帳號:guest(18.117.151.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳歆宜
作者(外文):Chen, Hsin-Yi
論文名稱(中文):探討氧化壓力誘導眼細胞病變機制
論文名稱(外文):Characterization of Induced Oxidative Stress in Ocular Cells
指導教授(中文):詹鴻霖
柯美蘭
指導教授(外文):Chan, Hong-LIn
Ko, Mei-Lan
口試委員(中文):周秀專
黃三元
高承源
口試委員(外文):Chou, Hsiu-Chuan
Huang, San-Yuan
Kao, Cheng-Yuan
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:104012901
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:202
中文關鍵詞:青光眼缺血再灌流模型氧化壓力高糖濃度TGF-β 訊號路徑
外文關鍵詞:GlaucomaIschemia-reperfusionOxidative stressHyperglycemiaTGF-β signaling pathway
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  極度高眼壓造成組織缺血,而當缺血後再灌流,會產生大量活性氧分子及氧化性壓力,進而造成組織受損。本研究以 lysine-labeling-based two-dimensional difference gel electrophoresis (2D-DIGE) 合併 MALDI-TOF/TOF mass spectrometry (MALDI-TOF/TOF MS) 方法測定眼內缺血再灌流一小時後對角膜、結膜、葡萄膜、視網膜、鞏膜等組織蛋白質表現量之變化。結果發現因缺血再灌流傷害所造成的組織蛋白變化量以角膜 (cornea) 最多,其次是結膜 (conjunctiva) 、葡萄膜 (uvea) 與鞏膜 (sclera),最後才為視網膜 (retina)。
  隨後,我們往下延伸進行細胞實驗的機制性和訊號傳遞路徑探討,培視網膜細胞 Retinal Ganglion Cell, RGC-5/小樑網細胞 Human Trabecular Meshwork Cell, HTMC。已有文獻指出,氧化壓力誘導的TGF-β信號路徑與細胞外基質(Extracellular matrix, ECM)纖維化有關,造成組織損傷,並刺激細胞的抗氧化機制;另一方面,TGF-β也可作為神經保護蛋白,提升細胞耐受性。為了闡明TGF-β對RGC和HTMC的雙重潛在作用和調節機制,以過氧化氫不同濃度與作用時間誘發細胞產生氧化壓力。通過一系列細胞功能定性分析,包含MTT細胞活性測試、傷口癒合能力測定、細胞凋亡測定、細胞內ROS偵測、西方墨點法、細胞內GSH含量和粒線體活性測定法,我們闡明了RGC-5 細胞受氧化刺激誘導的損傷狀態。在H2O2刺激後,RGC中的TGF-β1和TGF-β2 表現量上升;細胞功能測定結果中,shTGF-β1 和 shTGF-β2會降低存活率,促進細胞凋亡和ROS積累。特別是TGF-β1 (5 ng/mL) 的上升促進了ALDH3A1 蛋白表達,並增加了抗氧化劑和神經保護途徑的活性。此外,TGF-β1和TGF-β2的抗氧化信號與HO-1和Nrf2的活化有關,ROS的累積導致HIF-1α表現量上升,進而引起線粒體損傷並導致神經病變。TGF-β1通過活化 Nrf2和HO-1信號平衡HIF-1α的表現量上升來保護RGC免受自由基引發的損傷,這暗示TGF-β1在視網膜神經保護相關療法中具有前瞻性作用。另一方面在HTMC中,與正常TM細胞相比下,H2O2作用的HTMC具有更不規則的肌動蛋白結構。rhTGF-β1 (1 ng/mL) 預處理的組別降低了細胞凋亡率、纖維化狀態和ROS累積,同時還提高了存活率。此外,就抗氧化信號而言,TGF-β1和TGF-β2與纖維化反應蛋白膠原 (collagen I) 和laminin的活化有關。簡而言之,我們的研究表示低濃度的TGF-β1 (1 ng/mL)使HTMCs免受自由基引起的p-p38 MAPK路徑和p-AKT信號的損害,從而提出了TGF-β1在HTMC氧化中的信號機制;而提高TGF-β1 濃度至 5 ng/mL則可能加劇損傷。
  糖尿病的一個顯著病徵是高血糖,其被認為會誘發進行性神經變性疾病的糖尿病性視網膜病變。為了研究TGF-β在高血糖誘發的RGC-5和HTMC細胞損傷中的潛在作用和調控機制,我們以不同糖濃度細胞培養液來模擬糖尿病人體內高糖生理狀態。細胞功能實驗結果顯示,高血糖的RGC中TGF-β1/ 2表現量上升。降低TGF-β會增加高血糖症中ROS的積累,抑制細胞增殖速率並降低細胞內GSH含量。此外,TGF-β調控的抗氧化信號的增強與細胞內刺激反應蛋白的活化和抗氧化途徑有關,例如ALDH3A1, HO-1, Nrf2, HIF-1α。我們的結果表示,TGF-β通過促進抗氧化劑途徑的活化而使RGC免受高血糖觸發的損害,顯示糖尿病性視網膜病的潛在抗糖尿病療法。另一方面,依照實驗結果,高血糖培養下HTMCs中p-JNK,p-p38,p-AKT,TGF-β1和TGF-β2及SMAD表現量上升。細胞功能測定結果表明,在高血糖的HTMC中添加rhTGFβ-1 (1 ng/mL) 結果具有較高的增殖速率,較低的ROS和鈣離子濃度。另外,抗氧化劑信號傳導中的TGF-β1和TGF-β2與纖維化反應蛋白α-SMA,collagen I和laminin的活化有關。因此,當一定濃度的TGF-β會啟動細胞的抗氧化機制;但當產生過高濃度的 TGF-β 時會導致HTMC 纖維化,進而導致細胞受損、功能喪失。
  此研究透過一系列分子細胞生物學的機制鑑定與蛋白質體學的分析,探討 TGF-β 在氧化壓力誘導 (過氧化氫 & 高糖濃度) 下,對細胞的功能性影響與引發之訊號傳遞路徑。
  Glaucoma is a group of eye diseases that can cause vision loss and optical nerve damage. The ischemia–reperfusion (IR) injury model combined with the proteomic analysis approach of two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to monitor the protein expression alterations in two groups of specimens ( IR / control group). Based on the ratio of protein expression alterations, the alterations in the ocular tissues were in the following order: the cornea, conjunctiva, uvea, sclera, and retina.
  Furthermore, oxidative stress generated by reactive oxygen species (ROS) plays a critical role in the pathogenesis of glaucoma and may induce retinal ganglion cell (RGC) and trabecular meshwork cell (HTMC) damage. It is known that the TGF-β signaling pathway is an important component of oxidative stress-induced damage related to ECM fibrosis and activates cell antioxidative mechanisms. To elucidate the dual potential roles and regulatory mechanisms of TGF-β in effects on RGC-5 and HTMCs, we established an in vitro oxidative model using hydrogen peroxide (H2O2) sufficiency. By a series of cell functional qualitative analysis, we illustrated the RGC-5 cell state in oxidative stress-induced injury. Cell functional assays resulted that knockdown of TGF-β1 & TGF-β2 reduced survival rate whereas enhanced apoptosis and accumulation of ROS. Especially TGF-β1 upregulation promoted the protein expression of ALDH3A1 and increased the activity of antioxidant and neuroprotection pathways. In summary, our results demonstrated that TGF-β1 preserves RGC-5 from free radicals-mediated injury by upregulating the activation of Nrf2 expression and HO-1 signaling balance HIF-1α upregulation, implying a prospective role of TGF-β1 in retinal neuroprotection-related therapies. Cell functional assays showed that HTMCs with H2O2 exposure duration had a more irregular actin architecture compared to normal TM cells, and data with rhTGF-β1 (1 ng/mL) pretreatment enhanced survival. Furthermore, TGF-β1 in terms of antioxidant signaling were related to the activation of collagen I and laminin, which are fibrosis-response proteins. Succinctly, our study demonstrated that low concentrations of TGF-β1 (1ng/mL) preserves HTMCs from free radical-mediated injury by p-p38 MAPK level and p-AKT signaling balance, presenting a signaling transduction mechanism of TGF-β1 in HTMC oxidative stress-related therapies.
  A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. To investigate the potential roles and regulatory mechanisms of TGF-β in hyperglycemia-triggered damage of RGC-5 and HTMCs in vitro, functional experiments showed that the knockdown of TGF-β enhanced the accumulation of ROS, in hyperglycemia. Furthermore, the results showed that the TGF-β-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as ALDH3A1, HO-1, Nrf2, and HIF-1α. Summarizing, our results demonstrated that TGF-β keeps RGC-5 from hyperglycemia-triggered harm, suggesting a potential anti-diabetic therapy. Results of protein expression showed that p-JNK, p-p38, p-AKT, TGF-β1 & TGF-β2 and its related SMAD family were upregulated in HTMCs after hyperglycemia. Cell functional assays resulted that HTMCs with rhTGFβ-1 (1 ng/mL) and hyperglycemia have higher proliferation rate, lower ROS and calcium level. Additionally, TGF-β1 & TGF-β2 on antioxidant signaling was related to activation of α-SMA, collagen I, and laminin, which are fibrosis-response proteins.  
  Mechanistic and proteomic analyses in ocular cells explored the characteristics and effects of TGF-β on RGC-5 and HTMC cells, while further investigated the signal transduction pathway induced by oxidative stress.
Table of Contents

中文摘要 I
Abstract III
Table of Contents V
List of Figures and Tables XIV
Chapter 1 INTRODUCTION 1
1.1 Overview of oxidative stress on ocular cells 1
1.2 Proteomic analysis of various rat ocular tissues after ischemia–reperfusion injury and possible relevance to acute glaucoma 5
1.3 TGF-β1 signaling protects retinal ganglion cells from oxidative stress via modulation of the HO-1/Nrf2 pathway 9
1.4 Characterization of TGF-β by induced oxidative stress in human trabecular meshwork cells 11
1.5 The role of transforming growth factor-beta in retinal ganglion cells with hyperglycemia and oxidative stress 14
1.6 Effects of hyperglycemia on the TGF-β pathway in trabecular meshwork cells 16
Chapter 2 MATERIALS and METHODS 19
2.1 Chemicals, reagents and antibodies 19
2.2 Animals 20
2.2.1 IR Injury Model 20
2.3 Proteomic analysis 21
2.3.1 2D-DIGE and Gel Image Analysis 21
2.3.2 Protein Staining 22
2.3.3 In-Gel Digestion 23
2.3.4 Protein Identification by MALDI-TOF MS 23
2.4 Cell lines and cell cultures 24
2.4.1 H2O2 sufficiency 25
2.4.2 Hyperglycemia cell culture 25
2.4.3 shTGF-β1/2 knockdown RGC-5 & HTMC establishment 26
2.4.4 siRNA knockdown and transfection 26
2.5 Immunoblotting analysis 27
2.6 Immunofluorescence 29
2.7 In vitro functional assays 29
2.7.1 Cell viability assay 29
2.7.2 Proliferation Assay 30
2.7.3 Wound healing ability assay 30
2.7.4 Detection of ROS increase 30
2.7.5 Intracellular calcium-level measurement 31
2.7.6 Apoptosis assay by flow cytometry analysis 31
2.7.7 Measurement of intracellular GSH content 32
2.7.8 High-resolution respirometry 32
2.8 Cell treatment with recombinant human TGF-β protein1 (rhTGF-β1) 33
2.9 Statistical analysis 33
Chapter 3 RESULTS 34
3.1 Proteomic Analysis of Various Rat Ocular Tissues after Ischemia–Reperfusion Injury and Possible Relevance to Acute Glaucoma 34
3.1.1 Analysis of Various Ocular Tissues Including Cornea, Conjunctiva, Uvea, Retina, and Sclera by 2D-DIGE and MALDI-TOF 34
3.1.2 Validation of Characterized Ocular Retinal Proteins through Immunoblotting 41
3.2 TGF-β1 signaling protects retinal ganglion cells from oxidative stress via modulation of the HO-1/Nrf2 pathway 42
3.2.1 Cell viability at different H2O2 concentrations and exposure durations in RGCs 42
3.2.2 Low levels (50 μM) of H2O2 promote the cell ability of proliferation, migration, and wound healing 44
3.2.3 Effects of H2O2 on cell apoptotic status and increased iROS levels on RGCs 46
3.2.4 GSH content of RGCs under H2O2 (1 mM) stimulation 48
3.2.5 Immunoblot analysis of RGCs exposed to H2O2 49
3.2.6 Immunofluorescence analysis of RGCs under H2O2 (1 mM) stimulation 50
3.2.7 Cell viability and iROS accumulation in RGCs under H2O2 (1 mM) stimulation with/without N-acetyl-L-cysteine (NAC, 5mM) 51
3.2.8 Cell viability, apoptosis analysis and ROS production in shTGF-β1/2 knockdown RGCs 53
3.2.9 Immunoblot analysis of shTGF-β1/2 knockdown RGCs with hydrogen peroxide (1 mM) 55
3.2.10 Oxygen consumption rate (OCR) of RGC-5 shTGF-β1/2 cells with hydrogen peroxide treatment 56
3.2.11 Cell viability, apoptosis analysis and ROS accumulation in RGC-5 cells treated with recombinant TGF-β1 protein (5 ng/ml) with or without hydrogen peroxide (1 mM) 57
3.2.12 Immunoblot analysis of activation of downstream substrates in RGC-5 cells treated with recombinant TGF-β1 protein (5 ng/ml) with or without hydrogen peroxide (1 mM) 59
3.3 Characterization of TGF-β by induced oxidative stress in human trabecular meshwork cells 60
3.3.1 Impairments by H2O2 of HTMCs 60
3.3.2 Immunoblot analysis and identification of H2O2-induced oxidative stress response signaling pathways 63
3.3.3 Immunofluorescence analysis of H2O2 (0.5 mM)-treated HTMC 66
3.3.4 Effects of rhTGF-β1 protein on oxidative stress response on HTMC
68
3.3.5 Immunoblot analysis and identification of rhTGF-β1 protein in oxidative stress pathways 71
3.3.6 Immunofluorescence analysis of rhTGF-β1 protein-treated HTMCs with or without H2O2 exposure (0.5 mM for 1 h) 74
3.3.7 Effects of shTGF-β1/2 knockdown in HTMCs with H2O2 exposure
76
3.3.8 Immunoblot analysis and identification of shTGF-β1/2 knockdown HTMCs in oxidative stress pathways 79
3.3.9 Effects of sip38 MAPK knockdown in HTMCs with H2O2 exposure
82
3.3.10 Immunoblot analysis and identification of sip38 MAPK knockdown HTMCs in oxidative stress pathways 84
3.4 The Role of Transforming Growth Factor-Beta in Retinal Ganglion Cells with Hyperglycemia and Oxidative Stress 87
3.4.1 Effects of Hyperglycemia on RGCs 87
3.4.2 Immunoblot Analysis of RGCs with Hyperglycemia 89
3.4.3 Immunofluorescence Analysis of RGCs with Hyperglycemia. 91
3.4.4 Effects in TGF-β1/2 Knockdown RGCs with Hyperglycemia 93
3.4.5 Immunoblot Analysis of Activation of Downstream Substrates in TGF-β1/2 Knockdown RGC-5 cells Treated with Hyperglycemia. 95
3.4.6 Effects in RGCs with Hyperglycemia with or w/o rhTGF-β1 Protein (5 ng/mL). 97
3.4.7 Immunoblot Analysis in RGCs with Hyperglycemia with or w/o Recombinant TGF-β1 Protein (5 ng/mL). 100
3.4.8 Effects in RGCs with Hyperglycemia with or without Hydrogen Peroxide for 1 h. 102
3.4.9 Immunoblot Analysis in RGCs with Hyperglycemia with or without Hydrogen Peroxide (1 mM) for 1 h. 104
3.5 Effects of hyperglycemia on TGF-β pathway in trabecular meshwork cells 107
3.5.1 Hyperglycemia effects on HTMCs  107
3.5.2 Immunoblot analysis of hyperglycemia effects on HTMCs 110
3.5.3 Immunofluorescence analysis of the effects of hyperglycemia on HTMCs  . 112
3.5.4 Hyperglycemia effects on TGF-β1/2 knockdown HTMCs 114
3.5.5 Immunoblot analysis to determine the effects of hyperglycemia on TGF-β1/2 knockdown HTMCs. 117
3.5.6 Hyperglycemia effects of on HTMCs with or without rhTGF-β1 protein (1 and 5 ng/ml). 120
3.5.7 Immunoblot analysis to determine the effects of hyperglycemia on HTMCs with or without recombinant TGF-β1 protein (1 ng/ml). 123
3.5.8 Hydrogen peroxide-induced oxidative stress and effects of hyperglycemia on HTMCs. 126
3.5.9 Immunoblot analysis to determine the effects of hyperglycemia on HTMCs with or without H2O2 (0.5 mM) for 1 h. 129
Chapter 4 DISCUSSION 132
4.1 Proteomic Analysis of Various Rat Ocular Tissues after Ischemia–Reperfusion Injury and Possible Relevance to Acute Glaucoma 132
4.2 TGF-β1 signaling protects retinal ganglion cells from oxidative stress via modulation of the HO-1/Nrf2 pathway 136
4.3 Characterization of TGF-β by induced oxidative stress in human trabecular meshwork cells 141
4.4 The Role of Transforming Growth Factor-Beta in Retinal Ganglion Cells with Hyperglycemia and Oxidative Stress 145
4.5 Effects of hyperglycemia on the TGF-β pathway in trabecular meshwork cells 150
Chapter 5  CONCLUSION 155
5.1 Proteomic Analysis of Various Rat Ocular Tissues after Ischemia–Reperfusion Injury and Possible Relevance to Acute Glaucoma 155
5.2 TGF-β1 signaling protects retinal ganglion cells from oxidative stress via modulation of the HO-1/Nrf2 pathway 155
5.3 Characterization of TGF-β by induced oxidative stress in human trabecular meshwork cells 156
5.4 The Role of Transforming Growth Factor-Beta in Retinal Ganglion Cells with Hyperglycemia and Oxidative Stress 156
5.5 Effects of hyperglycemia on the TGF-β pathway in trabecular meshwork cells 157
Chapter 6  REFERENCES 158

Appendix 172
Publications 200

List of Figures and Tables

Chapter 1 INTRODUCTION
Figure 1-1. The main concept of this research 3
Figure 1-2. The amino acid sequences of TGF-β1, TGF-β2, and TGF-β3 4
Figure 1-3. Schematic diagram of IR model and the anatomy of the rat’s eye 7
Figure 1-4. Schematic illustrations showing the ischemia/reperfusion injury eye model (ischemia for one hour and reperfusion for one hour), followed by 2D-DIGE (two-dimensional difference gel electrophoresis) and MALDI-TOF/TOF mass spectrometry based proteomic analysis has been performed 8

Chapter 2 MATERIALS and METHODS
Table 2-1. Antibodies information 28

Chapter 3 RESULTS
Figure 3-1. Comparison of proteomics between the ischemia–reperfusion (IR) injury and control groups (Ctrl) in cornea. 35
Figure 3-2. Comparison of proteomics between the IR injury and control groups in conjunctiva. 36
Figure 3-3. Comparison of proteomics between the IR injury and control groups in uvea. 37
Figure 3-4. Comparison of proteomics between the IR injury and control groups in sclera. 38
Figure 3-5. Comparison of proteomics between the IR injury and control groups in retina. 39
Figure 3-6. Percentage of total cellular proteins identified by 2D-DIGE/matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for (A) cornea, (B) conjunctiva, (C) uvea, (D) sclera, and (E) retina according to their biological functions. 40
Table 3-1. Order of protein expression alterations (i.e., cornea, conjunctiva, uvea, sclera, and retina) according to the ratio of protein expression alterations. 41
Figure 3-7. Representative immunoblotting analysis for selected differentially expressed protein identified by proteomic analysis between control groups and ischemia-reperfusion groups 42
Figure 3-8. Cell viability with different concentrations and exposure duration of H2O2 in RGC-5 cells. 43
Figure 3-9. Wound healing ability induced by low concentration H2O2 on RGC-5 cells. 45
Figure 3-10. Effects of H2O2 on cell apoptotic status and increasing iROS levels in RGC-5 cells. 47
Figure 3-11. GSH content of RGC-5 cells under H2O2 (1 mM) stimulation. 48
Figure 3-12. Immunoblot analysis of antioxidation pathway-associated proteins (Nrf2, Keap1, HIF-1α, ALDH3A1, HO-1, TGF-β1, TGF-β2, LDH, Lamin B1, and p53) under 1mM H2O2 treatment for different exposure times (5, 30, 60 min). (n = 3). 49
Figure 3-13. Immunofluorescence analysis of RGCs under H2O2 (1 mM) stimulation.
50
Figure 3-14. Cell viability and iROS accumulation in RGC-5 cells under H2O2 (1 mM) stimulation with/without NAC (N-acetyl-L-cysteine) (5 mM). 52
Figure 3-15. Effects of TGF-β1/2 knockdown on H2O2-induced oxidative damage.
54
Figure 3-16. Immunoblot analysis of antioxidation pathway-associated proteins (Nrf2, Keap1, HIF-1α, ALDH3A1, HO-1, TGF-β1, TGF-β2, LDH, Lamin B1 and p53) under 1mM H2O2 treatment in TGF-β1/2 knockdown RGC-5 cells (n = 3). 55
Figure 3-17. Oxygen consumption rate (OCR) of RGC-5 shTGFβ1/2 cells with H2O2.
56
Figure 3-18. Effects of rhTGF-β1 on H2O2-induced oxidative damage. 58
Figure 3-19. Immunoblot analysis of activation of downstream substrates for RGC-5 cells supplemented with recombinant TGF-β1 protein (5 ng/ml) for 24 h with or without H2O2 (1 mM) 60
Figure 3-20. Impairments by H2O2 of HTMCs. H2O2 treatment decreased cell viability and increased ROS along with Ca2+ levels in dose- and time-dependent manners. 61
Figure 3-21. Immunoblot analysis and identification of H2O2-induced oxidative stress response signaling pathways. 64
Figure 3-22. Immunofluorescence analysis of H2O2 (1 mM)-treated HTMCs. 67
Figure 3-23. Effects of rhTGF-β1 protein during oxidative stress response of HTMCs.
69
Figure 3-24. Immunoblot analysis and identification of rhTGF-β1 protein in oxidative stress pathways. 72
Figure 3-25. Immunofluorescence analysis of rhTGF-β1 protein-treated HTMCs with or without H2O2 exposure (0.5 mM for 1 h). 75
Figure 3-26. Effects of shTGF-β1 & shTGF-β2 knockdown HTMCs with H2O2 exposure. 77
Figure 3-27. Immunoblot analysis and identification of shTGF-β1/2 knockdown HTMCs in oxidative stress pathways. 80
Figure 3-28. Effects on sip38 MAPK knockdown HTMCs through H2O2 exposure.
83
Figure 3-29. Immunoblot analysis and identification of sip38 MAPK knockdown HTMCs in oxidative stress pathways. 85
Figure 3-30. Effects of hyperglycemia on retinal ganglion cells (RGCs). 88
Figure 3-31. Immunoblot analysis of RGCs with hyperglycemia. 90
Figure 3-32. Immunofluorescence analysis of the activation of stress fiber and actin dots formation with 5.5 mM, 25 mM, 50 mM, and 100 mM glucose supplemented medium. 92
Figure 3-33. Effects in TGF-β1/2 knockdown RGCs with hyperglycemia 94
Figure 3-34. Immunoblot analysis of activation of downstream substrates in TGF-β1/2 knockdown RGC-5 cells with hyperglycemia 96
Figure 3-35. Effects in RGCs with hyperglycemia with or without (w/o) recombinant TGF-β1 protein (5 ng/mL) 99
Figure 3-36. Immunoblot analysis in RGCs with hyperglycemia with or w/o recombinant TGF-β1 protein (5 ng/mL) 101
Figure 3-37. Effects in RGCs with hyperglycemia with or w/o hydrogen peroxide for 1 h 103
Figure 3-38. Immunoblot analysis in RGCs with hyperglycemia with or w/o hydrogen peroxide (1 mM) for 1 h 105
Figure 3-39. Hyperglycemic effects on human trabecular meshwork cells (HTMCs)
108
Figure 3-40. Immunoblot analysis of hyperglycemia effects on HTMCs 111
Figure 3-41. Immunofluorescence analysis of the effects of hyperglycemia on HTMCs 113
Figure 3-42. Effects of high glucose levels on TGF-β1/2 knockdown HTMCs 115
Figure 3-43. Immunoblot analysis to determine hyperglycemic effects on TGF-β1/2 knockdown HTMCs 118
Figure 3-44. Hyperglycemia effects on HTMCs with or without rhTGF-β1 protein (1 & 5 ng/mL) 121
Figure 3-45. Immunoblot analysis of hyperglycemia effects on HTMCs with or without recombinant TGF-β1 protein (1 ng/mL) 124
Figure 3-46. Hydrogen peroxide-induced oxidative stress in HTMCs treated with high glucose concentrations 127
Figure 3-47. Immunoblot analysis of the effects of hyperglycemia on HTMCs with or without hydrogen peroxide (0.5 mM) treatment for 1 h 130

Chapter 4 DISCUSSION
Figure 4-1. A hypothetical model detailing the role of TGF-β in H2O2-stimulated oxidative stress of RGCs 136
Figure 4-2. A hypothetical model detailing the role of the TGF-β-related oxidative stress pathway in HTMC 141
Figure 4-3. A hypothetical model detailing the role of TGF-β in hyperglycemia (RGC-5) 145
Figure 4-4. A hypothetical model detailing the effects of hyperglycemia on the TGF-β pathway in trabecular meshwork cells 150

Appendix
Table S1. Alphabetical list of identified differentially expressed cornea proteins between the IR injury and control groups after 2D-DIGE coupled with MALDI-TOF mass spectrometry analysis. 173
Table S2. Alphabetical list of identified differentially expressed conjunctiva proteins between the IR injury and control groups after 2D-DIGE coupled with MALDI-TOF mass spectrometry analysis 184
Table S3. Alphabetical list of identified differentially expressed uvea proteins between the IR injury and control groups after 2D-DIGE coupled with MALDI-TOF mass spectrometry analysis. 189
Table S4. Alphabetical list of identified differentially expressed sclera proteins between the IR injury and control groups after 2D-DIGE coupled with MALDI-TOF mass spectrometry analysis. 196
Table S5. Alphabetical list of identified differentially expressed retina proteins between the IR injury and control groups after 2D-DIGE coupled with MALDI-TOF mass spectrometry analysis. 197


1. Kwon, Y.H., Fingert, J.H., Kuehn, M.H. & Alward, W.L. Primary open-angle glaucoma. N Engl J Med 360, 1113-1124 (2009).
2. Lou, Z. et al. Upregulation of NOX2 and NOX4 Mediated by TGF-beta Signaling Pathway Exacerbates Cerebral Ischemia/Reperfusion Oxidative Stress Injury. Cell Physiol Biochem 46, 2103-2113 (2018).
3. Xu, T. et al. ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol 20, 414-426 (2019).
4. Qin, X. et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale 11, 20667-20675 (2019).
5. Kaczara, P., Sarna, T. & Burke, J.M. Dynamics of H2O2 availability to ARPE-19 cultures in models of oxidative stress. Free Radic Biol Med 48, 1064-1070 (2010).
6. Schafer, F.Q. & Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30, 1191-1212 (2001).
7. Tsukamoto, T., Kajiwara, K., Nada, S. & Okada, M. Src mediates TGF-beta-induced intraocular pressure elevation in glaucoma. J Cell Physiol 234, 1730-1744 (2019).
8. Fisichella, V. et al. TGF-beta1 prevents rat retinal insult induced by amyloid-beta (1-42) oligomers. Eur J Pharmacol 787, 72-77 (2016).
9. Platania, C.B.M. et al. Topical Ocular Delivery of TGF-beta1 to the Back of the Eye: Implications in Age-Related Neurodegenerative Diseases. Int J Mol Sci 18 (2017).
10. Funkenstein, B., Olekh, E. & Jakowlew, S.B. Identification of a novel transforming growth factor-beta (TGF-beta6) gene in fish: regulation in skeletal muscle by nutritional state. BMC Mol Biol 11, 37 (2010).
11. Roberts, A.B. Molecular and cell biology of TGF-beta. Miner Electrolyte Metab 24, 111-119 (1998).
12. Suri, F., Yazdani, S. & Elahi, E. LTBP2 knockdown and oxidative stress affect glaucoma features including TGFbeta pathways, ECM genes expression and apoptosis in trabecular meshwork cells. Gene 673, 70-81 (2018).
13. Prendes, M.A., Harris, A., Wirostko, B.M., Gerber, A.L. & Siesky, B. The role of transforming growth factor beta in glaucoma and the therapeutic implications. Br J Ophthalmol 97, 680-686 (2013).
14. Yang, X. et al. Proteomics Analysis of Molecular Risk Factors in the Ocular Hypertensive Human Retina. Invest Ophthalmol Vis Sci 56, 5816-5830 (2015).
15. Ozben, T. Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96, 2181-2196 (2007).
16. Wang, N., Wu, H. & Fan, Z. Primary angle closure glaucoma in Chinese and Western populations. Chin Med J (Engl) 115, 1706-1715 (2002).
17. Ang, L.P. & Ang, L.P. Current understanding of the treatment and outcome of acute primary angle-closure glaucoma: an Asian perspective. Ann Acad Med Singap 37, 210-215 (2008).
18. Chi, W. et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1beta production in acute glaucoma. Proc Natl Acad Sci U S A 111, 11181-11186 (2014).
19. Li, H., Zhu, X., Fang, F., Jiang, D. & Tang, L. Down-regulation of GRP78 enhances apoptosis via CHOP pathway in retinal ischemia-reperfusion injury. Neurosci Lett 575, 68-73 (2014).
20. Lin, S.Y., Li, M.J., Liang, R.C. & Lee, S.M. Non-destructive analysis of the conformational changes in human lens lipid and protein structures of the immature cataracts associated with glaucoma. Spectrochim Acta A Mol Biomol Spectrosc 54A, 1509-1517 (1998).
21. Spileers, W. & Goethals, M. Structural changes of the lamina cribrosa and of the trabeculum in primary open angle glaucoma (POAG). Bull Soc Belge Ophtalmol 244, 27-35 (1992).
22. Ekstrom, C. Elevated intraocular pressure and pseudoexfoliation of the lens capsule as risk factors for chronic open-angle glaucoma. A population-based five-year follow-up study. Acta Ophthalmol (Copenh) 71, 189-195 (1993).
23. Lee, S.M., Lin, S.Y., Li, M.J. & Liang, R.C. Possible mechanism of exacerbating cataract formation in cataractous human lens capsules induced by systemic hypertension or glaucoma. Ophthalmic Res 29, 83-90 (1997).
24. Lipton, P. Ischemic cell death in brain neurons. Physiol Rev 79, 1431-1568 (1999).
25. Schmidt, K.G., Pillunat, L.E. & Osborne, N.N. [Ischemia and hypoxia. An attempt to explain the different rates of retinal ganglion cell death in glaucoma]. Ophthalmologe 101, 1071-1075 (2004).
26. Gilgun-Sherki, Y., Rosenbaum, Z., Melamed, E. & Offen, D. Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54, 271-284 (2002).
27. Boratynska, M., Kaminska, D. & Mazanowska, O. [Pathophysiology of ischemia-reperfusion injury in renal transplantation]. Postepy Hig Med Dosw (Online) 58, 1-8 (2004).
28. Linas, S.L., Whittenburg, D. & Repine, J.E. Role of xanthine oxidase in ischemia/reperfusion injury. Am J Physiol 258, F711-716 (1990).
29. Kalogeris, T., Baines, C.P., Krenz, M. & Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298, 229-317 (2012).
30. Timms, J.F. & Cramer, R. Difference gel electrophoresis. Proteomics 8, 4886-4897 (2008).
31. Minden, J. Comparative proteomics and difference gel electrophoresis. Biotechniques 43, 739, 741, 743 passim (2007).
32. Westermeier, R. & Scheibe, B. Difference gel electrophoresis based on lys/cys tagging. Methods Mol Biol 424, 73-85 (2008).
33. Marouga, R., David, S. & Hawkins, E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382, 669-678 (2005).
34. Bourne, R.R. et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health 1, e339-349 (2013).
35. Marazita, M.C., Dugour, A., Marquioni-Ramella, M.D., Figueroa, J.M. & Suburo, A.M. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol 7, 78-87 (2016).
36. Pan, Q., Qiu, W.Y., Huo, Y.N., Yao, Y.F. & Lou, M.F. Low levels of hydrogen peroxide stimulate corneal epithelial cell adhesion, migration, and wound healing. Invest Ophthalmol Vis Sci 52, 1723-1734 (2011).
37. Levkovitch-Verbin, H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms. Prog Brain Res 220, 37-57 (2015).
38. McGarry, T., Biniecka, M., Veale, D.J. & Fearon, U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 125, 15-24 (2018).
39. Peng, P.H., Ko, M.L., Chen, C.F. & Juan, S.H. Haem oxygenase-1 gene transfer protects retinal ganglion cells from ischaemia/reperfusion injury. Clin Sci (Lond) 115, 335-342 (2008).
40. Lassen, N. et al. Antioxidant function of corneal ALDH3A1 in cultured stromal fibroblasts. Free Radic Biol Med 41, 1459-1469 (2006).
41. Kang, K.W., Lee, S.J. & Kim, S.G. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 7, 1664-1673 (2005).
42. Motohashi, H. & Yamamoto, M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10, 549-557 (2004).
43. Panahian, N., Yoshiura, M. & Maines, M.D. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 72, 1187-1203 (1999).
44. Chen, K., Gunter, K. & Maines, M.D. Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J Neurochem 75, 304-313 (2000).
45. Wang, X.H. et al. Alleviating ischemia-reperfusion injury in aged rat liver by induction of heme oxygenase-1. Transplant Proc 36, 2917-2923 (2004).
46. Chhunchha, B., Singh, P., Stamer, W.D. & Singh, D.P. Prdx6 retards senescence and restores trabecular meshwork cell health by regulating reactive oxygen species. Cell Death Discov 3, 17060 (2017).
47. Vranka, J.A., Kelley, M.J., Acott, T.S. & Keller, K.E. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 133, 112-125 (2015).
48. Zhou, L., Li, Y. & Yue, B.Y. Oxidative stress affects cytoskeletal structure and cell-matrix interactions in cells from an ocular tissue: the trabecular meshwork. J Cell Physiol 180, 182-189 (1999).
49. Wang, N., Chintala, S.K., Fini, M.E. & Schuman, J.S. Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype. Nat Med 7, 304-309 (2001).
50. Izzotti, A., Bagnis, A. & Sacca, S.C. The role of oxidative stress in glaucoma. Mutat Res 612, 105-114 (2006).
51. Sacca, S.C., Izzotti, A., Rossi, P. & Traverso, C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res 84, 389-399 (2007).
52. Zhao, J. et al. Oxidative stress in the trabecular meshwork (Review). Int J Mol Med 38, 995-1002 (2016).
53. Wang, M. & Zheng, Y. Oxidative stress and antioxidants in the trabecular meshwork. PeerJ 7, e8121 (2019).
54. Petrova, N.V., Velichko, A.K., Razin, S.V. & Kantidze, O.L. Small molecule compounds that induce cellular senescence. Aging Cell 15, 999-1017 (2016).
55. Fatma, N. et al. PRDX6 attenuates oxidative stress- and TGFbeta-induced abnormalities of human trabecular meshwork cells. Free Radic Res 43, 783-795 (2009).
56. Huang, X.Q. et al. hTERT extends proliferative lifespan and prevents oxidative stress-induced apoptosis in human lens epithelial cells. Invest Ophthalmol Vis Sci 46, 2503-2513 (2005).
57. Fleenor, D.L. et al. TGFbeta2-induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci 47, 226-234 (2006).
58. Annes, J.P., Munger, J.S. & Rifkin, D.B. Making sense of latent TGFbeta activation. J Cell Sci 116, 217-224 (2003).
59. Zode, G.S. et al. Transforming growth factor-beta2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Mol Vis 17, 1745-1758 (2011).
60. Fuchshofer, R. & Tamm, E.R. The role of TGF-beta in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res 347, 279-290 (2012).
61. Fatma, N., Kubo, E., Sharma, P., Beier, D.R. & Singh, D.P. Impaired homeostasis and phenotypic abnormalities in Prdx6-/-mice lens epithelial cells by reactive oxygen species: increased expression and activation of TGFbeta. Cell Death Differ 12, 734-750 (2005).
62. Jiang, Z. et al. Reactive oxygen species mediate TGF-beta1-induced plasminogen activator inhibitor-1 upregulation in mesangial cells. Biochem Biophys Res Commun 309, 961-966 (2003).
63. Ghatak, S. et al. Transforming growth factor beta1 (TGFbeta1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 292, 10490-10519 (2017).
64. Awai-Kasaoka, N. et al. Oxidative stress response signaling pathways in trabecular meshwork cells and their effects on cell viability. Mol Vis 19, 1332-1340 (2013).
65. Ammar, D.A., Hamweyah, K.M. & Kahook, M.Y. Antioxidants Protect Trabecular Meshwork Cells From Hydrogen Peroxide-Induced Cell Death. Transl Vis Sci Technol 1, 4 (2012).
66. Inoue-Mochita, M. et al. p38 MAP kinase inhibitor suppresses transforming growth factor-beta2-induced type 1 collagen production in trabecular meshwork cells. PLoS One 10, e0120774 (2015).
67. Honjo, M. et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci 42, 137-144 (2001).
68. Rao, P.V., Deng, P.F., Kumar, J. & Epstein, D.L. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest Ophthalmol Vis Sci 42, 1029-1037 (2001).
69. Shiryaev, A. & Moens, U. Mitogen-activated protein kinase p38 and MK2, MK3 and MK5: menage a trois or menage a quatre? Cell Signal 22, 1185-1192 (2010).
70. Chowdhury, R., Chowdhury, S., Roychoudhury, P., Mandal, C. & Chaudhuri, K. Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis 14, 108-123 (2009).
71. Bansal, V., Kalita, J. & Misra, U.K. Diabetic neuropathy. Postgrad Med J 82, 95-100 (2006).
72. Lechner, J., O'Leary, O.E. & Stitt, A.W. The pathology associated with diabetic retinopathy. Vision Res 139, 7-14 (2017).
73. Wong, T.Y., Cheung, C.M., Larsen, M., Sharma, S. & Simo, R. Diabetic retinopathy. Nat Rev Dis Primers 2, 16012 (2016).
74. Wang, W. & Lo, A.C.Y. Diabetic Retinopathy: Pathophysiology and Treatments. Int J Mol Sci 19 (2018).
75. Kusuhara, S., Fukushima, Y., Ogura, S., Inoue, N. & Uemura, A. Pathophysiology of Diabetic Retinopathy: The Old and the New. Diabetes Metab J 42, 364-376 (2018).
76. Duh, E.J., Sun, J.K. & Stitt, A.W. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2 (2017).
77. Safi, S.Z., Qvist, R., Kumar, S., Batumalaie, K. & Ismail, I.S. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int 2014, 801269 (2014).
78. Maugeri, G. et al. Nicotine promotes blood retinal barrier damage in a model of human diabetic macular edema. Toxicol In Vitro 44, 182-189 (2017).
79. Wang, L. et al. The protective effect of alpha-Lipoic acid on mitochondria in the kidney of diabetic rats. Int J Clin Exp Med 6, 90-97 (2013).
80. Almasry, S.M., Habib, E.K., Elmansy, R.A. & Hassan, Z.A. Hyperglycemia Alters the Protein Levels of Prominin-1 and VEGFA in the Retina of Albino Rats. J Histochem Cytochem 66, 33-45 (2018).
81. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820 (2001).
82. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787-790 (2000).
83. Tien, T. et al. High Glucose Induces Mitochondrial Dysfunction in Retinal Muller Cells: Implications for Diabetic Retinopathy. Invest Ophthalmol Vis Sci 58, 2915-2921 (2017).
84. Boss, J.D. et al. Assessment of Neurotrophins and Inflammatory Mediators in Vitreous of Patients With Diabetic Retinopathy. Invest Ophthalmol Vis Sci 58, 5594-5603 (2017).
85. Sasaki, M. et al. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 53, 971-979 (2010).
86. Pal, P.B., Sinha, K. & Sil, P.C. Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFalpha related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats. PLoS One 9, e107220 (2014).
87. Chen, Y. et al. Involvement of hypoxia-inducible factor-1alpha in the oxidative stress induced by advanced glycation end products in murine Leydig cells. Toxicol In Vitro 32, 146-153 (2016).
88. Ishii, T. et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275, 16023-16029 (2000).
89. Sun, Q. et al. The role of DJ-1/Nrf2 pathway in the pathogenesis of diabetic nephropathy in rats. Ren Fail 38, 294-304 (2016).
90. Uruno, A. et al. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol 33, 2996-3010 (2013).
91. Abdo, S., Zhang, S.L. & Chan, J.S. Reactive Oxygen Species and Nuclear Factor Erythroid 2-Related Factor 2 Activation in Diabetic Nephropathy: A Hidden Target. J Diabetes Metab 6 (2015).
92. Lawrence, D.A. Transforming growth factor-beta: a general review. Eur Cytokine Netw 7, 363-374 (1996).
93. Vicas, L.G. et al. Physalis alkekengi L. Extract Reduces the Oxidative Stress, Inflammation and Apoptosis in Endothelial Vascular Cells Exposed to Hyperglycemia. Molecules 25 (2020).
94. Maritim, A.C., Sanders, R.A. & Watkins, J.B., 3rd Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17, 24-38 (2003).
95. Loghmani, E.S. Nutrition therapy for overweight children and adolescents with type 2 diabetes. Curr Diab Rep 5, 385-390 (2005).
96. Fiorentino, T.V., Prioletta, A., Zuo, P. & Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 19, 5695-5703 (2013).
97. Turkmen, K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse. Int Urol Nephrol 49, 837-844 (2017).
98. Newsholme, P., Cruzat, V.F., Keane, K.N., Carlessi, R. & de Bittencourt, P.I., Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473, 4527-4550 (2016).
99. Habib, S.L. Diabetes and renal tubular cell apoptosis. World J Diabetes 4, 27-30 (2013).
100. Bakker, S.F. et al. Advanced glycation end products (AGEs) and the soluble receptor for AGE (sRAGE) in patients with type 1 diabetes and coeliac disease. Nutr Metab Cardiovasc Dis 25, 230-235 (2015).
101. Ramis, R. et al. How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity. Antioxidants (Basel) 8 (2019).
102. Huang, K.H. et al. Role of Calbindin-D28k in Diabetes-Associated Advanced Glycation End-Products-Induced Renal Proximal Tubule Cell Injury. Cells 8 (2019).
103. Wagener, F.A., Dekker, D., Berden, J.H., Scharstuhl, A. & van der Vlag, J. The role of reactive oxygen species in apoptosis of the diabetic kidney. Apoptosis 14, 1451-1458 (2009).
104. Balasescu, E., Ion, D.A., Cioplea, M. & Zurac, S. Caspases, Cell Death and Diabetic Nephropathy. Rom J Intern Med 53, 296-303 (2015).
105. Zhu, Y., Usui, H.K. & Sharma, K. Regulation of transforming growth factor beta in diabetic nephropathy: implications for treatment. Semin Nephrol 27, 153-160 (2007).
106. Chen, S. et al. The key role of the transforming growth factor-beta system in the pathogenesis of diabetic nephropathy. Ren Fail 23, 471-481 (2001).
107. Inoue-Mochita, M. et al. Interleukin-6-mediated trans-signaling inhibits transforming growth factor-beta signaling in trabecular meshwork cells. J Biol Chem 293, 10975-10984 (2018).
108. Verrecchia, F. & Mauviel, A. Transforming growth factor-beta and fibrosis. World J Gastroenterol 13, 3056-3062 (2007).
109. Sakata, Y. et al. Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol 103, 60-68 (2008).
110. Kita, T. et al. Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes 56, 231-238 (2007).
111. Yao, J.C. et al. TGF-beta Signaling Contributes to Myelofibrosis and Clonal Dominance of Myeloproliferative Neoplasms. Blood 134 (2019).
112. Montecchi-Palmer, M. et al. TGFbeta2 Induces the Formation of Cross-Linked Actin Networks (CLANs) in Human Trabecular Meshwork Cells Through the Smad and Non-Smad Dependent Pathways. Invest Ophthalmol Vis Sci 58, 1288-1295 (2017).
113. Tellios, N. et al. TGF-beta induces phosphorylation of phosphatase and tensin homolog: implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci Rep 7, 812 (2017).
114. Chen, H.Y. et al. Proteomic Analysis of Various Rat Ocular Tissues after Ischemia-Reperfusion Injury and Possible Relevance to Acute Glaucoma. Int J Mol Sci 18 (2017).
115. Peng, P.H., Ko, M.L. & Chen, C.F. Epigallocatechin-3-gallate reduces retinal ischemia/reperfusion injury by attenuating neuronal nitric oxide synthase expression and activity. Exp Eye Res 86, 637-646 (2008).
116. Ko, M.L., Chen, C.F., Peng, P.H. & Peng, Y.H. Simvastatin upregulates Bcl-2 expression and protects retinal neurons from early ischemia/reperfusion injury in the rat retina. Exp Eye Res 93, 580-585 (2011).
117. Chan, H.L. et al. Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Proteomics 5, 2908-2926 (2005).
118. Gharbi, S. et al. Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1, 91-98 (2002).
119. Candiloros, H. et al. Decreased erythrocyte membrane fluidity in poorly controlled IDDM. Influence of ketone bodies. Diabetes Care 18, 549-551 (1995).
120. Saydah, S.H. et al. Postchallenge hyperglycemia and mortality in a national sample of U.S. adults. Diabetes Care 24, 1397-1402 (2001).
121. Jouven, X. et al. Diabetes, glucose level, and risk of sudden cardiac death. Eur Heart J 26, 2142-2147 (2005).
122. Cai, L. et al. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51, 1938-1948 (2002).
123. Li, J.M. et al. Upregulation of LGALS1 is associated with oral cancer metastasis. Ther Adv Med Oncol 10, 1758835918794622 (2018).
124. Tamai, K. et al. Photodynamic Therapy Using Indocyanine Green Loaded on Super Carbonate Apatite as Minimally Invasive Cancer Treatment. Mol Cancer Ther 17, 1613-1622 (2018).
125. Li, J.M. et al. Hyaluronic acid-dependent protection against UVB-damaged human corneal cells. Environ Mol Mutagen 54, 429-449 (2013).
126. Guha, P. et al. Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. J Pharmacol Exp Ther 336, 206-214 (2011).
127. Chen, Y.C. et al. Srv2 Is a Pro-fission Factor that Modulates Yeast Mitochondrial Morphology and Respiration by Regulating Actin Assembly. iScience 11, 305-317 (2019).
128. Shao, H. et al. Proteome profiling of wild type and lumican-deficient mouse corneas. J Proteomics 74, 1895-1905 (2011).
129. Lassen, N., Black, W.J., Estey, T. & Vasiliou, V. The role of corneal crystallins in the cellular defense mechanisms against oxidative stress. Semin Cell Dev Biol 19, 100-112 (2008).
130. Shui, Y.B. et al. Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci 47, 1571-1580 (2006).
131. Williams, D.L. Oxidative stress and the eye. Vet Clin North Am Small Anim Pract 38, 179-192, vii (2008).
132. Siegfried, C.J., Shui, Y.B., Holekamp, N.M., Bai, F. & Beebe, D.C. Oxygen distribution in the human eye: relevance to the etiology of open-angle glaucoma after vitrectomy. Invest Ophthalmol Vis Sci 51, 5731-5738 (2010).
133. Andersen, R.B. et al. Purification and structural characterization of transforming growth factor beta induced protein (TGFBIp) from porcine and human corneas. Biochemistry 43, 16374-16384 (2004).
134. Goel, R. et al. Characterizing the normal proteome of human ciliary body. Clin Proteomics 10, 9 (2013).
135. Mandal, N., Heegaard, S., Prause, J.U., Honore, B. & Vorum, H. Ocular proteomics with emphasis on two-dimensional gel electrophoresis and mass spectrometry. Biol Proced Online 12, 56-88 (2009).
136. Tezel, G. et al. Immunoproteomic analysis of potential serum biomarker candidates in human glaucoma. Invest Ophthalmol Vis Sci 53, 8222-8231 (2012).
137. Tezel, G., Yang, X. & Cai, J. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest Ophthalmol Vis Sci 46, 3177-3187 (2005).
138. Nakajima, E., David, L.L., Bystrom, C., Shearer, T.R. & Azuma, M. Calpain-specific proteolysis in primate retina: Contribution of calpains in cell death. Invest Ophthalmol Vis Sci 47, 5469-5475 (2006).
139. Kim, S.W., Lee, J., Lee, B. & Rhim, T. Proteomic analysis in pterygium; upregulated protein expression of ALDH3A1, PDIA3, and PRDX2. Mol Vis 20, 1192-1202 (2014).
140. Chen, Y., Thompson, D.C., Koppaka, V., Jester, J.V. & Vasiliou, V. Ocular aldehyde dehydrogenases: protection against ultraviolet damage and maintenance of transparency for vision. Prog Retin Eye Res 33, 28-39 (2013).
141. Kamradt, M.C., Chen, F., Sam, S. & Cryns, V.L. The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277, 38731-38736 (2002).
142. Andley, U.P. et al. Lens epithelial cells derived from alphaB-crystallin knockout mice demonstrate hyperproliferation and genomic instability. FASEB J 15, 221-229 (2001).
143. Patel, N. et al. Strategies to recover proteins from ocular tissues for proteomics. Proteomics 8, 1055-1070 (2008).
144. Connolly, E.C., Freimuth, J. & Akhurst, R.J. Complexities of TGF-beta targeted cancer therapy. Int J Biol Sci 8, 964-978 (2012).
145. Zhao, M., Mishra, L. & Deng, C.X. The role of TGF-beta/SMAD4 signaling in cancer. Int J Biol Sci 14, 111-123 (2018).
146. David, C.J. et al. TGF-beta Tumor Suppression through a Lethal EMT. Cell 164, 1015-1030 (2016).
147. Inatani, M. et al. Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 239, 109-113 (2001).
148. Fukuchi, T., Ueda, J., Hanyu, T., Abe, H. & Sawaguchi, S. Distribution and expression of transforming growth factor-beta and platelet-derived growth factor in the normal and glaucomatous monkey optic nerve heads. Jpn J Ophthalmol 45, 592-599 (2001).
149. Murali, D., Kawaguchi-Niida, M., Deng, C.X. & Furuta, Y. Smad4 is required predominantly in the developmental processes dependent on the BMP branch of the TGF-beta signaling system in the embryonic mouse retina. Invest Ophthalmol Vis Sci 52, 2930-2937 (2011).
150. Eisenstein, R. & Grant-Bertacchini, D. Growth inhibitory activities in avascular tissues are recognized by anti-transforming growth factor beta antibodies. Curr Eye Res 10, 157-162 (1991).
151. Wang, X. et al. Mutual regulation of the Hippo/Wnt/LPA/TGFbeta signaling pathways and their roles in glaucoma (Review). Int J Mol Med 41, 1201-1212 (2018).
152. More, S.V. & Choi, D.K. Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection. Mol Neurodegener 10, 17 (2015).
153. Dobolyi, A., Vincze, C., Pal, G. & Lovas, G. The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 13, 8219-8258 (2012).
154. Gao, W. et al. Rubus idaeus L. (red raspberry) blocks UVB-induced MMP production and promotes type I procollagen synthesis via inhibition of MAPK/AP-1, NF-kappabeta and stimulation of TGF-beta/Smad, Nrf2 in normal human dermal fibroblasts. J Photochem Photobiol B 185, 241-253 (2018).
155. Wang, Z., Zhang, H., Sun, X. & Ren, L. The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-beta/Smad signaling and activation of the Nrf2/HO-1 pathway. Mol Med Rep 14, 2389-2396 (2016).
156. Schmidlin, C.J., Dodson, M.B., Madhavan, L. & Zhang, D.D. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med (2019).
157. Cabrie, A., Guittet, O., Tomasini, R., Vincendeau, P. & Lepoivre, M. Crosstalk between TAp73 and TGF-beta in fibroblast regulates iNOS expression and Nrf2-dependent gene transcription. Free Radic Biol Med 134, 617-629 (2019).
158. Liu, X.F. et al. The Nrf2 Signaling in Retinal Ganglion Cells under Oxidative Stress in Ocular Neurodegenerative Diseases. Int J Biol Sci 14, 1090-1098 (2018).
159. Agarwal, N. RGC-5 cells. Invest Ophthalmol Vis Sci 54 (2013).
160. Chen, H.Y. et al. TGF-beta1 signaling protects retinal ganglion cells from oxidative stress via modulation of the HO-1/Nrf2 pathway. Chem Biol Interact 331, 109249 (2020).
161. Jeong, B.Y. et al. TGF-beta-mediated NADPH oxidase 4-dependent oxidative stress promotes colistin-induced acute kidney injury. J Antimicrob Chemother 73, 962-972 (2018).
162. Hazlewood, R.J., Chen, Q., Clark, F.K., Kuchtey, J. & Kuchtey, R.W. Differential effects of angiotensin II type I receptor blockers on reducing intraocular pressure and TGFbeta signaling in the mouse retina. PLoS One 13, e0201719 (2018).
163. Yang, K.L., Chang, W.T., Hong, M.Y., Hung, K.C. & Chuang, C.C. Prevention of TGF-beta-induced early liver fibrosis by a maleic acid derivative antioxidant through suppression of ROS, inflammation and hepatic stellate cells activation. Plos One 12 (2017).
164. Inoue, T. et al. Latent TGF-beta binding protein-2 is essential for the development of ciliary zonule microfibrils. Hum Mol Genet 23, 5672-5682 (2014).
165. Nita, M. & Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev 2016, 3164734 (2016).
166. Casalena, G., Daehn, I. & Bottinger, E. Transforming growth factor-beta, bioenergetics, and mitochondria in renal disease. Semin Nephrol 32, 295-303 (2012).
167. Yang, Y. et al. Inhibition of p38 mitogen-activated protein kinase phosphorylation decrease tert-butyl hydroperoxide-induced apoptosis in human trabecular meshwork cells. Mol Vis 18, 2127-2136 (2012).
168. Zhu, D.H., Wu, J., Spee, C., Ryan, S.J. & Hinton, D.R. BMP4 Mediates Oxidative Stress-induced Retinal Pigment Epithelial Cell Senescence and Is Overexpressed in Age-related Macular Degeneration. Journal of Biological Chemistry 284, 9529-9539 (2009).
169. Li, W. et al. Inhibition of the expression of TGF-beta1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell Physiol Biochem 30, 749-757 (2012).
170. Yang, H. et al. The role of CTGF in the diabetic rat retina and its relationship with VEGF and TGF-beta(2) , elucidated by treatment with CTGFsiRNA. Acta Ophthalmol 88, 652-659 (2010).
171. Grigsby, J., Betts, B., Vidro-Kotchan, E., Culbert, R. & Tsin, A. A possible role of acrolein in diabetic retinopathy: involvement of a VEGF/TGFbeta signaling pathway of the retinal pigment epithelium in hyperglycemia. Curr Eye Res 37, 1045-1053 (2012).
172. Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circ Res 107, 1058-1070 (2010).
173. Reddy, M.A., Zhang, E. & Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58, 443-455 (2015).
174. Czajka, A. & Malik, A.N. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy. Redox Biol 10, 100-107 (2016).
175. Germoush, M.O. et al. Consumption of Terpenoids-Rich Padina pavonia Extract Attenuates Hyperglycemia, Insulin Resistance and Oxidative Stress, and Upregulates PPARgamma in a Rat Model of Type 2 Diabetes. Antioxidants (Basel) 9 (2019).
176. Wang, Q. et al. Hyperglycemia exacerbates acetaminophen-induced acute liver injury by promoting liver-resident macrophage proinflammatory response via AMPK/PI3K/AKT-mediated oxidative stress. Cell Death Discov 5, 119 (2019).
177. Huang, X. et al. Augmented NADPH oxidase activity and p22phox expression in monocytes underlie oxidative stress of patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 91, 371-380 (2011).
178. Liu, G. et al. Comparison of glutathione peroxidase 1 and peroxiredoxin 6 in protection against oxidative stress in the mouse lung. Free Radic Biol Med 49, 1172-1181 (2010).
179. Liu, R.M. & Gaston Pravia, K.A. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 48, 1-15 (2010).
180. Ishikawa, F. et al. A mitochondrial thioredoxin-sensitive mechanism regulates TGF-beta-mediated gene expression associated with epithelial-mesenchymal transition. Biochem Biophys Res Commun 443, 821-827 (2014).
181. Pohlers, D. et al. TGF-beta and fibrosis in different organs - molecular pathway imprints. Biochim Biophys Acta 1792, 746-756 (2009).
182. Meng, X.M., Nikolic-Paterson, D.J. & Lan, H.Y. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12, 325-338 (2016).
183. Han, H., Kampik, D., Grehn, F. & Schlunck, G. TGF-beta2-induced invadosomes in human trabecular meshwork cells. PLoS One 8, e70595 (2013).
184. Wahlig, S., Lovatt, M. & Mehta, J.S. Functional role of peroxiredoxin 6 in the eye. Free Radic Biol Med 126, 210-220 (2018).
185. Yu, A.L., Birke, K., Moriniere, J. & Welge-Lussen, U. TGF-{beta}2 induces senescence-associated changes in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 51, 5718-5723 (2010).
186. Welge-Lussen, U. & Birke, K. [Oxidative stress in the trabecular meshwork of POAG]. Klin Monbl Augenheilkd 227, 99-107 (2010).
187. Hogg, P., Calthorpe, M., Batterbury, M. & Grierson, I. Aqueous humor stimulates the migration of human trabecular meshwork cells in vitro. Invest Ophth Vis Sci 41, 1091-1098 (2000).
188. Krstic, J., Trivanovic, D., Mojsilovic, S. & Santibanez, J.F. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. Oxid Med Cell Longev 2015, 654594 (2015).
189. Chen, H.Y. et al. The Role of Transforming Growth Factor-Beta in Retinal Ganglion Cells with Hyperglycemia and Oxidative Stress. Int J Mol Sci 21 (2020).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Secretome-based identification of tumorigenic and metastatic breast cancer biomarkers
2. Part I:藉由二維差異電泳分析乳癌細胞的蛋白質體找出有潛力的生物標誌分子 Part II:藉由二維差異電泳分析羊水中男性與女性胎兒細胞其蛋白質體的差異
3. Part I:藉由蛋白質體分析黃蓮素誘導乳癌細胞中之毒殺性機制 Part II:糖尿病 II-I:利用蛋白質體找出第一型糖尿病血漿生物標誌分子:發現 hemopexin為第一型糖尿病患者腎病血漿中新穎性生物標誌分子 II- II:藉由蛋白質體找出第二型糖尿病患者腎病血漿中生物標誌分子
4. PART Ι. 藉由離氨酸及半胱氨酸標定的二維差異電泳分析紫外光照射所引起之蛋白質體的表現量變化及巰基變化 PART Π. 透明質酸在鹼傷害的角膜細胞中所扮演的保護作用
5. PROJECT I 藉由離胺酸及半胱胺酸標定的二維差異電泳儀鑑定出在高糖環境下所引起之蛋白質體及分泌蛋白質體的表現量變化和巰基變化 PROJECT II 藉由離氨酸標定的二維差異電泳分析懷有正常胎兒以及唐氏症胎兒的母體胎盤的蛋白質體的表現量變化從中發現新穎性生物標誌
6. 藉由離氨酸及半胱氨酸標定的二維差異電泳分析人類肺癌細胞中穀胱甘肽還原酶的角色
7. 探討ADP核糖基化因子於類鐸受體9之免疫訊息的功能
8. Part I. 分析移型性膀胱癌病人血清蛋白之氧化還原質體變化 PART II. 5-甲氧基色氨酸在缺血再灌流損傷中所扮演的保護作用
9. 藉由蛋白質體學分析人類肺腺癌細胞中對艾瑞莎的抗藥性
10. 藉由蛋白質體學分析大黃酸所誘導乳癌細胞 之毒殺機制
11. 一、藉由蛋白質體學分析高糖環境下人類肝臟細胞內蛋白質體變化及其參與糖尿病誘導肝臟疾病之相關機制 二、藉由蛋白質體學分析具有pemetrexed抗藥性之人類肺腺癌細胞內蛋白質體變化及參與之相關機制
12. 幽門桿菌Lon蛋白酶減緩抗生素咪唑尼達活化
13. 藉由蛋白質體學分析口腔癌中轉移相關機制及生物標記
14. 一、利用蛋白質體學探討氧化壓力、抑制Src激酶和榭黃素對大鼠心肌細胞的影響:建立心臟缺血再灌流以及治療的細胞模組 二、利用蛋白質體學分析可利用於疾病中的生物標記蛋白
15. 以蛋白質體學分析艾黴素所誘發心臟毒殺及抗藥性相關之治療標的
 
* *