帳號:guest(3.135.188.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇昱璘
作者(外文):Su, Yu-Lin
論文名稱(中文):石墨烯奈米複合材料之穿透藥物傳遞應用於深度腦部腫瘤治療
論文名稱(外文):Penetrated Drug Delivery of Graphene-Based Nanocomposites for Deep Glioblastoma Therapy
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):邱信程
莊淳宇
陳冠宇
姜文軒
口試委員(外文):Chiu, Hsin-Cheng
Chuang, Chun-Yu
Chen, Guan-Yu
Chiang, Wen-Hsuan
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012902
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:211
中文關鍵詞:增強積累腫瘤穿透石墨烯奈米複合材刺激應答腫瘤治療
外文關鍵詞:enhanced accumulationtumor penetrationgraphene-based nanocompositesstimuli-responsive tumor treatments.
相關次數:
  • 推薦推薦:0
  • 點閱點閱:572
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近期奈米醫藥增加了藥物在癌症腫瘤治療方面的進展,然而腫瘤仍存在異質性結構,使得有效提升藥物累積和穿透遞送成為了兩大新難題。雖然透過被動增強的滲透性和保留之效應(EPR effect)可以改善奈米醫藥在腫瘤的累積,但是通過該機制之藥物僅有一小部分給藥劑量提升,並不足以達到顯著效果。另外,腫瘤的組織屏障阻礙了奈米醫藥在腫瘤深度的滲透,導致奈米醫藥釋放藥物於腫瘤的血管周圍細胞中,而降低治療的功效。為了解決這個問題,我們首先發展氧化石墨烯上,修飾海綿狀碳材料,並加入脂質雙層為石墨烯奈米海綿,兼作光熱藥物和高載藥之石墨烯奈米複合材,用近紅外光照射時,光熱可釋放出載負的藥物多西紫杉醇和氣化的全氟己烷。此外,我們也用腫瘤靶向蛋白修飾於石墨烯奈米海綿,並通過胞吞作用來提升穿透腫瘤。相對於270 nm的石墨烯奈米海綿,40 nm的石墨烯奈米海綿於腫瘤累積增加了200倍。此外,除了遞送到腫瘤中的藥物釋放到腫瘤之外,經過單一次10分鐘近紅外光照射後,所產生的化學和光熱治療協同,16天內可成功地破壞並抑制異種移植腫瘤,且沒有其他毒性傷害。此外,在治療後60天內也未觀察到腫瘤復發狀況。
而在第二部分中,我們進一步用石墨烯量子點,其具有超小尺寸(2-5 nm),穿膜能力,和獨特的物理化學性質,來做為腫瘤滲透治療載體。我們將石墨烯量子點包裹在pH敏感高分子微包中,此石墨烯量子點奈米複合材料,可以透過酸應答來增強腫瘤累積,並接著通過外部近紅外光照射,刺激藥物釋放並滲透到腫瘤深處,同時克服低腫瘤累積和腫瘤滲透的限制。通過pH敏感性,將可讓此複合材粒徑從150 nm聚集到450 nm,來增加粒子在腫瘤滯留的機會,進一步再照射近紅外光後,會使奈米複合材料分解成5 nm的抗癌藥物多柔比星載負石墨烯量子點,促進穿透到深部腫瘤組織。這種奈米複合材料也成功地抑制了異種移植腫瘤。
最後,我們針對原位腦瘤治療,設計一種分層靶向石墨烯複合材,運輸含有兩種抗癌藥物的雙腫瘤穿透粒子(硼摻雜石墨烯量子點載負多柔比星,和pH應答樹枝狀高分子載負帕博西尼)。另外由於針對腦部腫瘤治療,血腦屏障是一個相當大的阻礙,因此我們進一步修飾狂犬病病毒糖蛋白(RVG)包膜之奈米複合體。通過RVG可繞過血腦屏障之特性,並一樣透過酸性應答之分層靶向,來增加腫瘤中藥物的累積。由高週波磁場效應驅動,能夠使石墨烯量子點上產生感應電流,並排斥而將複合體分解成2-5 nm大小的雙重腫瘤穿透材,硼摻雜石墨烯量子點和pH應答樹枝狀高分子,並且同時攜帶雙抗癌藥物向深部腫瘤的穿透遞送達到協同治療效果。通過繞過血腦屏障,酸性提升累積,以及雙穿透材遞送藥物至原位腦腫瘤,我們最終實現以非接觸式磁場誘發藥物滲透和化學療法的協同作用,成功延長了帶有原位腦瘤之老鼠的存活時間。
Despite recent advances in enhanced nanotherapeutics, the challenges of effective accumulation and penetrated delivery from tumor heterogeneity still exist. Although the accumulation of nanoparticles could be improved at the tumor through the enhanced permeability and retention effect, only a small fraction of the administered dose was accumulated through this mechanism. Moreover, the physiological barrier of the tumor obstructs the penetration of nanoparticles into the tumor, causing nanoparticles to release the cargos in the perivascular cells of tumors and decreasing the therapeutic efficacy. To address this issue, a sponge-like carbon material on graphene nanosheet (graphene nanosponge)-supported lipid bilayers (lipo-GNS) that doubles as a photothermal agent and a high cargo payload platform and releases a burst of drug/energy (docetaxel (DTX) and gasified perfluorohexane (PFH)) and intense heat upon near-infrared irradiation was developed. Ultrasmall lipo-GNS (40 nm) modified with a tumor-targeting protein that penetrates tumor spheroids through transcytosis exhibited a 200-fold increase in accumulation relative to a 270 nm variant of the lipo-GNS. Furthermore, a combination of therapeutic agents (DTX and PFH) delivered by lipo-GNS into tumors was gasified and released into tumor spheroids and successfully ruptured and suppressed xenograft tumors in 16 days without distal harm when subjected to a single 10 min near-infrared laser treatment. Moreover, no tumor recurrence was observed over 60 days post-treatment.
In the second part, graphene quantum dots with ultrasmall size (2-5 nm), transmembrane capability, and unique physicochemical properties were utilized for penetrated therapy. Graphene quantum dots nanocomposites encapsulated in pH-sensitive micelles can enhance the accumulation responsively, and penetrate the cargos via external stimuli, which overcome the limitation of low accumulation and poor penetration. A size conversion of the nanocomposites at the tumor is demonstrated, which enhances the accumulation by enlarging the particle size from 150 nm to 450 nm via pH-sensitivity, and further disassembling 450 nm of nanocomposites into 5 nm of anticancer drugs loaded-graphene quantum dots, facilitating the penetrated delivery into the deep tumor tissue. This nanocomposite integrated with combinational therapy successfully suppresses xenograft tumors without distal harm. Finally, a hierarchical targeted hybrid that acts as a stealthy and magnetolytic carrier that transports dual tumor-penetrating agents incorporating two drugs (boron-doped graphene quantum dots (B-GQD)/doxorubicin and pH-responsive dendrimers (pH-Den)/palbociclib) was developed. The developed rabies virus glycoprotein (RVG)-enveloped hybrids (RVG-hybrids) amplify the accumulation of drugs in tumors by bypassing the blood brain barriers (BBB) and achieving hierarchical targeting. The penetrated delivery of dual pH-Den and B-GQD drugs to deep tumors is actuated by magnetoelectric effects, which are able to generate electrostatic repulsion and disassemble the hybrids into components of a few nanometers in size. The synergy of magnetoelectric drug penetration and chemotherapy was achieved by delivery of the theranostic B-GQDs and pH-Den to orthotopic brain tumors, which significantly prolonged the host survival time.
Chapter 1 Introduction ...... 1
Chapter 2 Literature Review and Theory ...... 6
2.1 Introduction of photothermal therapy based on graphene-materials ...... 6
2.2 Structural features of graphene-based materials ...... 11
2.3 Photothermal therapy (PTT) with combination treatments ...... 15
2.3.1 PTT with chemotherapy ...... 15
2.3.2 PTT with photodynamic therapy (PDT) ...... 16
2.3.3 PTT with ultrasonic treatment ...... 19
2.3.4 PTT with gene delivery ...... 20
2.4 Bio-functionalized photothermal therapy ...... 21
2.4.1 Biocompatibility-enhanced PTT ...... 21
2.4.2 Ligand-Targeted PTT ...... 24
2.4.3 Smart function-modified PTT ...... 25
2.5 Multimodalities-enhanced photothermal therapy ...... 26
2.5.1 Fluorescent agent-decorated GO for PTT enhancement ...... 26
2.5.2 Imaging-guided PTT by inorganic nanoparticle decoration ...... 28
2.6 Low-power efficient photothermal therapy ...... 31
2.6.1 GO conjugated with nanoparticle for low-power photothermal conversion ...... 31
2.6.2 High penetration integrated with low-power PTT ...... 32
2.7 Nanocomposite structure-modified photothermal therapy ...... 35
2.7.1 GO-based nanocapsules for enhanced PTT ...... 35
2.7.2 GO-based 3-D hybrid for photothermal chemotherapy ...... 37
2.8 Introduction of functional nanoparticles for tumor penetration ...... 38
2.9 Tumor penetrating by size changeability ...... 41
2.9.1 Stimuli-trigger (Outer factors) ...... 42
2.9.1.1 Light ...... 42
2.9.1.2 Ultrasound ...... 43
2.9.1.3 Magnetic field ...... 44
2.9.2 Tumor microenvironment (Inner factors) ...... 45
2.9.2.1 Overexpressed MMP ...... 45
2.9.2.2 Low pH ...... 47
2.9.2.3 Low oxygen concentration ...... 49
2.10 Tumor penetrating by ligand functionalization ...... 49
2.10.1 Albumin ...... 50
2.10.2 IF7 ...... 50
2.10.3 RGD ...... 51
2.10.4 Transferrin ...... 53
2.10.5 Cell ...... 55
2.11 Tumor penetrating by modulation of tumor microenvironments ...... 55
2.11.1 Tumor extracellular matrix disruption ...... 55
2.11.2 Vascular disruption ...... 58
2.12 Tumor penetrating by combinational strategies ...... 61
2.12.1 Size + Ligand functionalization ...... 61
2.12.2 Ligand functionalization + Modulation ...... 65
2.12.3 Size + Modulation ...... 66
Chapter 3 Experimental Procedures ...... 70
3.1 Synthesis of graphene-based materials ...... 70
3.2 Synthesis of pH-sensitive polymers and dendrimers ...... 73
3.3 Preparation and characteristics of graphene-based nanocomposites ...... 74
3.4 Drugs loading on graphene-based nanocomposites ...... 76
3.5 Drug release ...... 78
3.6 Cell lines and animals ...... 78
3.7 Cellular uptake, distribution, and cytotoxicity ...... 79
3.8 Multicellular spheroids chip fabrication ...... 80
3.9 Multicellular spheroids chip evaluation of graphene-based materials ...... 80
3.10 Penetrated depth evaluation of collagens and tumor spheroids ...... 81
3.11 Heterotopic and orthotopic intracranial tumor study by IHC staining ...... 82
3.12 Biodistribution and survival rate with synergistic chemotherapy in vivo ...... 83
Chapter 4 The Penetrated Delivery by Lipo-Graphene Nanosponges ...... 86
4.1 Introduction ...... 86
4.2 Results and Discussion ...... 90
4.2.1 Synthesis and characterization of Lf-lipo-GNS ...... 90
4.2.2 Size effects on cell uptake ...... 100
4.2.3 In vitro photothermo-chemo-therapy and photolytic therapy ...... 106
4.2.4 In vivo study ...... 108
4.3 Conclusion ...... 118
Chapter 5 Hierarchically Targeted and Penetrated Delivery by pH-sensitive GQD Nanoaircrafts ...... 120
5.1 Introduction ...... 120
5.2 Results and Discussion ...... 124
5.2.1 Synthesis and characterizations of size-changeable nanoaircrafts ...... 124
5.2.2 Evaluations of enhanced accumulation and penetrated delivery ...... 131
5.2.3 Multicellular tumor penetration and intercellular delivery ...... 134
5.2.4 In vivo study ...... 140
5.3 Conclusions ...... 145
Chapter 6 Magnetoelectric Penetrated Delivery of Theranostic Graphene/Drugs by Virus-Inspired GQDs Nanohybrids ...... 146
6.1 Introduction ...... 146
6.2 Results and Disscussion ...... 150
6.2.1 Synthesis and Characterization of Hybrids ...... 150
6.2.2 HFMF-Treated Hybrids ...... 160
6.2.3 Cytotoxicity and Cell Uptake of Hybrids ...... 163
6.2.4 Penetration of Hybrids in Tumor Spheroids ...... 167
6.2.5 In vivo Study ...... 173
6.3 Conclusions ...... 189
Chapter 7 Conclusions ...... 190
7.1 The Penetrated Delivery of Drug and Energy to Tumors by Lipo-Graphene Nanosponges for Photolytic Therapy ...... 190
7.2 Hierarchically Targeted and Penetrated Delivery of Drugs to Tumors by Size-Changeable Graphene Quantum Dot Nanoaircrafts for Photolytic Therapy ...... 190
7.3 Magnetoelectric Penetrated Delivery of Theranostic Graphene/Drugs to Deep Glioblastoma by Dual Virus-Inspired/Hierarchical Targeted Hybrids ...... 191
Reference ...... 192
Curriculum Vitae (CV) ...... 209
[1] S. Parveen, R. Misra, S. K. Sahoo, Nanomedicine 2012, 8, 147.
[2] V. Shanmugam, S. Selvakumar, C. S. Yeh, Chem. Soc. Rev. 2014, 43, 6254.
[3] E. G. Graham, C. M. Macneill, N. H. Levi-Polyachenko, Nano LIFE 2013, 03, 1330002.
[4] E. S. Shibu, M. Hamada, N. Murase, V. Biju, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 15, 53.
[5] K. Shao, S. Singha, X. Clemente-Casares, S. Tsai, Y. Yang, P. Santamaria, ACS Nano 2015, 9, 16.
[6] A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, C. J. Murphy, Adv. Drug Deliv. Rev. 2012, 64, 190.
[7] W. Miao, G. Shim, S. Lee, Y. K. Oh, Biomaterials 2014, 35, 4058.
[8] S. Shi, Y. Huang, X. Chen, J. Weng, N. Zheng, ACS Appl. Mater. Interfaces 2015, 7, 14369.
[9] X. Song, Q. Chen, Z. Liu, Nano Res. 2014, 8, 340.
[10] M. Zhou, J. Li, S. Liang, A. K. Sood, D. Liang, C. Li, ACS Nano 2015, 9, 7085.
[11] X. Tu, L. Wang, Y. Cao, Y. Ma, H. Shen, M. Zhang, Z. Zhang, Carbon 2016, 97, 35.
[12] D. V. Peralta, Z. Heidari, S. Dash, M. A. Tarr, ACS Appl. Mater. Interfaces 2015, 7, 7101.
[13] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318.
[14] M. Li, X. Yang, J. Ren, K. Qu, X. Qu, Adv. Mater. 2012, 24, 1722.
[15] O. Akhavan, E. Ghaderi, Small 2013, 9, 3593.
[16] M. Guo, J. Huang, Y. Deng, H. Shen, Y. Ma, M. Zhang, A. Zhu, Y. Li, H. Hui, Y. Wang, X. Yang, Z. Zhang, H. Chen, Adv. Funct. Mater. 2015, 25, 59.
[17] M. Orecchioni, R. Cabizza, A. Bianco, L. G. Delogu, Theranostics 2015, 5, 710.
[18] J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, H. Dai, J. Am. Chem. Soc. 2011, 133, 6825.
[19] J. You, R. Zhang, C. Xiong, M. Zhong, M. Melancon, S. Gupta, A. M. Nick, A. K. Sood, C. Li, Cancer Res. 2012, 72, 4777.
[20] Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepic, K. M. Arsikin, S. P. Jovanovic, A. C. Pantovic, M. D. Dramicanin, V. S. Trajkovic, Biomaterials 2011, 32, 1121.
[21] O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, Journal of Materials Chemistry 2012, 22, 13773.
[22] K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, Biomaterials 2012, 33, 2206.
[23] M. Abdolahad, M. Janmaleki, S. Mohajerzadeh, O. Akhavan, S. Abbasi, Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1498.
[24] C. Hou, H. Quan, Y. Duan, Q. Zhang, H. Wang, Y. Li, Nanoscale 2013, 5, 1227.
[25] D. K. Lim, A. Barhoumi, R. G. Wylie, G. Reznor, R. S. Langer, D. S. Kohane, Nano Lett. 2013, 13, 4075.
[26] O. Akhavan, A. Meidanchi, E. Ghaderi, S. Khoei, J. Mater. Chem. B 2014, 2, 3306.
[27] H. S. Jung, W. H. Kong, D. K. Sung, M. Y. Lee, S. E. Beack, H. Keum do, K. S. Kim, S. H. Yun, S. K. Hahn, ACS Nano 2014, 8, 260.
[28] J. L. Li, X. L. Hou, H. C. Bao, L. Sun, B. Tang, J. F. Wang, X. G. Wang, M. Gu, J. Biomed. Mater. Res. A 2014, 102, 2181.
[29] U. Dembereldorj, S. Y. Choi, E. O. Ganbold, N. W. Song, D. Kim, J. Choo, S. Y. Lee, S. Kim, S. W. Joo, Photochem. Photobiol. 2014, 90, 659.
[30] L. Yang, Y. T. Tseng, G. Suo, L. Chen, J. Yu, W. J. Chiu, C. C. Huang, C. H. Lin, ACS Appl. Mater. Interfaces 2015, 7, 5097.
[31] Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, J. Am. Chem. Soc. 2013, 135, 4799.
[32] D. Y. Cheng Xu, Lin Mei, Qiuhong Li, Haizhen Zhu, and Taihong, ACS Appl. Mater. Interfaces 2013, 5, 12911.
[33] H. W. Yang, Y. J. Lu, K. J. Lin, S. C. Hsu, C. Y. Huang, S. H. She, H. L. Liu, C. W. Lin, M. C. Xiao, S. P. Wey, P. Y. Chen, T. C. Yen, K. C. Wei, C. C. Ma, Biomaterials 2013, 34, 7204.
[34] X. C. Qin, Z. Y. Guo, Z. M. Liu, W. Zhang, M. M. Wan, B. W. Yang, J. Photochem. Photobiol. B 2013, 120, 156.
[35] C. Wang, J. Mallela, U. S. Garapati, S. Ravi, V. Chinnasamy, Y. Girard, M. Howell, S. Mohapatra, Nanomedicine 2013, 9, 903.
[36] J. Bai, Y. Liu, X. Jiang, Biomaterials 2014, 35, 5805.
[37] Y.-W. Chen, P.-J. Chen, S.-H. Hu, I. W. Chen, S.-Y. Chen, Adv. Funct. Mater. 2014, 24, 451.
[38] J. Chen, H. Liu, C. Zhao, G. Qin, G. Xi, T. Li, X. Wang, T. Chen, Biomaterials 2014, 35, 4986.
[39] H. Wan, Y. Zhang, Z. Liu, G. Xu, G. Huang, Y. Ji, Z. Xiong, Q. Zhang, J. Dong, W. Zhang, H. Zou, Nanoscale 2014, 6, 8743.
[40] Y.-J. Lu, C.-W. Lin, H.-W. Yang, K.-J. Lin, S.-P. Wey, C.-L. Sun, K.-C. Wei, T.-C. Yen, C.-I. Lin, C.-C. M. Ma, J.-P. Chen, Carbon 2014, 74, 83.
[41] L. Feng, K. Li, X. Shi, M. Gao, J. Liu, Z. Liu, Adv. Healthc. Mater. 2014, 3, 1261.
[42] S.-H. Hu, R.-H. Fang, Y.-W. Chen, B.-J. Liao, I. W. Chen, S.-Y. Chen, Adv. Funct. Mater. 2014, 24, 4144.
[43] J.-M. Shen, F.-Y. Gao, L.-P. Guan, W. Su, Y.-J. Yang, Q.-R. Li, Z.-C. Jin, RSC Adv. 2014, 4, 18473.
[44] Y. Tang, H. Hu, M. G. Zhang, J. Song, L. Nie, S. Wang, G. Niu, P. Huang, G. Lu, X. Chen, Nanoscale 2015, 7, 6304.
[45] X. Ma, H. Tao, K. Yang, L. Feng, L. Cheng, X. Shi, Y. Li, L. Guo, Z. Liu, Nano Res. 2012, 5, 199.
[46] J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, M. Gu, Angew. Chem. Int. Ed. Engl. 2012, 51, 1830.
[47] O. Akhavan, E. Ghaderi, H. Emamy, Journal of Materials Chemistry 2012, 22, 20626.
[48] K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Adv. Mater. 2012, 24, 1868.
[49] S. H. Hu, Y. W. Chen, W. T. Hung, I. W. Chen, S. Y. Chen, Adv. Mater. 2012, 24, 1748.
[50] Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, G.-N. Chen, J. Mater. Chem. B 2013, 1, 5762.
[51] X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Biomaterials 2013, 34, 4786.
[52] Z. Sheng, L. Song, J. Zheng, D. Hu, M. He, M. Zheng, G. Gao, P. Gong, P. Zhang, Y. Ma, L. Cai, Biomaterials 2013, 34, 5236.
[53] Y. Jin, J. Wang, H. Ke, S. Wang, Z. Dai, Biomaterials 2013, 34, 4794.
[54] J. Shi, L. Wang, J. Zhang, R. Ma, J. Gao, Y. Liu, C. Zhang, Z. Zhang, Biomaterials 2014, 35, 5847.
[55] Y. Wang, R. Huang, G. Liang, Z. Zhang, P. Zhang, S. Yu, J. Kong, Small 2014, 10, 109.
[56] S. Wang, Q. Zhang, X. F. Luo, J. Li, H. He, F. Yang, Y. Di, C. Jin, X. G. Jiang, S. Shen, L. Fu de, Biomaterials 2014, 35, 9473.
[57] X. Bian, Z. L. Song, Y. Qian, W. Gao, Z. Q. Cheng, L. Chen, H. Liang, D. Ding, X. K. Nie, Z. Chen, W. Tan, Sci. Rep. 2014, 4, 6093.
[58] S. Z. Nergiz, N. Gandra, S. Tadepalli, S. Singamaneni, ACS Appl. Mater. Interfaces 2014, 6, 16395.
[59] X.-D. Li, X.-L. Liang, X.-L. Yue, J.-R. Wang, C.-H. Li, Z.-J. Deng, L.-J. Jing, L. Lin, E.-Z. Qu, S.-M. Wang, C.-L. Wu, H.-X. Wu, Z.-F. Dai, J. Mater. Chem. B 2014, 2, 217.
[60] G. Huang, X. Zhu, H. Li, L. Wang, X. Chi, J. Chen, X. Wang, Z. Chen, J. Gao, Nanoscale 2015, 7, 2667.
[61] D. K. Hyungwon Moon, Haemin Kim, Changbeom Sim, Jin-Ho Chang, Jung-Mu Kim, Hyuncheol Kim,, and Dong-Kwon Lim,, ACS Nano 2015, 9, 2711.
[62] H. Zhang, H. Wu, J. Wang, Y. Yang, D. Wu, Y. Zhang, Y. Zhang, Z. Zhou, S. Yang, Biomaterials 2015, 42, 66.
[63] B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, ACS Nano 2011, 5, 7000.
[64] Z. Hu, Y. Huang, S. Sun, W. Guan, Y. Yao, P. Tang, C. Li, Carbon 2012, 50, 994.
[65] Y. Wang, H. Wang, D. Liu, S. Song, X. Wang, H. Zhang, Biomaterials 2013, 34, 7715.
[66] A. Sahu, W. I. Choi, J. H. Lee, G. Tae, Biomaterials 2013, 34, 6239.
[67] Z. Chen, Z. Li, J. Wang, E. Ju, L. Zhou, J. Ren, X. Qu, Adv. Funct. Mater. 2014, 24, 522.
[68] B.-P. Jiang, L.-F. Hu, D.-J. Wang, S.-C. Ji, X.-C. Shen, H. Liang, J. Mater. Chem. B 2014, 2, 7141.
[69] G. Gollavelli, Y. C. Ling, Biomaterials 2014, 35, 4499.
[70] X. Yan, H. Hu, J. Lin, A. J. Jin, G. Niu, S. Zhang, P. Huang, B. Shen, X. Chen, Nanoscale 2015, 7, 2520.
[71] Y. K. Kim, H. K. Na, S. Kim, H. Jang, S. J. Chang, D. H. Min, Small 2015, 11, 2527.
[72] F.-F. Cheng, W. Chen, L.-H. Hu, G. Chen, H.-T. Miao, C. Li, J.-J. Zhu, J. Mater. Chem. B 2013, 1, 4956.
[73] L. Feng, X. Yang, X. Shi, X. Tan, R. Peng, J. Wang, Z. Liu, Small 2013, 9, 1989.
[74] Y. Tao, E. Ju, J. Ren, X. Qu, Biomaterials 2014, 35, 9963.
[75] H. Kim, W. J. Kim, Small 2014, 10, 117.
[76] H. W. Yang, M. Y. Hua, T. L. Hwang, K. J. Lin, C. Y. Huang, R. Y. Tsai, C. C. Ma, P. H. Hsu, S. P. Wey, P. W. Hsu, P. Y. Chen, Y. C. Huang, Y. J. Lu, T. C. Yen, L. Y. Feng, C. W. Lin, H. L. Liu, K. C. Wei, Adv. Mater. 2013, 25, 3605.
[77] M. J. M. Li Cao, Sushant Sahu, and Ya-Ping Sun, Acc. Chem. Res. 2013, 46, 171.
[78] J. L. Li, B. Tang, B. Yuan, L. Sun, X. G. Wang, Biomaterials 2013, 34, 9519.
[79] R. S. E. Jilian R. Melamed, and Emily S. Day, ACS Nano 2015, 9, 6.
[80] P. d. P. Marta Pe´rez-Herna´ndez, Scott G. Mitchell, Marı´a Moros, Grazyna Stepien, Beatriz Pelaz, Wolfgang J. Parak, Eva M. Ga´lvez, Julia´n Pardo, and Jesus M. de la Fuent, ACS Nano 2015, 9, 52.
[81] A. K. G. K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, SCIENCE 2004, 306.
[82] P. R. Wallace, Physical Review 1947, 71, 622.
[83] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
[84] Z. S. Claire Berger, Xuebin Li, Xiaosong Wu, Nate Brown, Ce´ cile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, SCIENCE 2006, 312.
[85] K. S. N. S.V. Morozov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 2008, 100.
[86] J. Wu, H. c. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Applied Physics Letters 2008, 92, 263302.
[87] A. K. G. a. K. S. NOVOSELOV, Nat. Mater. 2007, 6, 183.
[88] D. V. Khveshchenko, Physical Review B 2006, 74.
[89] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 2009, 19, 2577.
[90] B. O. Konstantin N. Kudin, Hannes C. Schniepp, Robert K. Prud’homme, Ilhan A. Aksay, and Roberto Car, NANO LETTERS 2008, 8, 36.
[91] J. H. C. Masa Ishigami, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, NANO LETTERS 2007, 7, 1643.
[92] J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. M. Tascon, Langmuir 2009, 25, 5957.
[93] C. Gomez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 2010, 10, 1144.
[94] P. A. P. Neil R. Wilson, Richard Beanland, Robert J. Young, Ian A. Kinloch, Lei Gong, Zheng Liu, Kazu Suenaga, Jonathan P. Rourke, Stephen J. York, and Jeremy Sloan, ACS Nano 2009, 3, 2547.
[95] C. M. Goki Eda, Hisato Yamaguchi, HoKwon Kim, and Manish Chhowalla, J. Phys. Chem. C 2009, 113, 15768.
[96] C. G.-N. Alan B. Kaiser, Ravi S. Sundaram, Marko Burghard, and Klaus Kern, NANO LETTERS 2009, 9, 1787.
[97] G. Goncalves, M. Vila, I. Bdikin, A. de Andres, N. Emami, R. A. Ferreira, L. D. Carlos, J. Gracio, P. A. Marques, Sci. Rep. 2014, 4, 6735.
[98] M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y. J. Chabal, Nat. Mater. 2010, 9, 840.
[99] S. T. Manjavacas, J-J. Greffet, F.J. García de Abajo, Applied Physics Letters 2014, 21, 105.
[100] B. Liu, Y. Liu, S. Shen, Physical Review B 2014, 90.
[101] X. Huang, M. A. El-Sayed, Alexandria Journal of Medicine 2011, 47, 1.
[102] S. Toroghi, P. G. Kik, Physical Review B 2014, 90.
[103] F. H. Koppens, D. E. Chang, F. J. Garcia de Abajo, Nano Lett. 2011, 11, 3370.
[104] M. Freitag, T. Low, F. Xia, P. Avouris, Nature Photonics 2012, 7, 53.
[105] X. Yang, Z. Li, E. Ju, J. Ren, X. Qu, Chemistry 2014, 20, 394.
[106] W. L. YOUNAN XIA, CLAIRE M. COBLEY, JINGYI CHEN, XIAOHU XIA, QIANG ZHANG, MIAOXIN YANG, EUN CHUL CHO, AND PAIGE K. BROWN, Acc. Chem. Res. 2011, 44, 914.
[107] B. W. J. Chen, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, Y. Xia, Adv. Mater. 2005, 17, 2255.
[108] C. B. S. Link, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, J. Phy. Chem. A 1999, 103, 1165.
[109] Z. L. W. Stephan Link, and Mostafa A. El-Sayed, J. Phy. Chem. B 2000, 104, 7867.
[110] W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, H. Zhong, Biomaterials 2011, 32, 8555.
[111] D. W. Felsher, Nat. Rev. Cancer 2003, 3, 375.
[112] P. Rong, K. Yang, A. Srivastan, D. O. Kiesewetter, X. Yue, F. Wang, L. Nie, A. Bhirde, Z. Wang, Z. Liu, G. Niu, W. Wang, X. Chen, Theranostics 2014, 4, 229.
[113] A. Siriviriyanun, T. Imae, G. Caldero, C. Solans, Colloids. Surf. B Biointerfaces 2014, 121, 469.
[114] Y. Cho, H. Kim, Y. Choi, Chem. Commun. (Camb.) 2013, 49, 1202.
[115] K. Plaetzer, M. Berneburg, T. Kiesslich, T. Maisch, Biomed. Res. Int. 2013, 2013, 161362.
[116] H. Chen, X. Zhou, Y. Gao, B. Zheng, F. Tang, J. Huang, Drug Discov. Today 2014, 19, 502.
[117] S. C. A. G. Filip , D. Daicoviciu, D. Olteanu , A. Muresan, S .̧Dreve Rom. J. Intern. Med. 2008, 46, 285.
[118] W. K. Bai, E. Shen, B. Hu, Chin. J. Cancer. Res. 2012, 24, 368.
[119] K. Tachibana, L. B. Feril, Jr., Y. Ikeda-Dantsuji, Ultrasonics 2008, 48, 253.
[120] L. Zhang, Z. Lu, Q. Zhao, J. Huang, H. Shen, Z. Zhang, Small 2011, 7, 460.
[121] G. B. Braun, A. Pallaoro, G. Wu, D. Missirlis, J. A. Zasadzinski, M. Tirrell, N. O. Reich, ACS Nano 2009, 3, 2007.
[122] G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, J. Am. Chem. Soc. 2008, 130, 8175.
[123] H. Kim, D. Lee, J. Kim, T.-i. Kim, W. J. Kim, ACS Nano 2013, 7, 6735.
[124] H. Shen, L. Zhang, M. Liu, Z. Zhang, Theranostics 2012, 2, 283.
[125] S. Su, J. Wang, J. Wei, R. Martínez-Zaguilán, J. Qiu, S. Wang, New J. Chem. 2015, 39, 5743.
[126] O. Akhavan, E. Ghaderi, A. Akhavan, Biomaterials 2012, 33, 8017.
[127] M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Goncalves, M. Vallet-Regi, P. A. Marques, M. T. Portoles, Biomaterials 2013, 34, 1562.
[128] S. Jaworski, E. Sawosz, M. Grodzik, A. Winnicka, M. Prasek, M. Wierzbicki, A. Chwalibog, Int. J. Nanomedicine 2013, 8, 413.
[129] K. H. Liao, Y. S. Lin, C. W. Macosko, C. L. Haynes, ACS Appl. Mater. Interfaces 2011, 3, 2607.
[130] A. Sasidharan, L. S. Panchakarla, A. R. Sadanandan, A. Ashokan, P. Chandran, C. M. Girish, D. Menon, S. V. Nair, C. N. Rao, M. Koyakutty, Small 2012, 8, 1251.
[131] M. K. S. Sunil K. Singh, Manasa K. Nayak, Sharda Kumari, Siddhartha Shrivastava, Jose J. A. Gra´ cio, and Debabrata Dash, ACS Nano 2011, 5, 4987.
[132] M. K. S. Sunil K. Singh, Paresh P. Kulkarni, Vijay K. Sonkar, Jose´ J. A. Gra´ cio, and, D. Dash, ACS Nano 2012, 6, 2731.
[133] C. P. Wenbing Hu, Min Lv, Xiaoming Li, Yujie Zhang, Nan Chen, Chunhai Fan, and Qing Huang, ACS Nano 2011, 5, 3693.
[134] O. Akhavan, E. Ghaderi, E. Hashemi, E. Akbari, Carbon 2015, 95, 309.
[135] K. Yang, L. Feng, X. Shi, Z. Liu, Chem. Soc. Rev. 2013, 42, 530.
[136] G. Hong, S. Diao, A. L. Antaris, H. Dai, Chem Rev 2015, 115, 10816.
[137] S. M. Sharker, J. E. Lee, S. H. Kim, J. H. Jeong, I. In, H. Lee, S. Y. Park, Biomaterials 2015, 61, 229.
[138] A. M. Jastrzebska, P. Kurtycz, A. R. Olszyna, J. Nanopart. Res. 2012, 14, 1320.
[139] S. Zhang, K. Yang, L. Feng, Z. Liu, Carbon 2011, 49, 4040.
[140] G. Gollavelli, Y. C. Ling, Biomaterials 2012, 33, 2532.
[141] S. H. Kim, J. E. Lee, S. M. Sharker, J. H. Jeong, I. In, S. Y. Park, Biomacromolecules 2015.
[142] X. Wang, Q. Han, N. Yu, J. Li, L. Yang, R. Yang, C. Wang, J. Mater. Chem. B 2015, 3, 4036.
[143] C. Xu, P. Shi, M. Li, J. Ren, X. Qu, Nano Res. 2015, 8, 2431.
[144] M. G. Kim, Y. Shon, J. Lee, Y. Byun, B. S. Choi, Y. B. Kim, Y. K. Oh, Biomaterials 2014, 35, 2999.
[145] M. G. Kim, J. Y. Park, W. Miao, J. Lee, Y. K. Oh, Biomaterials 2015, 48, 129.
[146] H. Bao, Y. Pan, Y. Ping, N. G. Sahoo, T. Wu, L. Li, J. Li, L. H. Gan, Small 2011, 7, 1569.
[147] M. Khan, M. N. Tahir, S. F. Adil, H. U. Khan, M. R. H. Siddiqui, A. A. Al-warthan, W. Tremel, J. Mater. Chem. A 2015.
[148] X. Song, H. Gong, S. Yin, L. Cheng, C. Wang, Z. Li, Y. Li, X. Wang, G. Liu, Z. Liu, Adv. Funct. Mater. 2014, 24, 1194.
[149] Q. Tian, J. Hu, Y. Zhu, R. Zou, Z. Chen, S. Yang, R. Li, Q. Su, Y. Han, X. Liu, J. Am. Chem. Soc. 2013, 135, 8571.
[150] S. M. Janib, A. S. Moses, J. A. MacKay, Adv. Drug Deliv. Rev. 2010, 62, 1052.
[151] O. Taratula, M. Patel, C. Schumann, M. A. Naleway, A. J. Pang, H. He, O. Taratula, Int. J. Nanomedicine 2015, 10, 2347.
[152] G. Shim, J. Y. Kim, J. Han, S. W. Chung, S. Lee, Y. Byun, Y. K. Oh, J. Control Release 2014, 189, 80.
[153] S. S. Kelkar, T. M. Reineke, Bioconjug. Chem. 2011, 22, 1879.
[154] S. M. Abdallah F. Zedan, James Terner, Garrett Atkinson, and M. Samy El-Shall, ACS Nano 2013, 7, 627.
[155] X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Lasers in Medical Science 2008, 23, 217.
[156] G. Chang, Y. Wang, B. Gong, Y. Xiao, Y. Chen, S. Wang, S. Li, F. Huang, Y. Shen, A. Xie, ACS Appl. Mater. Interfaces 2015, 7, 11246.
[157] X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, H. Zhang, Nat. Commun. 2011, 2, 292.
[158] Q. Wei, H. Ni, X. Jin, J. Yuan, RSC Adv. 2015, 5, 54971.
[159] G. Darabdhara, M. R. Das, V. Turcheniuk, K. Turcheniuk, V. Zaitsev, R. Boukherroub, S. Szunerits, J. Mater. Chem. B 2015.
[160] X. Y. Jibin Song, Orit Jacobson, Lisen Lin, Peng Huang, Gang Niu, Qingjie Ma, and Xiaoyuan Chen, ACS Nano 2015, 9, 9199.
[161] C. Hu, Y. Liu, J. Rong, Q. Liu, Nano 2015, 1550123.
[162] T. A. Henderson, L. D. Morries, Neuropsychiatr Dis Treat 2015, 11, 2191.
[163] A. E. Sloan, M. S. Ahluwalia, J. Valerio-Pascua, S. Manjila, M. G. Torchia, S. E. Jones, J. L. Sunshine, M. Phillips, M. A. Griswold, M. Clampitt, C. Brewer, J. Jochum, M. V. McGraw, D. Diorio, G. Ditz, G. H. Barnett, J Neurosurg 2013, 118, 1202.
[164] Y. W. Chen, T. Y. Liu, P. H. Chang, P. H. Hsu, H. L. Liu, H. C. Lin, S. Y. Chen, Nanoscale 2016.
[165] D. Bobo, K. J. Robinson, J. Islam, K. J. Thurecht, S. R. Corrie, Pharm Res 2016, 33, 2373.
[166] H. Chen, W. Zhang, G. Zhu, J. Xie, X. Chen, Nature Reviews Materials 2017, 2, 17024.
[167] V. P. Chauhan, R. K. Jain, Nat. Mater. 2013, 12, 958.
[168] A. I. Minchinton, I. F. Tannock, Nat. Rev. Cancer 2006, 6, 583.
[169] C. H. Heldin, K. Rubin, K. Pietras, A. Ostman, Nat. Rev. Cancer 2004, 4, 806.
[170] H. Kobayashi, R. Watanabe, P. L. Choyke, Theranostics 2013, 4, 81.
[171] S. A. Langhans, Front Pharmacol 2018, 9, 6.
[172] L. Tang, N. P. Gabrielson, F. M. Uckun, T. M. Fan, J. Cheng, Mol. Pharm. 2013, 10, 883.
[173] V. P. Chauhan, T. Stylianopoulos, J. D. Martin, Z. Popovic, O. Chen, W. S. Kamoun, M. G. Bawendi, D. Fukumura, R. K. Jain, Nat Nanotechnol 2012, 7, 383.
[174] H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami, M. Kimura, Y. Terada, M. R. Kano, K. Miyazono, M. Uesaka, N. Nishiyama, K. Kataoka, Nat Nanotechnol 2011, 6, 815.
[175] Y. Matsumoto, J. W. Nichols, K. Toh, T. Nomoto, H. Cabral, Y. Miura, R. J. Christie, N. Yamada, T. Ogura, M. R. Kano, Y. Matsumura, N. Nishiyama, T. Yamasoba, Y. H. Bae, K. Kataoka, Nat Nanotechnol 2016, 11, 533.
[176] R. Tong, H. D. Hemmati, R. Langer, D. S. Kohane, J. Am. Chem. Soc. 2012, 134, 8848.
[177] R. Tong, H. H. Chiang, D. S. and Kohanea, Proceedings of the National Academy of Sciences 2013, 110, 19048.
[178] C.-T. Lin, I. C. Lin, S.-Y. Sung, Y.-L. Su, Y.-F. Huang, C.-S. Chiang, S.-H. Hu, Adv. Funct. Mater. 2016, 26, 4169.
[179] H. S. Min, S. Son, D. G. You, T. W. Lee, J. Lee, S. Lee, J. Y. Yhee, J. Lee, M. H. Han, J. H. Park, S. H. Kim, K. Choi, K. Park, K. Kim, I. C. Kwon, Biomaterials 2016, 108, 57.
[180] B. Wang, Y. Zhai, J. Shi, L. Zhuang, W. Liu, H. Zhang, H. Zhang, Z. Zhang, J. Control Release 2017, 268, 225.
[181] S. D. Kong, W. Zhang, J. H. Lee, K. Brammer, R. Lal, M. Karin, S. Jin, Nano Lett. 2010, 10, 5088.
[182] R. Soheilian, Y. S. Choi, A. E. David, H. Abdi, C. E. Maloney, R. M. Erb, Langmuir 2015, 31, 8267.
[183] C. Wong, T. Stylianopoulos, J. Cui, J. Martin, V. P. Chauhan, W. Jiang, Z. Popovi´ c, R. K. Jain, M. G. Bawendi, D. Fukumura, Proceedings of the National Academy of Sciences 2011, 108, 6335.
[184] S. Ruan, X. Cao, X. Cun, G. Hu, Y. Zhou, Y. Zhang, L. Lu, Q. He, H. Gao, Biomaterials 2015, 60, 100.
[185] S. Tang, Q. Meng, H. Sun, J. Su, Q. Yin, Z. Zhang, H. Yu, L. Chen, Y. Chen, W. Gu, Y. Li, Adv. Funct. Mater. 2016.
[186] W. Sun, T. Jiang, Y. Lu, M. Reiff, R. Mo, Z. Gu, J. Am. Chem. Soc. 2014, 136, 14722.
[187] H. J. Li, J. Z. Du, J. Liu, X. J. Du, S. Shen, Y. H. Zhu, X. Wang, X. Ye, S. Nie, J. Wang, ACS Nano 2016, 10, 6753.
[188] H.-J. Li, J.-Z. Du, X.-J. Du, C.-F. Xu, C.-Y. Sun, H.-X. Wang, Z.-T. Cao, X.-Z. Yang, Y.-H. Zhu, S. Nie, a. J. Wang, Proceedings of the National Academy of Sciences 2016, 113, 4164.
[189] H.-J. Li, J.-Z. Du, X.-J. Du, C.-F. Xu, C.-Y. Sun, H.-X. Wang, Z.-T. Cao, X.-Z. Yang, Y.-H. Zhu, S. Nie, J. Wang, Proceedings of the National Academy of Sciences 2016, 113, 4164.
[190] P. Kulkarni, M. K. Haldar, P. Katti, C. Dawes, S. You, Y. Choi, S. Mallik, Bioconjug. Chem. 2016, 27, 1830.
[191] J. Yan, W. He, S. Yan, F. Niu, T. Liu, B. Ma, Y. Shao, Y. Yan, G. Yang, W. Lu, Y. Du, B. Lei, P. X. Ma, ACS Nano 2018, 12, 2017.
[192] T. Lin, P. Zhao, Y. Jiang, Y. Tang, H. Jin, Z. Pan, H. He, V. C. Yang, Y. Huang, ACS Nano 2016, 10, 9999.
[193] D.-H. Yu, Y.-R. Liu, X. Luan, H.-J. Liu, Y.-G. Gao, H. Wu, C. Fang, H.-Z. Chen, Bioconjugate Chemistry 2015, 26, 1702.
[194] S. Hatakeyama, K. Sugihara, T. K. Shibata, J. Nakayama, T. O. Akama, N. Tamura, S. M. Wong, A. A. Bobkov, Y. Takano, C. Ohyama, M. Fukuda, M. N. Fukuda, Proceedings of the National Academy of Sciences 2011, 108, 19587.
[195] Y. Miura, T. Takenaka, K. Toh, ShourongWu, H. Nishihara, M. R. Kano, Y. Ino, T. Nomoto, Yu Matsumoto, H. Koyama, H. Cabral, N. Nishiyama, K. Kataoka, ACS Nano 2013, 7, 8583.
[196] H. Gao, Y. Xiong, S. Zhang, Z. Yang, S. Cao, X. Jiang, Mol. Pharm. 2014, 11, 1042.
[197] R. Wang, Y. Han, B. Sun, Z. Zhao, Y. Opoku-Damoah, H. Cheng, H. Zhang, J. Zhou, Y. Ding, Small 2018, 14, 1703110.
[198] T. Kang, M. Jiang, D. Jiang, X. Feng, J. Yao, Q. Song, H. Chen, X. Gao, J. Chen, Mol. Pharm. 2015, 12, 2947.
[199] D. Miao, M. Jiang, Z. Liu, G. Gu, Q. Hu, T. Kang, Q. Song, L. Yao, W. Li, X. Gao, M. Sun, J. Chen, Mol. Pharm. 2014, 11, 90.
[200] W. C. Huang, W. H. Chiang, Y. H. Cheng, W. C. Lin, C. F. Yu, C. Y. Yen, C. K. Yeh, C. S. Chern, C. S. Chiang, H. C. Chiu, Biomaterials 2015, 71, 71.
[201] H. Gong, Y. Chao, J. Xiang, X. Han, G. Song, L. Feng, J. Liu, G. Yang, Q. Chen, Z. Liu, Nano Lett. 2016, 16, 2512.
[202] H. Zhou, Z. Fan, J. Deng, P. K. Lemons, D. C. Arhontoulis, W. B. Bowne, H. Cheng, Nano Lett. 2016, 16, 3268.
[203] Y. Hong, G.-H. Nam, E. Koh, S. Jeon, G. B. Kim, C. Jeong, D.-H. Kim, Y. Yang, I.-S. Kim, Adv. Funct. Mater. 2018, 28, 1703074.
[204] L. Zhang, Y. Wang, Y. Yang, Y. Liu, S. Ruan, Q. Zhang, X. Tai, J. Chen, T. Xia, Y. Qiu, H. Gao, Q. He, ACS Appl. Mater. Interfaces 2015, 7, 9691.
[205] B. Diop-Frimpong, V. P. Chauhan, S. Krane, Y. Boucher, R. K. Jain, Proceedings of the National Academy of Sciences 2011, 108, 2909.
[206] A. Parodi, S. G. Haddix, N. Taghipour, S. Scaria, F. Taraballi, A. Cevenini, I. K. Yazdi, C. Corbo, R. Palomba, S. Z. Khaled, J. O. Martinez, B. S. Brown, L. Isenhart, a. E. Tasciotti, ACS Nano 2014, 8, 9874.
[207] X. He, X. Bao, H. Cao, Z. Zhang, Q. Yin, W. Gu, L. Chen, H. Yu, Y. Li, Adv. Funct. Mater. 2015, 25, 2831.
[208] Y. L. Su, J. H. Fang, C. Y. Liao, C. T. Lin, Y. T. Li, S. H. Hu, Theranostics 2015, 5, 1233.
[209] S. Lee, H. Han, H. Koo, J. H. Na, H. Y. Yoon, K. E. Lee, H. Lee, H. Kim, I. C. Kwon, K. Kim, J. Control Release 2017, 263, 68.
[210] T. Liu, D. Zhang, W. Song, Z. Tang, J. Zhu, Z. Ma, X. Wang, X. Chen, T. Tong, Acta Biomater 2017, 53, 179.
[211] Y. J. Ho, C. K. Yeh, Acta Biomater 2017, 49, 472.
[212] Y. J. Ho, Y. C. Chang, C. K. Yeh, Theranostics 2016, 6, 392.
[213] J. Park, M. Aryal, N. Vykhodtseva, Y. Z. Zhang, N. McDannold, J. Control Release 2017, 250, 77.
[214] S. Kunjachan, A. Detappe, R. Kumar, T. Ireland, L. Cameron, D. E. Biancur, V. Motto-Ros, L. Sancey, S. Sridhar, G. M. Makrigiorgos, R. I. Berbeco, Nano Lett. 2015, 15, 7488.
[215] J. Kim, Y. M. Lee, Y. Kang, W. J. Kim, ACS Nano 2014, 8, 9358.
[216] S. Ruan, L. Zhang, J. Chen, T. Cao, Y. Yang, Y. Liu, Q. He, F. Gao, H. Gao, RSC Adv. 2015, 5, 64303.
[217] Y.-L. Su, T.-W. Yu, W.-H. Chiang, H.-C. Chiu, C.-H. Chang, C.-S. Chiang, S.-H. Hu, Adv. Funct. Mater. 2017, 27, 1700056.
[218] B. He, T. Tan, H. Wang, H. Hu, Z. Wang, J. Wang, J. Li, K. Sun, Z. Zhang, Y. Li, Adv. Funct. Mater. 2018, 28, 1705622.
[219] Y. L. Su, K. T. Chen, Y. C. Sheu, S. Y. Sung, R. S. Hsu, C. S. Chiang, S. H. Hu, ACS Nano 2016.
[220] Y. Wang, Y. Xie, J. Li, Z. H. Peng, Y. Sheinin, J. Zhou, D. Oupicky, ACS Nano 2017, 11, 2227.
[221] C. Zhao, Y. Tong, X. Li, L. Shao, L. Chen, J. Lu, X. Deng, X. Wang, Y. Wu, Small 2018, 14, 1703045.
[222] C. Ju, R. Mo, J. Xue, L. Zhang, Z. Zhao, L. Xue, Q. Ping, C. Zhang, Angew. Chem. Int. Ed. Engl. 2014, 53, 6253.
[223] Y. Zhou, R. Wang, Z. Teng, Z. Wang, B. Hu, M. Kolios, H. Chen, N. Zhang, Y. Wang, P. Li, X. Wu, G. Lu, Y. Chen, Y. Zheng, NPG Asia Materials 2016, 8.
[224] Q. Chen, L. Feng, J. Liu, W. Zhu, Z. Dong, Y. Wu, Z. Liu, Adv. Mater. 2016, 28, 7129.
[225] C. Hu, X. Cun, S. Ruan, R. Liu, W. Xiao, X. Yang, Y. Yang, C. Yang, H. Gao, Biomaterials 2018, 168, 64.
[226] C. H. Lin, Y. H. Hsiao, H. C. Chang, C. F. Yeh, C. K. He, E. M. Salm, C. Chen, I. M. Chiu, C. H. Hsu, Lab Chip 2015, 15, 2928.
[227] S. Mura, J. Nicolas, P. Couvreur, Nat. Mater. 2013, 12, 991.
[228] K. Lee, M. Rafi, X. Wang, K. Aran, X. Feng, C. Lo Sterzo, R. Tang, N. Lingampalli, H. J. Kim, N. Murthy, Nat. Mater. 2015, 14, 701.
[229] B. R. Smith, E. E. Ghosn, H. Rallapalli, J. A. Prescher, T. Larson, L. A. Herzenberg, S. S. Gambhir, Nat Nanotechnol 2014, 9, 481.
[230] C.-H. L. Wei-Ching Liao, Raimo Hartmann, Fuan Wang, Yang Sung Sohn, Wolfgang J. Parak, and Itamar Willner, ACS Nano 2015, 9, 9078.
[231] C. Y. Liang Cheng, Sida Shen, Xuan Yi, Hua Gong, Kai Yang, and Zhuang Liu, ACS Nano 2015, 9, 11090.
[232] N. Kotagiri, G. P. Sudlow, W. J. Akers, S. Achilefu, Nat Nanotechnol 2015, 10, 370.
[233] X. H. Xiaohong Hao, Cuimiao Zhang, Shizhu Chen, Zhenhua Li, Xinjian Yang, Huifang Liu,, D. L. Guang Jia, Kun Ge, Xing-Jie Liang, and Jinchao Zhang, ACS Nano 2015, 9, 9614.
[234] E. Huynh, B. Y. Leung, B. L. Helfield, M. Shakiba, J. A. Gandier, C. S. Jin, E. R. Master, B. C. Wilson, D. E. Goertz, G. Zheng, Nat Nanotechnol 2015, 10, 325.
[235] S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, W. C. W. Chan, Nature Reviews Materials 2016, 1, 16014.
[236] E. Blanco, H. Shen, M. Ferrari, Nat Biotechnol 2015, 33, 941.
[237] E. H. Randall Toy, Andrew Camann, Zachary Berman, Peter Vicente, Emily Tran, Joseph Meyers, Jenna Pansky, Pubudu M. Peiris, Hanping Wu, Agata Exner, David Wilson, Ketan B. Ghaghada, and Efstathios Karathanasis, 2013, 7, 3118.
[238] S. Stapleton, M. Milosevic, I. F. Tannock, C. Allen, D. A. Jaffray, J. Control Release 2015, 211, 163.
[239] T. G. Simonsen, J. V. Gaustad, M. N. Leinaas, E. K. Rofstad, PLoS One 2012, 7, e40006.
[240] N. Erez, M. Truitt, P. Olson, S. T. Arron, D. Hanahan, Cancer Cell 2010, 17, 135.
[241] R. Kalluri, M. Zeisberg, Nat. Rev. Cancer 2006, 6, 392.
[242] B. Kim, G. Han, B. J. Toley, C. K. Kim, V. M. Rotello, N. S. Forbes, Nat Nanotechnol 2010, 5, 465.
[243] H. M. Keyang Huang, Juan Liu, Shuaidong Huo, Anil Kumar, Tuo Wei, Xu Zhang, Shubin Jin, Yaling Gan, Paul C. Wang, Shengtai He, Xiaoning Zhang, and Xing-Jie Liang, ACS Nano 2012, 6, 4483.
[244] A. Kumar, H. Ma, X. Zhang, K. Huang, S. Jin, J. Liu, T. Wei, W. Cao, G. Zou, X. J. Liang, Biomaterials 2012, 33, 1180.
[245] V. P. Chauhan, Z. Popovic, O. Chen, J. Cui, D. Fukumura, M. G. Bawendi, R. K. Jain, Angew. Chem. Int. Ed. Engl. 2011, 50, 11417.
[246] A. A. Manzoor, L. H. Lindner, C. D. Landon, J. Y. Park, A. J. Simnick, M. R. Dreher, S. Das, G. Hanna, W. Park, A. Chilkoti, G. A. Koning, T. L. ten Hagen, D. Needham, M. W. Dewhirst, Cancer Res. 2012, 72, 5566.
[247] H. Yu, Z. Cui, P. Yu, C. Guo, B. Feng, T. Jiang, S. Wang, Q. Yin, D. Zhong, X. Yang, Z. Zhang, Y. Li, Adv. Funct. Mater. 2015, 25, 2489.
[248] T. S. Cliff Wong, Jian Cui, John Martin, Vikash P. Chauhan, Wen Jiang, Zoran Popovi´ c,, M. G. B. Rakesh K. Jain, and Dai Fukumura, Proceedings of the National Academy of Sciences 2011, 108, 2426.
[249] B. T. Godin, Ennio; Liu, Xue-Wu; Serda, Rita E.; Ferrari, Mauro, Acc. Chem. Res. 2011, 44, 979.
[250] M. W. T. Ambrogio, Courtney R.; Zhao, Yan-Li; Zink, Jeffrey I.; Stoddart, J. Fraser, Acc. Chem. Res. 2011, 44, 903.
[251] Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, Chem. Soc. Rev. 2012, 41, 2590.
[252] A. Parodi, N. Quattrocchi, A. L. van de Ven, C. Chiappini, M. Evangelopoulos, J. O. Martinez, B. S. Brown, S. Z. Khaled, I. K. Yazdi, M. V. Enzo, L. Isenhart, M. Ferrari, E. Tasciotti, Nat Nanotechnol 2013, 8, 61.
[253] W. S. H. J. a. R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
[254] P. Valle-Vigón, M. Sevilla, A. B. Fuertes, Chemistry of Materials 2010, 22, 2526.
[255] N. C. Zheng-Ming Wang. Wendong Wang, Navid Soheilnia, and Geoffrey A Ozin, ACS Nano 2010, 4, 7437.
[256] J. Liu, A. Stace-Naughton, C. J. Brinker, Chem. Commun. (Camb.) 2009, 5100.
[257] J. J. Liu, Xingmao; Ashley, Carlee; Brinker, C. Jeffrey, J. Am. Chem. Soc. 2009, 131, 7567.
[258] J. S.-N. Liu, Alison; Jiang, Xingmao; Brinker, C. Jeffrey, J. Am. Chem. Soc. 2009, 131, 1354.
[259] C. E. Ashley, E. C. Carnes, G. K. Phillips, D. Padilla, P. N. Durfee, P. A. Brown, T. N. Hanna, J. Liu, B. Phillips, M. B. Carter, N. J. Carroll, X. Jiang, D. R. Dunphy, C. L. Willman, D. N. Petsev, D. G. Evans, A. N. Parikh, B. Chackerian, W. Wharton, D. S. Peabody, C. J. Brinker, Nat. Mater. 2011, 10, 389.
[260] R. J. Qiao, Qiaojuan; Huwel, Sabine; Xia, Rui; Liu, Ting; Gao, Fabao; Galla, Hans-Joachim; Gao, Mingyuan, ACS Nano 2012, 6, 3304.
[261] L. Han, C. Gao, X. Wu, Q. Chen, P. Shu, Z. Ding, S. Che, Solid State Sciences 2011, 13, 721.
[262] S. H. Wu, C. Y. Mou, H. P. Lin, Chem. Soc. Rev. 2013, 42, 3862.
[263] A. Kumar, R. F. Lobo, N. J. Wagner, Carbon 2005, 43, 3099.
[264] O. C. L. Farokhzad, Robert, ACS Nano 2009, 3.
[265] D. T. Leong, K. W. Ng, Adv. Drug Deliv. Rev. 2014, 79-80, 95.
[266] K. Hida, N. Maishi, Y. Sakurai, Y. Hida, H. Harashima, Adv. Drug Deliv. Rev. 2016, 99, 140.
[267] M. Ferrari, Nat. Rev. Cancer 2005, 5, 161.
[268] J. W. Nichols, Y. H. Bae, Nano Today 2012, 7, 606.
[269] G. Ishii, A. Ochiai, S. Neri, Adv. Drug Deliv. Rev. 2016, 99, 186.
[270] S. Wang, P. Huang, X. Chen, Adv. Mater. 2016, 28, 7340.
[271] Y. C. Xiangsheng Liu, Huan Li, Nan Huang, Qiao Jin, Kefeng Ren, and Jian Ji, ACS Nano 2013, 7, 6244.
[272] J. Z. Du, T. M. Sun, W. J. Song, J. Wu, J. Wang, Angew. Chem. Int. Ed. Engl. 2010, 49, 3621.
[273] R. Mo, Q. Sun, J. Xue, N. Li, W. Li, C. Zhang, Q. Ping, Adv. Mater. 2012, 24, 3659.
[274] S. Barua, S. Mitragotri, Nano Today 2014, 9, 223.
[275] W. M. Jinqiang Wang, Lye Lin Lock, Jianbin Tang, Meihua Sui, Weilin Sun, Honggang Cui, Dong Xu, and Youqing Shen, ACS Nano 2015, 9, 7195.
[276] S. H. Anil Kumar, Xu Zhang, Juan Liu, Aaron Tan, Shengliang Li, Shubin Jin, Xiangdong Xue, YuanYuan Zhao, Tianjiao Ji, Lu Han, Hong Liu, XiaoNing Zhang, Jinchao Zhang, Guozhang Zou, Tianyou Wang, Suoqin Tang and Xing-Jie Liang, ACS Nano 2014, 8, 4205.
[277] X. Lin, Z. Wu, Y. Wu, M. Xuan, Q. He, Adv. Mater. 2016, 28, 1060.
[278] Y. W. Chen, Y. L. Su, S. H. Hu, S. Y. Chen, Adv. Drug Deliv. Rev. 2016.
[279] Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R. H. Hurt, A. B. Kane, H. Gao, Proc Natl Acad Sci U S A 2013, 110, 12295.
[280] X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, P. Chen, Small 2015, 11, 1620.
[281] S. Wang, I. S. Cole, Q. Li, RSC Adv. 2016, 6, 89867.
[282] M. Bacon, S. J. Bradley, T. Nann, Particle & Particle Systems Characterization 2014, 31, 415.
[283] H. Sun, H. Ji, E. Ju, Y. Guan, J. Ren, X. Qu, Chemistry 2015, 21, 3791.
[284] R. Liu, D. Wu, X. Feng, K. Mullen, J. Am. Chem. Soc. 2011, 133, 15221.
[285] S. Wu, X. Zhao, Y. Li, Q. Du, J. Sun, Y. Wang, X. Wang, Y. Xia, Z. Wang, L. Xia, Materials 2013, 6, 2026.
[286] R. V. Kutty, S. S. Feng, Biomaterials 2013, 34, 10160.
[287] A. Yan, A. Von Dem Bussche, A. B. Kane, R. H. Hurt, Carbon N Y 2007, 45, 2463.
[288] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat Nanotechnol 2008, 3, 101.
[289] L. Li, T. L. ten Hagen, M. Bolkestein, A. Gasselhuber, J. Yatvin, G. C. van Rhoon, A. M. Eggermont, D. Haemmerich, G. A. Koning, J. Control Release 2013, 167, 130.
[290] J. S. Park, T. H. Han, K. Y. Lee, S. S. Han, J. J. Hwang, D. H. Moon, S. Y. Kim, Y. W. Cho, J. Control Release 2006, 115, 37.
[291] M. Piffoux, A. K. A. Silva, C. Wilhelm, F. Gazeau, D. Tareste, ACS Nano 2018, 12, 6830.
[292] Q. Liu, F. Chen, L. Hou, L. Shen, X. Zhang, D. Wang, L. Huang, ACS Nano 2018, 12, 7812.
[293] Z. Chen, L. Liu, R. Liang, Z. Luo, H. He, Z. Wu, H. Tian, M. Zheng, Y. Ma, L. Cai, ACS Nano 2018, 12, 8633.
[294] S. J. Hawkins, L. A. Crompton, A. Sood, M. Saunders, N. T. Boyle, A. Buckley, A. M. Minogue, S. F. McComish, N. Jimenez-Moreno, O. Cordero-Llana, P. Stathakos, C. E. Gilmore, S. Kelly, J. D. Lane, C. P. Case, M. A. Caldwell, Nat Nanotechnol 2018, 13, 427.
[295] K. Knop, R. Hoogenboom, D. Fischer, U. S. Schubert, Angew. Chem. Int. Ed. Engl. 2010, 49, 6288.
[296] T. Ji, J. Lang, J. Wang, R. Cai, Y. Zhang, F. Qi, L. Zhang, X. Zhao, W. Wu, J. Hao, Z. Qin, Y. Zhao, G. Nie, ACS Nano 2017, 11, 8668.
[297] K. Y. Lee, G. Y. Lee, L. A. Lane, B. Li, J. Wang, Q. Lu, Y. Wang, S. Nie, Bioconjug. Chem. 2017, 28, 244.
[298] S. Stapleton, M. Dunne, M. Milosevic, C. W. Tran, M. J. Gold, A. Vedadi, T. D. McKee, P. S. Ohashi, C. Allen, D. A. Jaffray, ACS Nano 2018, 12, 7583.
[299] M. A. Jackson, T. A. Werfel, E. J. Curvino, F. Yu, T. E. Kavanaugh, S. M. Sarett, M. D. Dockery, K. V. Kilchrist, A. N. Jackson, T. D. Giorgio, C. L. Duvall, ACS Nano 2017, 11, 5680.
[300] K. Han, J. Zhang, W. Zhang, S. Wang, L. Xu, C. Zhang, X. Zhang, H. Han, ACS Nano 2017, 11, 3178.
[301] L. Meng, Y. Cheng, X. Tong, S. Gan, Y. Ding, Y. Zhang, C. Wang, L. Xu, Y. Zhu, J. Wu, Y. Hu, A. Yuan, ACS Nano 2018, 12, 8308.
[302] H. Zhang, K. Liu, S. Li, X. Xin, S. Yuan, G. Ma, X. Yan, ACS Nano 2018, 12, 8266.
[303] X. Yu, D. Gao, L. Gao, J. Lai, C. Zhang, Y. Zhao, L. Zhong, B. Jia, F. Wang, X. Chen, Z. Liu, ACS Nano 2017, 11, 10147.
[304] C. H. Wu, C. Cao, J. H. Kim, C. H. Hsu, H. J. Wanebo, W. D. Bowen, J. Xu, J. Marshall, Nano Lett. 2012, 12, 5475.
[305] K. T. Lim, H. Seonwoo, K. S. Choi, H. Jin, K. J. Jang, J. Kim, J. W. Kim, S. Y. Kim, P. H. Choung, J. H. Chung, Adv. Healthc. Mater. 2016, 5, 2069.
[306] B. Obermeier, R. Daneman, R. M. Ransohoff, Nat Med 2013, 19, 1584.
[307] C. Lee, H. S. Hwang, S. Lee, B. Kim, J. O. Kim, K. T. Oh, E. S. Lee, H. G. Choi, Y. S. Youn, Adv. Mater. 2017, 29.
[308] E. J. Kwon, M. Skalak, R. Lo Bu, S. N. Bhatia, ACS Nano 2016, 10, 7926.
[309] J. Sun, W. Xie, X. Zhu, M. Xu, J. Liu, ACS Chem Neurosci 2018, 9, 749.
[310] Y. Gao, Z. Y. Wang, J. Zhang, Y. Zhang, H. Huo, T. Wang, T. Jiang, S. Wang, Biomacromolecules 2014, 15, 1010.
[311] L. T. Zou, Y.; Payne, G.; Do, L.; Thomas, T.; Rodriguez, J.; Dou, H, Oncotarget 2017, 8, 6564.
[312] H. Wang, R. Revia, K. Wang, R. J. Kant, Q. Mu, Z. Gai, K. Hong, M. Zhang, Adv. Mater. 2017, 29.
[313] C. Liu, N. Shao, Y. Wang, Y. Cheng, Adv. Healthc. Mater. 2016, 5, 584.
[314] X. Liu, Y. Wang, C. Chen, A. Tintaru, Y. Cao, J. Liu, F. Ziarelli, J. Tang, H. Guo, R. Rosas, S. Giorgio, L. Charles, P. Rocchi, L. Peng, Adv. Funct. Mater. 2016, 26, 8594.
[315] R. S. C. Finn, J. P.; Lang, I.; Boer, K.; Bondarenko, I. M.; Kulyk, S. O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; Shparyk, Y.; Thummala, A. R.; Voytko, N. L.; Fowst, C.; Huang, X.; Kim, S. T.; Randolph, S.; Slamon, D. J., Lancet Oncol. 2015, 16, 25.
[316] J. A. Beaver, L. Amiri-Kordestani, R. Charlab, W. Chen, T. Palmby, A. Tilley, J. F. Zirkelbach, J. Yu, Q. Liu, L. Zhao, J. Crich, X. H. Chen, M. Hughes, E. Bloomquist, S. Tang, R. Sridhara, P. G. Kluetz, G. Kim, A. Ibrahim, R. Pazdur, P. Cortazar, Clin Cancer Res 2015, 21, 4760.
[317] L. Michel, J. Ley, T. M. Wildes, A. Schaffer, A. Robinson, S. E. Chun, W. Lee, J. Lewis, Jr., K. Trinkaus, D. Adkins, Oral Oncol 2016, 58, 41.
[318] Z. Tao, J. M. Le Blanc, C. Wang, T. Zhan, H. Zhuang, P. Wang, Z. Yuan, B. Lu, Clin Cancer Res 2016, 22, 122.
[319] E. K. Ziemke, J. S. Dosch, J. D. Maust, A. Shettigar, A. Sen, T. H. Welling, K. M. Hardiman, J. S. Sebolt-Leopold, Clin Cancer Res 2016, 22, 405.
[320] S. Whittaker, D. Madani, S. Joshi, S. A. Chung, T. Johns, B. Day, M. Khasraw, K. L. McDonald, Cell Death Discov 2017, 3, 17033.
[321] O. Tacar, P. Sriamornsak, C. R. Dass, J. Pharm. Pharmacol. 2013, 65, 157.
[322] T. C. Chou, Cancer Res. 2010, 70, 440.
[323] C. W. Hahnvajanawong, W.; Chomvarin, C.; Anantachoke, N.; Kanthawong, S.; Sripa, B.; Reutrakul, V. , Cancer Cell Int. 2014, 14, 68.
[324] K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, A. Jordan, J Neurooncol 2007, 81, 53.
[325] A. Chiu-Lam, C. Rinaldi, Adv Funct Mater 2016, 26, 3933.
[326] K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, A. Jordan, J Neurooncol 2011, 103, 317.
[327] M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. WaldÖFner, R. Scholz, S. Deger, P. Wust, S. A. Loening, A. Jordan, International Journal of Hyperthermia 2009, 21, 637.
[328] R. R. Chen, G.; Christiansen, M. G.; Mohr, A.; Anikeeva, P., Science 2015, 347, 1477.
[329] S. Biswas, I. Arief, S. S. Panja, S. Bose, ACS Appl. Mater. Interfaces 2017, 9, 3030.
[330] S. A. Stanley, L. Kelly, K. N. Latcha, S. F. Schmidt, X. Yu, A. R. Nectow, J. Sauer, J. P. Dyke, J. S. Dordick, J. M. Friedman, Nature 2016, 531, 647.
[331] J. M. Ku, M. Taher, K. Y. Chin, M. Grace, P. McIntyre, A. A. Miller, Clin Exp Pharmacol Physiol 2016, 43, 777.
[332] C. R. Fisher, D. G. Streicker, M. J. Schnell, Nat Rev Microbiol 2018, 16, 241.
[333] M. Lafon, J Neurovirol 2005, 11, 82.
[334] H. Xu, X. Hao, S. Wang, Z. Wang, M. Cai, J. Jiang, Q. Qin, M. Zhang, H. Wang, Sci. Rep. 2015, 5, 11753.
[335] B. M. Davis, G. F. Rall, M. J. Schnell, Annu Rev Virol 2015, 2, 451.
[336] M. Mendes, J. J. Sousa, A. Pais, C. Vitorino, Pharmaceutics 2018, 10.
[337] D. A. Jasim, S. Murphy, L. Newman, A. Mironov, E. Prestat, J. McCaffrey, C. Menard-Moyon, A. F. Rodrigues, A. Bianco, S. Haigh, R. Lennon, K. Kostarelos, ACS Nano 2016, 10, 10753.
[338] Y. Chong, Y. Ma, H. Shen, X. Tu, X. Zhou, J. Xu, J. Dai, S. Fan, Z. Zhang, Biomaterials 2014, 35, 5041.
[339] S. Tran, P. J. DeGiovanni, B. Piel, P. Rai, Clin Transl Med 2017, 6, 44.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
2. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
3. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
4. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
5. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
6. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
7. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
8. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
9. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
10. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
11. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
12. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
13. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
14. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
15. 具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
 
* *