帳號:guest(18.225.55.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林郁格
作者(外文):Lin, Yuh-Ger
論文名稱(中文):遭受外加垂直震動下單一沸騰通道雙相流循環 迴路之非線性動態分析
論文名稱(外文):The nonlinear dynamic analysis of a single boiling channel two-phase circulation loop under external vertical vibration condition
指導教授(中文):陳紹文
李進得
指導教授(外文):Chen, Shao-Wen
Lee, Jin-Der
口試委員(中文):林唯耕
王仲容
口試委員(外文):Lin, Wei-Keng
Wang, Jong-Rong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:104013505
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:120
中文關鍵詞:沸騰通道穩定性邊界自然頻率共振效應非線性分析
外文關鍵詞:Boiling channelnatural frequencyresonancevertical accelerationnonlinear anaylsis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:232
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
本文首先發展在外加垂直震動下強制對流單一沸騰通道分析模式,接著建立反應器爐心以外各組件分析模式,並結合點中子動態模式與燃料棒熱傳導模式,茲以建立在外加垂直震動下進步型沸水式反應器(ABWR)單一沸騰通道自然循環迴路的非線性分析模式。
本研究在加入外部垂直加速度下,探討在外部震盪影響下,系統在不同運轉條件所產生的非線性現象。本文先以非線性分析方法建立系統的穩定性圖譜,再探討系統穩定區域內各穩定點的自然頻率,即共振頻率,之分佈,並據以探討各穩定點的共振效應。本研究分析發現系統穩定區域內之自然頻率數值,落在地震記錄最常被觀測到的震波頻率範圍內,f =0.1 Hz~20Hz,須注意外部地震波對系統安全與穩定運轉之影響。然而,在ABWR的正常運轉點與自然循環點並不會引發劇烈的共振振盪,其是非常穩定的運轉點。此外,當穩定操作點越靠近穩定性邊界時,若加入的外部震盪頻率與當下系統運轉條件之自然頻率相符時,外部震盪導致之共振效應可能造成系統產生不穩定的發散震盪。
本研究亦發展解析及重組實際地震波的方法,可適當模擬真實地震波,並比較真實地震波與模擬地震波對系統所造成之非線性震盪,發現兩者趨勢相當吻合,共振效應會主導其非線性行為。
另一方面,本研究亦進行參數效應之靈敏度分析,結果顯示降低地震對雙相流影響行為的方式有:縮短加熱段管長、增加加熱段管徑、增加進口流阻,降低出口流阻、遠離穩定性邊界及避免共振的發生。
The present study adopts the single nuclear-coupled boiling channel model integrated with external vertical seismic accelerations to investigate the seismic-induced effect on a single nuclear-coupled boiling channel system. Furthermore, a nonlinear model of natural circulation loop in response to the components in ABWR has also been developed for analyzing the effect of seismic accelerations. The nonlinear dynamics and stabilities of a single nuclear-coupled boiling channel and the natural circulation loop are investigated. The void-reactivity feedback would destabilize the system as that reported in the literatures. The natural frequencies of the stable states are widely explored. The results indicate that the natural frequency of initial state could depend on the parameters of phase change number relative to the operating power and subcooling number representing for the condition of inlet subcooling. It tends to increase as the increase in the phase change number or the decrease in the subcooling number. Notably, the system natural frequencies distributed in the stable region are located within the common range of seismic vibration frequency. For the concern of reactor safety, the present study investigates the seismic-induced resonance effect on the nuclear-coupled boiling channel system. The results illustrate that the resonance oscillations could be triggered if the external vibration frequency is the same as the system natural frequency. Moreover, the strength of resonance effect may depend on the inherent stability characteristics of the initial states.
Sensitivity analysis of system parameters, such as length, diameter, inlet/outlet flow resistance, of heated channel, and seismic vibration characteristics have been investigated. The results indicate that the seismic induced oscillations of the single channel system and circulation loop system, in general, could be stabilized by changing several parameters as below:
 Decreasing heated length and outlet flow resistance
 Increasing diameter and inlet flow resistance
 Keep the operating condition (Npch & Nsub) away from the stability boundary
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vii
表目錄 xi
圖目錄 xi
符號系統 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究範圍與目的 1
1.3 論文結構 2
第二章 文獻回顧 3
2.1 雙相流通道穩定性之非線性分析 3
2.2 地震情形下之沸水式反應器工作流體分析 5
2.3 震盪狀態下之雙相流通道實驗 6
2.4 彙整與啟發 7
第三章 模式發展與推導 9
3.1 模式發展結構 9
3.2 地震波模式 10
3.2.1 地震波類型 10
3.2.2 實際案例-美國North Anna核電廠之地震急停事件 12
3.2.3 系統加入外部震盪模式 13
3.3 外加垂直震動下之單一沸騰通道模式[A] 14
3.3.1 前提假設 14
3.3.2 統御方程式 14
3.3.3 模式的建立 15
3.3.4 壓力降 17
3.3.5 地震狀態下強制對流系統壓降之邊界條件 18
3.3.6 外加垂直加速度下入口流速動態 19
3.4 進步行沸水式反應器單一沸騰通道迴路模式 21
3.4.1 上空乏區(Upper Plenum)模式[B] 22
3.4.2 升流管(Riser)模式[C] 23
3.4.3 蒸氣分離器(Steam Separator)模式[D] 24
3.4.4 混合區(Mix Region)模式[E] 25
3.4.5 上降流區(Upper Downcomer)模式[F1] 26
3.4.6 下降流段(Lower Downcomer)模式[F2] 26
3.4.7 下空乏區(Lower Plenum)模式[G] 27
3.4.8 爐心通道單相區模式 28
3.4.9 外加垂直震盪下自然循環迴路爐心通道入口流速動態模式 28
3.5 壓降之摩擦係數 29
3.6 燃料棒熱傳導模式 30
3.7 點中子動態模式 36
第四章 分析方法與模式驗證 38
4.1 重要的無因次參數 38
4.2 特性速度 38
4.3 數值方法 39
4.3.1 穩態解析副程式-SNSQE 39
4.3.2 暫態解析副程式-SDRIV2 40
4.3.3 快速傅立葉轉換-fast Fourier transform 41
4.4 模式驗證 43
第五章 結果與討論 44
5.1 外部垂直加速度對強制對流單一沸騰通道之影響探討 44
5.1.1 穩定性圖譜 44
5.1.2 地震暫態-外部振盪效應 45
5.1.3 靈敏度分析-參數效應 55
5.1.4 實際地震波之解析及應用 62
5.2 外部震盪對簡易型自然循環單一通道迴路之影響 74
5.2.1 穩定性圖譜 74
5.2.2 外部震盪效應 75
5.2.3 靈敏度分析-參數效應 81
5.3 外部震盪對自然循環單一沸騰通道循環迴路之影響 93
5.3.1 穩定性圖譜 93
5.3.2 外部震盪效應 93
5.3.3 靈敏度分析-參數效應 94
第六章 結論與建議 111
6.1 結論 111
6.1.1 強制循環-單一沸騰通道模式 111
6.1.2 自然循環-簡易型單一迴路模式 112
6.1.3 自然循環-單一迴路模式 114
6.2 建議 115
參考文獻 114
[1] 林永能, “沸騰通道之非線性熱流分析,” 碩士論文, 國立清華大學核子工程研究所, 1994。
[2] 李進得, “雙相流非線性模式的發展與應用”, 博士論文, 國立清華大學工程與系統科學系, 2000。
[3] Achard, L. L., Drew D. A. and Lahey, Jr., R. T., “The Analysis of Nonlinear Density-Wave Oscillations in Boiling Channels,” Journal of Fluid Mechanics, Vol. 155, pp.213-232, 1985.
[4] March-Leuba, Cauci, D. G. and Perez, R. B., “Nonlinear Dynamics and Stability of Boiling Water Reactors: Part 1-Quantitative Analysis,” Nucl. Sci. Eng., Vol. 93, pp.111-123, 1986a.
[5] March-Leuba, Cauci, D. G. and Perez, R. B., “Nonlinear Dynamics and Stability of Boiling Water Reactors: Part-2-Quantitative Analysis,” Nucl. Sci. Eng., Vol. 93, pp.124-136, 1986b.
[6] Domiano, B., March-Leuba, J. A., and Euler, J. A., “Application of Galerkin’s Method to Calculate the Behavior of Boiling Water Reactors During Limit-Cycle Oscillations,” Nuclear Science and Engineering, Vol. 113, pp.271-281, 1993.
[7] Borkowski, J. E., Robinson, G. E., Baratta, A. J., and Kattic, M., “Time Domain Model Sensitivity in Boiling Water Reactor Stability Analysis Using TRAC-BF1,” Nuclear Technology, Vol. 103, pp.34-48, 1993.
[8] Rizwan-Uddin, “On Density-Wave Oscillation in Two-Phase Flows,” Int. J. Multiphase Flow, Vol. 20, No.4, pp.712-737, 1994.
[9] Karve, A. A., Rizwan-Uddin and Doring, J. J., ’ “Stability Analysis of BWR Nuclear-Coupled Thermal-Hydraulic Using a Simple Model,” Nuclear Engineering and Design, Vol. 177, pp.155-177, 1997.
[10] Clausse, A. and Lahey, Jr. R. T., “An Investigation of Periodic and Strange Attractors in Boiling Flows Using Chaos Thoery,” Proc. 9th Int. Heat Transfer Conf., Jerusalem, Vol. 2, pp.3-8, 1990.
[11] Hirano, M., and Tamakoshi, T., “An analytical study on excitation of nuclear-coupled thermal hydraulic instability due to seismically induced resonance in BWR,” Nuclear Engineering and Design, Vol. 162, pp. 307–315, 1996.
[12] Satou, A., Watanabe, T., Maruyama, Y., and Nakamura, H., “Neutron-coupled thermal hydraulic calculation of BWR under seismic acceleration,” Progress in Nuclear Science and Technology, Vol. 2, pp. 120-124, 2011.
[13] Watanabe, T., “On the numerical approach for simulating reactor thermal hydraulics under seismic conditions,” Annals of Nuclear Energy, Vol. 49, pp. 200–206, 2012.
[14] Misawa, T., Yoshida, H., and Takase, K., “Development of an analytical method on water-vapor boiling two-phase flow characteristics in BWR fuel assemblies under earthquake condition,” in: Mesquita, A. (Ed.), Nuclear Reactors. InTech, pp.157-174, 2012.
[15] Lee, J.D., Chen, S.W., and Pan, C., “The effect of external vertical acceleration on the dynamic behaviors of a single nuclear-coupled boiling channel,” Nuclear Engineering and Design, Vol. 301, pp. 264–278, 2016.
[16] Chen, S. W., Hibiki, T., Ishii, M., and Watanabe, F., “Experimental Investigation of Vibration Effects on Subcooled Boiling Two-Phase Flow in an Annulus,” 7th International Conference on Multiple Flow, Tampa, FL USA, 2010.
[17] Chen, S. W., Hibiki, T., Ishii, M., Mori, M., and Watanabe, F., “Experimental Study of Adiabatic Two-Phase Flow in an Annular Channel Under Low-Frequency Vibration,” Journal of Engineering for Gas Turbines and Power, Vol. 136, No.032501, 2014.
[18] Lin, Y. N., Lee, J. D., and Pan, C., “Nonlinear Dynamics of a Nuclear-Coupled Boiling Channel with Forced Flow,” Nuclear Engineering and Design, Vol. 179, pp. 31-49, 1998.
[19] Taiwan Power Company, “Lungmen Nuclear Power Station Units 1 & 2,” Preliminary safety analysis report, Taipei, Taiwan, 1997.
[20] Kahaner, D., Moler, C., and Nash, S., “Numerical Methods and Software,” Prentice Hall, 1989.
[21] Saha, P., Ishii, M., and Zuber, N., “An experimental investigation of thermally induced flow oscillations in two phase systems,” J. Heat Trans., Vol. 98, pp. 616–622, 1976.
[22] Dykhuizen, R. C., Roy, R. P. and Kalra, S. P., “A Linear Time-Domain Two-Fluid Model Analysis of Dynamic Instability in Boiling Flow Systems,” Journal of Heat Transfer, Vol. 108, pp.100-108, 1986a.
[23] Dykhuizen, R. C., Roy, R. P. and Kalra, S. P., “Two-Fluid Model Simulation of Density-Wave Oscillation in a Boiling Flow System,” Nuclear Science and Engineering, Vol. 94, pp.197-179, 1986b..
[24] Boure, J.A., Bergles, A.E. and Tong, L.S., “Review of two-phase flow instability,” Nuclear Engineering and Design, Vol. 25, pp. 165–192, 1973.
[25] USGS, 2014, “Earthquake facts,” http://earthquake.usgs.gov/learn/facts.php.
[26] Mitsubishi Heavy Industries, “FINDS: Mitsubishi PWR Fuel Assemblies Seismic Analysis Code,” Japan, pp. 5-11-5-14, 2008.
[27] http://www.csie.ntnu.edu.tw/~u91029/Wave.html.
[28] Virginia Electric and Power Company (Dominion), “Summary of Excerpted Portions of the Root Evaluation – Dual Unit Trip Following Magnitude 5.8 Earthquake North Anna Power Station ,” Root Cause Evaluation RCE001061 Rev 1, Washington, D.C., United States.
[29] https://en.wikipedia.org/wiki/Elastic-rebound_theory.
[30] https://en.wikipedia.org/wiki/Seismic_wave.
[31] https://en.wikipedia.org/wiki/Snell's_law.
[32] Jeng, H. R., and Pan, C., “Multiple Steady-State Solutions for a Two-phase Natural Circulation Loop with Subcooled Boiling,” The 4th International Topical Meeting on Nuclear Thermal Hydraulics, Operations and Safety, Taipei, Taiwan, 1994.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *