾德核廢料站的昂貴的放射性廢物管理的不確定性量化模型(杓杩杴来
杉杯杮来杘杣杨条杮杧来材杬条杮杴木杓杉杘杅材朩)的量化。第二個框架提出了一種通過模型參數的隨機波動來量化不確定性的方法。具體地說,當一個特定的代理模型被相同的訓練數據反復精化時,從而產生不同的模型。通常情況下,根據某些性能指標選擇最好的模型并捨棄其餘部份是一種常見的做法。但這種做法有幾個問題,最明顯的是會浪費計算資源。此外,由於測試數據中存在的隨機不可預期的變量,每個模型的性能指標都有偏差。因此在一個測試中表現良好的模型可能對另外的數據集產生非所預期的結果。因而,基於隨機波動模型參數而確定最佳表現模型存在不確定性。了量化模型的不確定性,這個框架中提出的方法結合了基於貝葉斯統計和模型平均技術的整合模型。與前述的方法一樣,不同的分析例子的適用性也被測試過。此外,本論文採用該前饋人工神經網絡對替代模型杓杉杘杅材和某核電站的故障診斷進行了分析。第三個框架提出了一種量化源自模型結構的模型不確定性的方法。通過把一個旨在于指定空間內定位全局最優化模型結構的多目標優化問題考慮在內,該框架對先前的框架進行了擴展。再次,對該方法的適用性進行了幾個分析實例的測試,並對核電站的故障診斷進行。
I would like to express my sincere gratitude towards my supervisors Dr Edoardo Patelli and Professor Rong-Jiung Sheu for giving me the opportunity to take part in the rst dual PhD program between the University of Liverpool and National Tsing-Hua University Taiwan. This has been an amazing lifetime experience for me as I have had the opportunity to work in di erent multi-cultural research groups, broaden my network, and expand the visibility of my research. In particular, Edoardo Patellis guidance and support have been crucial to make my work visible on a global scale and for developing key academic partnership by giving me the opportunity to attend a variety of international conferences and workshops. Also, his personality and sense of humour made my research unique and entertaining. I am very grateful to him. Professor Rong-Jiun Sheu has been more than just a supervisor, he has given me fraternal support, constant guidance, and has taken me on a fantastic journey upon my arrival
in Taiwan, integrating me e ortlessly into his research group. I am very grateful to him for having taken me on board. I also acknowledge Matteo Broggi's help, as his understanding of computational analysis and his programming abilities considerably helped me in gaining familiarity with Matlab and OpenCossan. I would like to thank the National Nuclear Laboratory (NNL) for providing a realistic case study to demonstrate the applicability of the proposed approaches developed in this thesis. I am also very grateful to my colleagues at the Institute of Risk and Uncertainty and friends, who proof-read and signi cantly improved the presentation of this thesis. I am also grateful to Karen who helped me translate my abstract into traditional mandarin anguage. Special thanks to my family, who have always motivated me to push harder during dicult times. Finally, I give God the glory for giving me the wisdom, knowledge and understanding to complete the research work presented in this thesis.
1 Introduction... 1
1.1 Context...1
1.2 General Framework for Uncertainty Quanti cation in this Thesis ...3
1.3 Problem Statement... 4
1.4 Objectives of the Thesis... 4
1.5 Original Contributions... 5
1.6 Numerical Implementation...5
1.7 Outline of Thesis... 6
2 Modelling and Quanti cation of Parameter Uncertainties... 8
2.1 Modelling Aleatory Uncertainty... 8
2.1.1 Probability Theory... 8
2.1.1.1 Data to Cumulative Distribution Function... 9
2.2 Quanti cation of Parameter Uncertainties... 10
2.2.1 Reliability Analysis of Systems... 10
2.2.1.1 Estimation of the Failure Probability by means of
Simulation ...11
2.2.2 Sensitivity Analysis of Systems...13
2.2.2.1 Estimating Sobol' Indices by means of Monte Carlo
Simulation ... 15
2.3 Chapter Summary... 16
3 Classical Surrogate Models...17
3.1 State of the Art... 17
3.2 Background to Neural Networks... 18
3.2.1 Arti cial Neural Network ... 19
3.2.1.1 The Arti cial Neuron...19
3.2.2 Deep Learning with Arti cial Neural Networks ... 22
3.2.2.1 Convolution Neural Networks . . . . . . . . . . . . . 22
3.2.2.2 Recurrent Neural Networks . . . . . . . . . . . . . . 23
3.2.2.3 In nite Impulse Response-Locally Recurrent Neural
Network...24
3.2.3 Uncertainty in Arti cial Neural Network Computation... 25
3.2.3.1 Uncertainty from Sampling Variability in Training Data
Set...25
3.2.3.2 Uncertainty from ANN Weight Parameters ... 25
3.2.3.3 Uncertainty from the Model Structure ... 25
3.3 Chapter Summary... 26
4 Robust Surrogate Models - Variability in Training Data.... 28
4.1 Background to the Bootstrap Technique ... 28
4.2 Succiant Theory of Reliability and Sensitivity Analyses ... 29
4.2.1 Reliability Analysis... 29
4.2.2 Sensitivity Analysis... 29
4.2.3 Modelling of Arti cial Neural Network for Reliability and Sensitivity Analysis ... 30
4.2.4 Variability in Training Data Set...31
4.2.5 Adaptive Bootstrap Algorithm for Surrogate Models...31
4.2.5.1 Criterion for Selecting the Number of Bootstrap Models
to be Constructed ...34
4.3 Case Study... 36
4.3.1 Case Study 1: The Four Branch Function ... 36
4.3.1.1 Analysis...36
4.3.1.2 Results ... 37
4.3.2 Case Study 2: The Ishigami Function ... 39
4.3.2.1 Analysis...40
4.3.2.2 Results...40
4.4 Chapter Summary ... 41
5 Robust Surrogate Models - Random Model Parameters... 43
5.1 Background Theory of Proposed Approach...44
5.1.1 Bayesian Model Selection for Identical Trained Arti cial Neural Networks...44
5.1.2 Robust Arti cial Neural Network Prediction... 46
5.1.3 Con dence Interval for Robust Estimate ... 47
5.1.3.1 Criterion for Selecting the Number of Identical Networks
to be Constructed . . . . . . . . . . . . . . . . 48
5.1.4 Adaptive Procedure for Robust Arti cial Neural Network Training... 48
5.2 Case Study... 51
5.2.1 Case Study 1: The 2-D Non-Linear Function ... 51
5.2.2 Case Study 2: The Rosenbrock Function... 54
5.3 Chapter Summary... 56
6 Robust Surrogate Models - Model Structure and Random Model
Parameters... 58
6.1 Background to Problem ...58
6.2 Proposed Approach... 59
6.2.1 Formulation of Optimization Problem for Optimal ANN Architecture and Training Sample Size Selection ... 59
6.2.1.1 Searching Optimal ANN Solutions with Evolutionary
Algorithm ... 62
6.2.1.2 Encoding the Chromosome ...62
6.2.1.3 Procedures Taken to Search for Optimal Network Architectures... 63
6.2.1.4 Ensemble of Optimal Networks... 64
6.2.2 Bayesian Model Selection for Matrix Consisting of Identical ANNs ...64
6.2.2.1 Robust Prediction from Arti cial Neural Networks.... 66
6.2.2.2 Con dence Interval for Robust Neural Network Prediction
... 67
6.2.3 Model Averaging for the Ensemble of Robust Neural Networks... 68
6.2.3.1 Combination of the Robust Networks Con dence Intervals
... 69
6.2.3.2 Criterion for Selecting the Number of Identical Networks
to be Constructed ... 69
6.2.3.3 Adaptive Procedure for Optimized Robust ANN Training
... 69
6.3 Case Study... 72
6.3.1 Case Study 1... 72
6.3.1.1 Analysis ... 72
6.3.1.2 Results ... 72
6.3.2 Case Study 2 ... 76
6.3.2.1 Analysis... 77
6.3.2.2 Results...77
6.4 Chapter Summary ... 80
7 Uncertainty Quanti cation of the Site Ion eXchange Plant Using
Robust Arti cial Neural Networks 81
7.1 Overview ... 81
7.1.1 Computational Model of the SIXEP ...82
7.1.1.1 Modelling the Uncertainty in the Model Input Parameters
... 85
7.2 Reliability Analysis of the SIXEP Using Robust Arti cial Neural Networks... 85
7.2.1 Analysis... 86
7.2.2 Results... 87
7.3 Sensitivity Analysis of the SIXEP Using the Proposed Approaches... 88
7.3.1 Analysis ... 89
7.3.2 Results ... 89
7.4 Conclusion... 92
8 Fault Diagnosis of a Nuclear Power Plant Using Robust Arti cial
Neural Networks... 93
8.1 Background to Problem ... 93
8.1.1 Case Study: The Indian Pressurized HeavyWater Reactor (PHWR)... 94
8.1.2 Aim and Objectives of Chapter ...95
8.1.3 Data Set for Training Predictive Model ...95
8.2 Fault Diagnostic by Robust ANN...98
8.2.1 Case 1 .. 98
8.2.2 Predicting Blind Case Data ...103
8.2.3 Case 2 ...104
8.2.3.1 Adapting the IIR-LRNN to the Multi-Objective Optimization
Framework... 104
8.2.4 Case 3 ... 107
8.2.5 Proposed Framework for Combining Chapter 4 and 6 Approaches...107
8.3 Chapter Summary ...110
9 Uncertainty Analysis of Spectral Correction Schemes in High-Energy
Environments 111
9.1 Problem De nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.1.1 Neutron Detectors for Measuring High-Energy Neutrons . . . 112
9.1.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.1.3 Materials and Method . . . . . . . . . . . . . . . . . . . . . . 113
9.1.3.1 Bonner Spheres and Neutron Dose Meters . . . . . . 113
9.1.3.2 Neutron Spectra and Dose Correction Factors . . . . 115
9.1.4 Results and Discussion ... 117
9.1.4.1 Characterising the Neutron Field ... 117
9.1.4.2 General Trends in Spectral Correction Factors ...118
9.1.4.3 Neutron Calibration Sources and Spectral Correction
Factors ... 121
9.1.4.4 Neutron dose meters and spectral correction factors ... 122
9.1.5 Validation of the Proposed Models ... 124
9.2 Uncertainty Analyses of the Spectral Correction Schemes ... 127
9.2.1 Proposed Approach for Quantifying Uncertainty in Spectral
Correction Schemes... 128
9.3 Chapter Summary ... 136
10 Conclusions and Recommendations ...138
10.1 Summary ... 138
10.1.1 Research Contributions... 139
10.1.2 Applications...140
10.1.3 Future Work ...141
[1] Scott Owens, Manon Higgins-Bos, Mark Bankhead, and Jonathan Austin. Using chemical and process modelling to design, understand and improve an euent treatment plant. NNL Science,, 3,:4{13, 2015.
[2] KW Lee and RJ Sheu. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments. Radiation protection dosimetry, 164(3):210{218, 2015.
[3] Marco de Angelis, Edoardo Patelli, and Michael Beer. Advanced line sampling for ecient robust reliability analysis. Structural Safety, 52:170{182, 2015.
[4] Andrea Saltelli, Karen Chan, E Marian Scott, et al. Sensitivity analysis, volume 1. Wiley New York, 2000.
[5] Edoardo Patelli. COSSAN: A Multidisciplinary Software Suite for Uncertainty Quanti cation and Risk Management, pages 1{69. Springer International Publishing, Cham, 2016. ISBN 978-3-319-11259-6.
[6] Edoardo Patelli, H Murat Panayirci, Matteo Broggi, Barbara Goller, Pierre Beaurepaire, Helmut J Pradlwarter, and Gerhart I Schueller. General purpose software for ecient uncertainty management of large nite element models. Fi-nite elements in analysis and design, 51:31{48, 2012.
[7] Alfred M Freudenthal and Masanobu Shinozuka. Structural safety under conditions of ultimate load failure and fatigue. Technical report, COLUMBIA UNIV NEW YORK, 1961.
[8] Masanobu Shinozuka. Basic analysis of structural safety. Journal of Structural Engineering, 109(3):721{740, 1983.
[9] Karl Breitung. Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics, 110(3):357{366, 1984.
[10] Edoardo Patelli, Helmut J Pradlwarter, and Gerhart I Schueller. On multinormal integrals by importance sampling for parallel system reliability. Structural Safety,
33(1):1{7, 2011. [11] GI Schueller. Ecient monte carlo simulation procedures in structural uncertainty and reliability analysis-recent advances. Structural Engineering and Me-chanics, 32(1):1{20, 2009.
[12] RE Melchers. Importance sampling in structural systems. Structural safety, 6 (1):3{10, 1989.
[13] PS Koutsourelakis, HJ Pradlwarter, and GI Schueller. Reliability of structures in high dimensions, part i: algorithms and applications. Probabilistic Engineering Mechanics, 19(4):409{417, 2004.
[14] Siu-Kui Au and James L Beck. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16(4):263{277, 2001.
[15] Siu-Kui Au and Edoardo Patelli. Rare event simulation in nite-in nite dimensional space. Reliability Engineering & System Safety, 148:67{77, 2016.
[16] Enrico Zio and Nicola Pedroni. Subset simulation and line sampling for advanced monte carlo reliability analysis. In Proceedings of the European Safety and RELiability (ESREL) 2009 Conference, pages 687{694, 2009.
[17] Andrea Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145(2):280{297, 2002.
[18] Jon C Helton, Jay D Johnson, WL Oberkampf, and Cedric J Sallaberry. Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliability Engineering & System Safety, 91(10):1414{1434, 2006.
[19] Chonggang Xu and George Zdzislaw Gertner. Uncertainty and sensitivity analysis for models with correlated parameters. Reliability Engineering & System Safety, 93(10):1563{1573, 2008.
[20] Ilya M Sobol. Sensitivity estimates for nonlinear mathematical models. Mathe-matical Modelling and Computational Experiments, 1(4):407{414, 1993.
[21] Ilya M Sobol. On quasi-monte carlo integrations. Mathematics and Computers in Simulation, 47(2):103{112, 1998.
[22] Jon C Helton and Freddie Joe Davis. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1):23{69, 2003.
[23] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global sen-sitivity analysis: the primer. John Wiley & Sons, 2008.
[24] RI Cukier, HB Levine, and KE Shuler. Nonlinear sensitivity analysis of multiparameter model systems. Journal of computational physics, 26(1):1{42, 1978.
[25] Andrea Saltelli, Stefano Tarantola, and KP-S Chan. A quantitative modelindependent method for global sensitivity analysis of model output. Techno-metrics, 41(1):39{56, 1999.
[26] Stefano Tarantola, Debora Gatelli, and Thierry Alex Mara. Random balance designs for the estimation of rst order global sensitivity indices. Reliability Engineering & System Safety, 91(6):717{727, 2006.
[27] Jean-Yves Tissot and Clementine Prieur. Bias correction for the estimation of sensitivity indices based on random balance designs. Reliability Engineering & System Safety, 107:205{213, 2012.
[28] Mark J Anderson and Patrick J Whitcomb. Design of experiments. Wiley Online Library, 2000.
[29] Roger G Ghanem and Pol D Spanos. Stochastic nite elements: a spectral ap-proach. Courier Corporation, 2003.
[30] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and analysis of computer experiments. Statistical science, pages 409{423, 1989.
[31] Thomas J Santner, Brian J Williams, and William I Notz. The design and analysis of computer experiments. Springer Science & Business Media, 2013.
[32] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning, volume 1. MIT press Cambridge, 2006.
[33] Steve R Gunn et al. Support vector machines for classi cation and regression.
ISIS technical report, 14:85{86, 1998.
[34] Jooyoung Park and Irwin W Sandberg. Universal approximation using radialbasis- function networks. Neural computation, 3(2):246{257, 1991.
[35] Sang-Hyo Kim and Seong-Won Na. Response surface method using vector projected sampling points. Structural safety, 19(1):3{19, 1997.
[36] Christopher M Bishop. Neural networks for pattern recognition. Oxford university press, 1995.
[37] Roland Schobi, Bruno Sudret, and Joe Wiart. Polynomial-chaos-based kriging. International Journal for Uncertainty Quanti cation, 5(2), 2015.
[38] Christian Bucher and Thomas Most. A comparison of approximate response functions in structural reliability analysis. Probabilistic Engineering Mechanics, 23(2):154{163, 2008.
[39] Henri P Gavin and Siu Chung Yau. High-order limit state functions in the response surface method for structural reliability analysis. Structural safety, 30 (2):162{179, 2008.
[40] Abbie B Liel, Curt B Haselton, Gregory G Deierlein, and Jack W Baker. Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety, 31(2):197{211, 2009.
[41] Jian Deng, Desheng Gu, Xibing Li, and Zhong Qi Yue. Structural reliability analysis for implicit performance functions using arti cial neural network. Structural Safety, 27(1):25{48, 2005.
[42] Jorge E Hurtado. Filtered importance sampling with support vector margin: a powerful method for structural reliability analysis. Structural Safety, 29(1):2{15,2007.
[43] Jo~ao B Cardoso, Jo~ao R de Almeida, Jose M Dias, and Pedro G Coelho. Structural reliability analysis using monte carlo simulation and neural networks. Ad-vances in Engineering Software, 39(6):505{513, 2008.
[44] Jin Cheng, QS Li, and Ru-cheng Xiao. A new arti cial neural network-based response surface method for structural reliability analysis. Probabilistic Engi-neering Mechanics, 23(1):51{63, 2008.
[45] E Volkova, B Iooss, and F Van Dorpe. Global sensitivity analysis for a numerical model of radionuclide migration from the rrc kurchatov institute radwaste disposal site. Stochastic Environmental Research and Risk Assessment, 22(1):17{31, 2008.
[46] Amandine Marrel, Bertrand Iooss, Beatrice Laurent, and Olivier Roustant. Calculations of sobol indices for the gaussian process metamodel. Reliability Engi- neering & System Safety, 94(3):742{751, 2009.
[47] Piercesare Secchi, Enrico Zio, and Francesco Di Maio. Quantifying uncertainties in the estimation of safety parameters by using bootstrapped arti cial neural networks. Annals of Nuclear Energy, 35(12):2338{2350, 2008.
[48] Uchenna Oparaji, Rong-Jiun Sheu, Mark Bankhead, Jonathan Austin, and Edoardo Patelli. Robust arti cial neural network for reliability and sensitivity analyses of complex non-linear systems. Neural Networks, 96:80{90, 2017.
[49] Andrea GB Tettamanzi and Marco Tomassini. Soft computing: integrating evo-lutionary, neural, and fuzzy systems. Springer Science & Business Media, 2013.
[50] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115{133, 1943.
[51] Paul John Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences. Doctoral Dissertation, Applied Mathematics, Harvard University, MA, 1974.
[52] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. Optimization by simulated annealing. science, 220(4598):671{680, 1983.
[53] James Kennedy. Particle swarm optimization. In Encyclopedia of machine learn- ing, pages 760{766. Springer, 2011.
[54] David E Goldberg and John H Holland. Genetic algorithms and machine learning.Machine learning, 3(2):95{99, 1988.
[55] Jorge J More. The levenberg-marquardt algorithm: implementation and theory. In Numerical analysis, pages 105{116. Springer, 1978.
[56] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media, 2012.
[57] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active learning. In Advances in neural information processing systems, pages 231{238, 1995.
[58] Robert E Schapire. The boosting approach to machine learning: An overview. In Nonlinear estimation and classi cation, pages 149{171. Springer, 2003.
[59] Bradley Efron. Bootstrap methods: another look at the jackknife. In Break-throughs in statistics, pages 569{593. Springer, 1992.
[60] ED Cashwell and CJ Everett. Monte-Carlo methods. Pergamon, London, 1959.
[61] David E Rumelhart, Geo rey E Hinton, and Ronald J Williams. Learning internal representations by error propagation. Technical report, DTIC Document, 1985.
[62] Marco Rigamonti, Piero Baraldi, Enrico Zio, Indranil Roychoudhury, Kai Goebel, and Scott Poll. Ensemble of optimized echo state networks for remaining useful life prediction. Neurocomputing, 2017.
[63] Thomas Nilsen and Terje Aven. Models and model uncertainty in the context of risk analysis. Reliability Engineering & System Safety, 79(3):309{317, 2003.
[64] Enrico Zio. A study of the bootstrap method for estimating the accuracy of arti cial neural networks in predicting nuclear transient processes. IEEE Trans- actions on Nuclear Science, 53(3):1460{1478, 2006.
[65] MJ Bayarri, JO Berger, John Cafeo, G Garcia-Donato, F Liu, J Palomo,RJ Parthasarathy, R Paulo, Jerry Sacks, and D Walsh. Computer model validation with functional output. The Annals of Statistics, pages 1874{1906, 2007.
[66] Maria J Bayarri, James O Berger, Rui Paulo, Jerry Sacks, John A Cafeo, James Cavendish, Chin-Hsu Lin, and Jian Tu. A framework for validation of computer models. Technometrics, 2012.
[67] Marc C Kennedy and Anthony O'Hagan. Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3):425{464, 2001.
[68] David G Kleinbaum and Mitchel Klein. Maximum likelihood techniques: An overview. In Logistic regression, pages 103{127. Springer, 2010.
[69] Thomas H Wonnacott and Ronald J Wonnacott. Introductory statistics, volume 19690. Wiley New York, 1972.
[70] Il Yong Kim and Oliver L de Weck. Adaptive weighted-sum method for biobjective optimization: Pareto front generation. Structural and multidisciplinary optimization, 29(2):149{158, 2005.
[71] Andrew R Barron. Predicted squared error: a criterion for automatic model selection. Unknown, 1984.
[72] John E Moody. Note on generalization, regularization and architecture selection in nonlinear learning systems. In Neural Networks for Signal Processing [1991].,Proceedings of the 1991 IEEE Workshop, pages 1{10. IEEE, 1991.
[73] Weimin Dong and Haresh C Shah. Vertex method for computing functions of fuzzy variables. Fuzzy sets and Systems, 24(1):65{78, 1987.
[74] William V Harper and Sumant K Gupta. Sensitivity/uncertainty analysis of a borehole scenario comparing latin hypercube sampling and deterministic sensitivity approaches. Technical report, Battelle Memorial Inst., Columbus, OH (USA). Oce of Nuclear Waste Isolation, 1983.
[75] CD Fletcher and RR Schultz. Relap5/mod3 code manual volume v: Users guidelines. Idaho National Engineering Laboratory, Lockheed Idaho Technologies Com-pany, Idaho Falls, Idaho, 83415, 1995.
[76] Alfred Klett, Sabine Mayer, Christian Theis, and Helmut Vincke. A neutron dose rate monitor for high energies. Radiation measurements, 41:S279{S282, 2006.
[77] Alberto Fasso, James C Liu, and Sayed H Rokni. Neutron spectra and dosimetric quantities outside typical concrete shielding of synchrotron facilities. ICRS-12 & RPSD-2012, Nara, Japan, pages 2{7, 2012.
[78] Richard H Olsher, Hsiao-Hua Hsu, Anthony Beverding, Je rey H Kleck, William H Casson, Dennis G Vasilik, and Robert T Devine. Wendi: An improved neutron rem meter.. Health Physics, 79(2):170{181, 2000.
[79] L Jagerhofer, Eduard Feldbaumer, Doris Forkel-Wirth, Chris Theis, Helmut Vincke, Yosuke Iwamoto, Masayuki Hagiwara, Daiki Satoh, Hiroshi Iwase, Hiroshi Yashima, et al. Characterization of the wendi-ii rem counter for its application at medaustron. Prog. Nucl. Sci. Technol, 2:258{262, 2011.
[80] TSR IAEA. 403: Compendium of neutron spectra and detector responses for radiation protection purposes, 2001.
[81] DB Pelowitz. Mcpx user's manual version 2.7. 0 (los alamos: Los alamos national laboratory). Technical report, LA-CP-11-00438, 2011.
[82] H Schuhmacher. Neutron calibration facilities. Radiation protection dosimetry, 110(1-4):33{42, 2004.
[83] International Commission on Radiological Protection. Conversion coecients for use in radiological protection against external radiation. ICRP Publications, 74:365{382, 1996.
[84] M Pelliccioni. Overview of uence-to-e ective dose and
uence-to-ambient dose equivalent conversion coecients for high energy radiation calculated using the uka code. Radiation Protection Dosimetry, 88(4):279{297, 2000.150
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *