帳號:guest(3.143.0.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):溥儀那
作者(外文):Ganganboina, Akhilesh Babu
論文名稱(中文):石墨烯量子點奈米複合材料於生物感測器、超級電容與電容脫鹽的應用
論文名稱(外文):Application of Graphene Quantum Dots Based Nanocomposites in Biosensor, Supercapacitor and Capacitive Deionization
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey-An
口試委員(中文):呂世源
王竹方
戴念華
黃金寶
侯嘉洪
口試委員(外文):Lu, Shih-Yuan
Wang, Chu-Fang
Tai, Nyan-Hwa
Huang, Chin-Pao
Hou, Chia-Hung
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012880
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:207
中文關鍵詞:石墨烯量子點生物傳感器奈米材料超級電容
外文關鍵詞:graphene quantum dotssupercapacitornanomaterilsbiosensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:115
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
近年來,石墨烯量子點(GQD)作為新穎零維度的奈米材料備受關注,相較於現今應用之材料,其螢光反應及電化學特性具有更好的優勢及表現。GQD獨特性質包含小尺寸、高度生物相容性、光穩定性、強電活性和大比表面積,使其成為適合多種應用層面的最佳選擇。然而,應用GQD材料領域尚處於初發展階段,因此仍然充滿各種挑戰及可能性。利用GQD作為基底的奈米複合材料,由於其獨特的物理化學性質和優異的生物相容性,已於各種研究應用中成為首屈一指的焦點,特別是在能量儲存和生物醫學相關的領域。雖然目前許多奈米複合材料已透過高階技術進行改質優化,但是秉持簡單與成本低的途徑發展優異性能之能源裝置及生物感測器的奈米材料始終是一大挑戰。
本論文的重點是以GQD作為基底的奈米複合材料發展生物感測器和超級電容之應用。根據各應用的需求,石墨烯量子點表面的雜原子摻雜、官能基的修飾,以及將GQD與金屬氧化物如V2O5和HNT結合形成之奈米複合物,已經在本研究當中透過簡單的共價和電化學反應表現。透過電化學的特性可發現,對於其它組合相比,利用金屬氧化物為基底的奈米複合材料可以改進GQD的表現。
對於生物感測器的應用,摻氮石墨烯量子點(N-GQDs)與β-環糊精(β-CD @ N-GQDs)共價連接,並使用二茂鐵(FC)作為氧化還原指示劑,檢測線性濃度範圍在0.5 - 100μM之間,檢測限制為80 nM。另外,氮、硫共摻石墨烯量子點(N,S-GQDs)和金-聚苯胺(Au-PANI)陸陸續續被開發合成。在本研究中我們透過自組裝的方法製備以N,S-GQDs修飾的Au-PANI(N,S-GQDs @ Au-PANI)。這種新型奈米複合材料N,S-GQDs @ Au-PANI被用來製備用於檢測CEA的阻抗型免疫感測器,線性範圍為0.5〜1000 ng mL-1,檢測下限為0.01 ng mL-1。在另一項研究中,使用N-GQD(熒光探針)和V2O5奈米片(fluorescence nano-quencher and cysteine recognizer)在0.1 - 125μM的範圍內開發了半胱氨酸(cysteine)的熒光關閉檢測(fluorescence turn off-on detection),檢測限為50 nM。所有開發用於測定膽固醇、CEA和cysteine的感測器都表現出高度選擇性,並且成功地應用於加標人血清樣品中,回收率極好。
除此之外,GQD @ HNT奈米複合材料具有30 - 50 W h kg-1和0.23 - 10.12 kW kg-1的優異能量與功率密度,並具有363 F g-1的高比電容。另外N-GQD @ Fe3O4-HNT的高比電容(418 F g-1)和良好的能量密度(42.1 - 58.1 W h kg-1)。而 N-GQDs @ HNT於電吸附效果優異的表現及施加電壓1.2V時電吸附電容和對鈉離子去除的高穩定性其,比電吸附容量(SEC)分別為20.05和mgg-1。
總結來說,本研究中所獲得的結果清楚地表明以GQD為基底的奈米複合材料,在作為用於生物醫學應用中的生物分子監測與診斷的潛在材料,並應用於製造優異性能的超級電容器設備和電容去離子化的材料,都有非常良好的結果。
Graphene quantum dots (GQDs) have recently emerged exponentially as a new class of zero-dimensional nanomaterial consisting fluorescent and electrochemical behaviour that show clear advantages over their currently existing counterparts. Their unique properties of small size, biocompatibility, photostability, electro-activity and large surface area make them suitable candidates for a plethora of applications. However, field of graphene quantum dots is still in a nascent stage and is filled with challenges and plenty of opportunities. GQDs based nanocomposites have gained great attention in multiple research applications, particularly in energy storage and biomedical fields due to their unique physicochemical properties and outstanding biocompatibility. Though, high end techniques have been applied in the fabrication of the nanocomposites, identification of simple and cost effective routes for development of nanomaterials with superior properties for energy devices and biosensors is always a challenge.
The present thesis is focused on development of GQDs based nanocomposites for their applications in biosensors and supercapacitors. Depending on the need for the application, hetero atom doping and/or functionalization of graphene quantum dot surface and combining GQDs with metal oxides like V2O5 and HNT for nanocomposite formation has been carried out by simple covalent and electrochemical reaction. The electrochemical characterizations show that improved performance could be achieved in case of metal oxide framework based nanocomposites compared to their individual components.
For the application of biosensor, nitrogen doped graphene quantum dots (N-GQDs) were covalently linked to β-cyclodextrin (β-CD@N-GQDs) and using ferrocene (FC) as redox indicator, a sensitive and selective electrochemical method for cholesterol detection in linear concentration range of 0.5 – 100 μM and the limit of detection is 80 nM has been developed. Further, nitrogen, sulphur co-doped graphene quantum dots (N, S-GQDs) and gold polyaniline (Au-PANI) were synthesized subsequently, for the preparation of N,S-GQDs decorated Au-PANI (N, S-GQDs@Au-PANI) via a self-assembly approach. This novel nanocomposite N,S-GQDs@Au-PANI was used to fabricate the impedimetric immunosensor for detection of CEA with wide linear range from 0.5 to 1000 ng mL-1 and low detection limit of 0.01 ng mL-1. In another study, fluorescence turn off-on detection of cysteine has been developed using N-GQDs (fluorescent probe) and vanadium pentoxide nanosheets (fluorescence nano-quencher and cysteine recognizer) in the wide range of 0.1 – 125 μM with a detection limit of 50 nM. All the developed sensors for determination of cholesterol, CEA and cysteine exhibited high selectivity and are successfully applied in spiked human serum samples with excellent recovery.
Additionally, GQDs@HNT nanocomposite delivered excellent energy and power densities of 30 - 50 W h kg-1 and 0.23 - 10.12 kW kg-1 with a high specific capacitance of 363 F g-1. In case of N-GQDs@Fe3O4-HNT high specific capacitance (418 F g-1) and an improved energy density (42.1 – 58.1 W h kg-1) was noted. N-GQDs@HNT show excellent electrosorption capacity and high stability toward sodium ion removal and the specific electrosorption capacity (SEC) 20.05 mg/g at 1.2 V in a 500 mg/L NaCl solution.
Overall, the obtained results clearly demonstrate the applicability of GQDs based nanocomposites as the potential material for bio-molecules monitoring and diagnosis in biomedical applications as well as superior electrochemical performance on supercapacitor devices and capacitive deionization.
Contents
Abstract………………………………………………………………………………........iii
摘要……………………………………………………………………………….…..…....v
Content……………………………………………………………………………………vii
List of figures……………………………………………………………………………..xii
List of tables……………………………………………………………………...……..xviii

Chapter 1 Introduction……………………………….....……………………………...…...1
1.1 Prelude …………………………………………………………………………….…...2
1.2 Graphene quantum dots………………………………………………………………...4
1.2.1 Properties …………………………………………………………………………4
1.2.2 Structure …………………………………………………………………………..5
1.2.3 Optical properties………………………………………………………………….5
1.2.4 Electrochemical properties…………………………………………………...……7
1.2.5 Biocompatability…………………………………………………………..………8
1.3 Synthesis methods………………………………………………………………...……8
1.3.1 Bottom up approach………………………………………………………….……8
1.3.2 Top down approach…………………………………………………………...…10
1.4 Changing PL and electrochemical properties by chemical modification………..……12
1.4.1 Heteroatom doping………………………………………………………………12
1.4.2 Controlling surface oxidation……………………………………………………13
1.4.3 Surface modification with small molecules………………………………...……14
1.5 Biosensor ……………………………………………………………………..………15
1.5.1. Classification of biosensor………………………………………………………18
1.5.1.1 Electrochemical biosensor…………………………………………...……19
1.5.1.2 Optical biosensors…………………………………………………………21
1.6 Supercapacitor…………………………………………………………………...……24
1.6.1 Classification of electrochemical capacitors………………………………..……26
1.6.2 Nanocomposites in Supercapacitor………………………………………………30
1.7 Capacitive deionization…………………………………………………………….…32
1.7.1 Water scarcity and the necessity for a promising treatment method……………32
1.7.2 Water treatment through electrochemical adsorption: Capacitive deionization (CDI)………………………………………………………………………………..…33
1.7.3 CDI technology developments……………………………………………...……36
1.7.4 Electrode material………………………………………………..………………37
1.7.5 Challenges of carbon-based materials in CDI……………………...……………39
1.8 Objectives……………………………………………………………………………..40
Chapter 2 Experimental section……………………………………………………………43
2.1 Materials………………………………………………………………………………44
2.2 Methodologies………………………………………………………………...………44
2.2.1 Synthesis of graphene quantum dots…………………………………….………44
2.2.2 Synthesis of N-doped graphene quantum dots………………………………..…45
2.2.3 Synthesis of N, S co-doped graphene quantum dots………………….…………46
2.2.4 Covalently bonded N-doped graphene quantum dots with β-cyclodextrin….. …46
2.2.4.1 Fabrication of β-CD@N-GQDs..................................................................46
2.2.5 N, S-GQDs decorated gold polyaniline nanowires………………………………46
2.2.5.1 Preparation of the Au-PANI………………………………………………46
2.2.5.2. Preparation of N, S-GQDs decorated Au-PANI…………………………47
2.2.6 Synthesis of N-Doped Graphene Quantum Dots-Decorated V2O5 Nanosheet….48
2.2.6.1 Exfoliation of bulk V2O5……………………………………………………………………...……48
2.2.6.2 Preparation of N-GQD@V2O5.................................................................................................... 49
2.2.7 Synthesis of graphene quantum dots coated halloysite nanotubes………....……49
2.2.7.1 APTES coating onto HNTs……………………………………….………49
2.2.7.2 Attachment of GQDs on APTES coated HNTs…………………...………49
2.2.8 Synthesis of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes………………………………………………………………………………50
2.2.8.1 Synthesis of Fe3O4-HNT nanocomposites……………………………...…50
2.2.8.2 APTES coating on Fe3O4-HNTs……………………………………..……51
2.2.8.3 Attachment of N-GQDs on APTES coated Fe3O4-HNTs…………………51
2.3 Instruments used for characterization…………………………………………………52
2.3.1 Transmission electron microscope (TEM)……………………………….………52
2.3.2 Scanning electron microscopy (SEM)……………………………………...……52
2.3.3 Atomic force microscopy (AFM)…………………………………………..……52
2.3.4 X-Ray diffraction (XRD)…………………………………………………...……53
2.3.5 Raman spectroscopy…………………………………………………………..…53
2.3.6 Fourier Transform Infrared spectroscopy (FTIR)…………………………..……54
2.3.7 Thermo gravimetric analysis (TGA)………………………………………..……54
2.3.8 Surface area by Brunauer–Emmett–Teller (BET) analysis………………...……54
2.3.9 Fluorescence (FL)……………………………………………………………..…55
2.3.10 UV-Vis spectroscopy…………………………………………………………...55
2.3.11 X-ray photoelectron spectroscopy (XPS)………………………………………55
2.3.12 Electrochemical measurements…………………………………………………56
2.3.13 Capacitive deionization to sodium ion………………………………………….57
Chapter 3 Application of Graphene Quantum Dots Based Nanocomposites in Electrochemical Biosensor…………………..……………………………………………...58
3.1 Introduction…………………………………………………………………………...59
3.2 Cholesterol and CEA sensing methods……………………………………………….62
3. 2.1 Cholesterol sensing methods……………………………………………………62
3.2.1.1 Electrochemical sensing of cholesterol using β-CD@N-GQDs..................62
3.2.1.2 Analysis Cholesterol in human serum samples…………………………...64
3.2.2 CEA sensing methods……………………………………………………………64
3.2.2.1 Fabrication of the immunosensor…………………………………………64
3.2.2.2 Electrochemical measurements……………………………………………65
3.2.2.3 Analysis CEA in human serum samples…………………………………..65
3. 3 Results………………………………………………………………………………..66
3. 3.1 Characterization of the β-CD@N-GQDs nanosensing probe…………………...66
3.3.1.2 Stepwise characterization of the β-CD@N-GQDs sensor electrode using Cyclic Voltammetry……………………………………………………………….70
3.3.1.3 The effect of pH and time for the inclusion complexes formation between β-CD@N-GQDs nanoprobe and cholesterol……………………………………...72
3.3.1.4 Electrochemical detection of cholesterol using DPV……………………..73
3.3.1.5 Interference test……………………………………………………………76
3.3.1.6 Stability of β-CD@N-GQDs/FC.................................................................77
3.3.1.7 Detection of Cholesterol in serum samples……………………………….77
3.3.2.1 Characterization of N, S-GQDs@Au-PANI..............................................78
3.3.2.2 Stepwise characterization of the sensor electrode using Cyclic Voltammetry and impedance…………………………………………………………………….84
3.3.2.3 Electrochemical detection of CEA using EIS……………………………..86
3.3.2.4 Interference test and stability of the immunosensor……………………....92
3.3.2.5 Detection of Cholesterol in serum samples……………………………….93
3.4 Conclusions……………………………………………………………………94
Chapter 4 Application of N-doped Graphene Quantum Dots-Decorated V2O5 Nanosheet for Fluorescence Turn Off/On Detection of Cysteine……………………………………………96
4.1 Introduction…………………………………………………………………………...97
4. 2 Cysteine detection methods…………………………………………………………..99
4.2.1 Detection of Cysteine…………………………………………………………….99
4.2.2 Detection of cysteine in human serum samples………………………………...100
4.3 Results……………………………………………………………………………….100
4.3.1 Characterization of the N-GQDs……………………………………………….100
4.3.2 Characterization of V2O5 nanosheets and N-GQD@V2O5 nanocomposites…..102
4.3.3 Cysteine detection mechanism by N-GQD@V2O5..............................................105
4.3.4 Optimization and detection of cysteine by fluorescence……………………….108
4.3.5 Interference……………………………………………………………………..112
4.3.6 Detection of cysteine in human serum samples………………………………...112
4.4 Conclusions………………………………………………………………………….113
Chapter 5 Application of Graphene Quantum Dots Based Nanocomposites in Supercapacitor………………………………………………………………………………115
5.1 Introduction………………………………………………………………………….116
5.2 Results……………………………………………………………………………….118
5.2.1.2 Characterization of GQD-modified HNTs (GQD-HNTs)……………………118
5.2.1.3 Cyclic voltammetry analysis of GQD-HNTs…………………………………127
5.2.1.4 Charge – discharge studies of GQD-HNTs…………………………………..129
5.2.1.5 Electrochemical impedance analysis of GQD-HNTs………………………...130
5.2.1.6 Cyclic stability of GQD-HNTs……………………………………………….132
5.2.1.7 Ragone plot…………………………………………………………………...133
5.2.2.1 Characterization of N-GQDs………………………………………………....133
5.2.2.2 Morphology and structural charactaerization of N-GQD@Fe3O4.............................136
5.2.2.3 Cyclic voltammetry analysis of N-GQD@Fe3O4-HNTs..................................143
5.2.2.4 Charge–discharge studies of N-GQD@Fe3O4-HNTs.......................................144
5.2.2.5 Electrochemical impedance analysis of N-GQD@Fe3O4-HNTs......................146
5.2.2.6 Cyclic stability of N-GQD@Fe3O4-HNTs........................................................148
5.2.2.7 Ragone plot of N-GQD@Fe3O4-HNTs............................................................149
5.3 Conclusions………………………………………………………………………….150
Chapter 6 Nitrogen Doped Graphene Quantum Dots Coated Nanotubes as Electrode for Enhanced Capacitive Deionization…………………………………………………………152
 6.1 Introduction…………………………………………………………………………..153
6.2 Results………………………………………………………………………………..155
6.2.1 Characterization of N-GQDs@HNT...................................................................155
6.2.2 Electrochemical Performance…………………………………………………..158
6.3.3 CDI Performance……………………………………………………………….160
6.4. Conclusions…………………………………………………………………………163
Chapter 7 Conclusion and Future Perspective…………………………………………….164
7.1 Conclusions………………………………………………………………………….165
7.2 Future scope of the work…………………………………………………………….168
7.3 References…………………………………………………………………………...170
List of publications………………………………………………………………………...207
(1) Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G., Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012, 12, 844-849.
(2) Shen, J.; Zhu, Y.; Yang, X.; Li, C., Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices. Chem. Commun. 2012, 48, 3686-3699.
(3) Zhang, Z.; Zhang, J.; Chen, N.; Qu, L., Graphene Quantum Dots: An Emerging Material for Energy-Related Applications and Beyond. Energy Environ. Sci. 2012, 5, 8869-8890.
(4) Bak, S.; Kim, D.; Lee, H., Graphene Quantum Dots and Their Possible Energy Applications: A Review. Curr. Appl Phys. 2016, 16, 1192-1201.
(5) Boltersdorf, J.; Delp, S. A.; Yan, J.; Cao, B.; Zheng, J. P.; Jow, T. R.; Read, J. A., Electrochemical Performance of Lithium-Ion Capacitors Evaluated Under High Temperature and High Voltage Stress Using Redox Stable Electrolytes and Additives. J. Power Sources 2018, 373, 20-30.
(6) González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R., Review on Supercapacitors: Technologies and Materials. Renewable Sustainable Energy Rev. 2016, 58, 1189-1206.
(7) Wolfbeis, O. S., An Overview of Nanoparticles Commonly Used in Fluorescent Bioimaging. Chem. Soc. Rev. 2015, 44, 4743-4768.
(8) Xie, R.; Wang, Z.; Zhou, W.; Liu, Y.; Fan, L.; Li, Y.; Li, X., Graphene Quantum Dots as Smart Probes for Biosensing. Anal. Methods 2016, 8, 4001-4016.
(9) Tabaraki, R.; Nateghi, A., Nitrogen-Doped Graphene Quantum Dots:“Turn-Off” Fluorescent Probe for Detection of Ag+ Ions. J Fluoresc 2016, 26, 297-305.
(10) Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L.; Li, D.; Tan, H.; Zhao, Z.; Xie, Z.; Sun, Z., Highly Luminescent S, N Co-Doped Graphene Quantum Dots with Broad Visible Absorption Bands for Visible Light Photocatalysts. Nanoscale 2013, 5, 12272-12277.
(11) Liu, R.; Wu, D.; Feng, X.; Müllen, K., Bottom-up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. J. Am. Chem. Soc. 2011, 133, 15221-15223.
(12) Lu, J.; Yeo, P. S. E.; Gan, C. K.; Wu, P.; Loh, K. P., Transforming C60 Molecules into Graphene Quantum Dots. Nat. Nanotechnol. 2011, 6, 247.
(13) Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.-J., Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives. Nanoscale 2013, 5, 4015-4039.
(14) Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I.; Chen, C. W.; Chhowalla, M., Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 2010, 22, 505-509.
(15) Zhang, X.; Wang, S.; Liu, M.; Yang, B.; Feng, L.; Ji, Y.; Tao, L.; Wei, Y., Size Tunable Fluorescent Nano-Graphite Oxides: Preparation and Cell Imaging Applications. Physical Chemistry Chemical Physics 2013, 15, 19013-19018.
(16) Zhu, S.; Zhang, J.; Liu, X.; Li, B.; Wang, X.; Tang, S.; Meng, Q.; Li, Y.; Shi, C.; Hu, R., Graphene Quantum Dots with Controllable Surface Oxidation, Tunable Fluorescence and up-Conversion Emission. Rsc Adv. 2012, 2, 2717-2720.
(17) Zhu, S.; Zhang, J.; Tang, S.; Qiao, C.; Wang, L.; Wang, H.; Liu, X.; Li, B.; Li, Y.; Yu, W., Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up‐Conversion Bioimaging Applications. Adv. Funct. Mater. 2012, 22, 4732-4740.
(18) Li, L. L.; Ji, J.; Fei, R.; Wang, C. Z.; Lu, Q.; Zhang, J. R.; Jiang, L. P.; Zhu, J. J., A Facile Microwave Avenue to Electrochemiluminescent Two‐Color Graphene Quantum Dots. Adv. Funct. Mater. 2012, 22, 2971-2979.
(19) Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C., Facile Preparation and Upconversion Luminescence of Graphene Quantum Dots. Chem. Commun. 2011, 47, 2580-2582.
(20) Shen, J.; Zhu, Y.; Yang, X.; Zong, J.; Zhang, J.; Li, C., One-Pot Hydrothermal Synthesis of Graphene Quantum Dots Surface-Passivated by Polyethylene Glycol and Their Photoelectric Conversion under near-Infrared Light. New J. Chem. 2012, 36, 97-101.
(21) Sun, H.; Gao, N.; Wu, L.; Ren, J.; Wei, W.; Qu, X., Highly Photoluminescent Amino‐Functionalized Graphene Quantum Dots Used for Sensing Copper Ions. Chem. Eur. J. 2013, 19, 13362-13368.
(22) Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S., Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano 2013, 7, 1239-1245.
(23) Feng, Q.; Cao, Q.; Li, M.; Liu, F.; Tang, N.; Du, Y., Synthesis and Photoluminescence of Fluorinated Graphene Quantum Dots. Applied Physics Letters 2013, 102, 013111.
(24) Pan, D.; Zhang, J.; Li, Z.; Wu, M., Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots. Adv. Mater. 2010, 22, 734-738.
(25) Yang, F.; Zhao, M.; Zheng, B.; Xiao, D.; Wu, L.; Guo, Y., Influence of pH on the Fluorescence Properties of Graphene Quantum Dots Using Ozonation Pre-Oxide Hydrothermal Synthesis. J. Mater. Chem. 2012, 22, 25471-25479.
(26) Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R., Strongly Green-Photoluminescent Graphene Quantum Dots for Bioimaging Applications. Chem. Commun. 2011, 47, 6858-6860.
(27) Lu, J.; Yan, M.; Ge, L.; Ge, S.; Wang, S.; Yan, J.; Yu, J., Electrochemiluminescence of Blue-Luminescent Graphene Quantum Dots and Its Application in Ultrasensitive Aptasensor for Adenosine Triphosphate Detection. Biosens. Bioelectron. 2013, 47, 271-277.
(28) Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B., Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. J. Am. Chem. Soc. 2009, 131, 4564-4565.
(29) Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M., Electrochemistry of Graphene and Related Materials. Chemical reviews 2014, 114, 7150-7188.
(30) Zhang, Y.; Wu, C.; Zhou, X.; Wu, X.; Yang, Y.; Wu, H.; Guo, S.; Zhang, J., Graphene Quantum Dots/Gold Electrode and Its Application in Living Cell H2O2 Detection. Nanoscale 2013, 5, 1816-1819.
(31) Sun, H.; Gao, N.; Dong, K.; Ren, J.; Qu, X., Graphene Quantum Dots-Band-Aids Used for Wound Disinfection. ACS Nano 2014, 8, 6202-6210.
(32) Zhang, M.; Bai, L.; Shang, W.; Xie, W.; Ma, H.; Fu, Y.; Fang, D.; Sun, H.; Fan, L.; Han, M., Facile Synthesis of Water-Soluble, Highly Fluorescent Graphene Quantum Dots as a Robust Biological Label for Stem Cells. J. Mater. Chem. 2012, 22, 7461-7467.
(33) Shang, W.; Zhang, X.; Zhang, M.; Fan, Z.; Sun, Y.; Han, M.; Fan, L., The Uptake Mechanism and Biocompatibility of Graphene Quantum Dots with Human Neural Stem Cells. Nanoscale 2014, 6, 5799-5806.
(34) Zhao, H. X.; Liu, L. Q.; De Liu, Z.; Wang, Y.; Zhao, X. J.; Huang, C. Z., Highly Selective Detection of Phosphate in Very Complicated Matrixes with an Off–On Fluorescent Probe of Europium-Adjusted Carbon Dots. Chem. Commun. 2011, 47, 2604-2606.
(35) Yan, X.; Cui, X.; Li, L.-s., Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. J. Am. Chem. Soc. 2010, 132, 5944-5945.
(36) Hamilton, I. P.; Li, B.; Yan, X.; Li, L.S., Alignment of Colloidal Graphene Quantum Dots on Polar Surfaces. Nano Lett. 2011, 11, 1524-1529.
(37) Li, L.-s.; Yan, X., Colloidal Graphene Quantum Dots. J Phys Chem Lett 2010, 1, 2572-2576.
(38) Mueller, M. L.; Yan, X.; McGuire, J. A.; Li, L.-s., Triplet States and Electronic Relaxation in Photoexcited Graphene Quantum Dots. Nano lett. 2010, 10, 2679-2682.
(39) Yan, X.; Cui, X.; Li, B.; Li, L.S., Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano lett. 2010, 10, 1869-1873.
(40) Mueller, M. L.; Yan, X.; Dragnea, B.; Li, L.-s., Slow Hot-Carrier Relaxation in Colloidal Graphene Quantum Dots. Nano lett. 2010, 11, 56-60.
(41) Wu, X.; Tian, F.; Wang, W.; Chen, J.; Wu, M.; Zhao, J. X., Fabrication of Highly Fluorescent Graphene Quantum Dots Using L-Glutamic Acid for in Vitro/in Vivo Imaging and Sensing. J. Mater. Chem. C 2013, 1, 4676-4684.
(42) Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G., Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid. Carbon 2012, 50, 4738-4743.
(43) Chong, Y.; Ma, Y.; Shen, H.; Tu, X.; Zhou, X.; Xu, J.; Dai, J.; Fan, S.; Zhang, Z., The in Vitro and in Vivo Toxicity of Graphene Quantum Dots. Biomaterials 2014, 35, 5041-5048.
(44) Ye, R.; Xiang, C.; Lin, J.; Peng, Z.; Huang, K.; Yan, Z.; Cook, N. P.; Samuel, E. L.; Hwang, C. C.; Ruan, G., Coal as an Abundant Source of Graphene Quantum Dots. Nat. Commun. 2013, 4, 2943.
(45) Dong, Y.; Chen, C.; Zheng, X.; Gao, L.; Cui, Z.; Yang, H.; Guo, C.; Chi, Y.; Li, C. M., One-Step and High Yield Simultaneous Preparation of Single-and Multi-Layer Graphene Quantum Dots from Cx-72 Carbon Black. J. Mater. Chem. 2012, 22, 8764-8766.
(46) Lin, L.; Zhang, S., Creating High Yield Water Soluble Luminescent Graphene Quantum Dots Via Exfoliating and Disintegrating Carbon Nanotubes and Graphite Flakes. Chem. Commun. 2012, 48, 10177-10179.
(47) Pan, D.; Guo, L.; Zhang, J.; Xi, C.; Xue, Q.; Huang, H.; Li, J.; Zhang, Z.; Yu, W.; Chen, Z., Cutting Sp2 Clusters in Graphene Sheets into Colloidal Graphene Quantum Dots with Strong Green Fluorescence. J. Mater. Chem. 2012, 22, 3314-3318.
(48) Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y., Synthesis of Phosphorus‐Doped Graphene and Its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Adv. Mater. 2013, 25, 4932-4937.
(49) Lu, J.; Yang, J.-x.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P., One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009, 3, 2367-2375.
(50) Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L., An Electrochemical Avenue to Green‐Luminescent Graphene Quantum Dots as Potential Electron‐Acceptors for Photovoltaics. Adv. Mater. 2011, 23, 776-780.
(51) Li, M.; Wu, W.; Ren, W.; Cheng, H.-M.; Tang, N.; Zhong, W.; Du, Y., Synthesis and Upconversion Luminescence of N-Doped Graphene Quantum Dots. Appl. Phys. Lett. 2012, 101, 103107.
(52) Hu, C.; Liu, Y.; Yang, Y.; Cui, J.; Huang, Z.; Wang, Y.; Yang, L.; Wang, H.; Xiao, Y.; Rong, J., One-Step Preparation of Nitrogen-Doped Graphene Quantum Dots from Oxidized Debris of Graphene Oxide. J. Mater. Chem. B 2013, 1, 39-42.
(53) Ju, J.; Chen, W., Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for Sensitive, Label-Free Detection of Fe (III) in Aqueous Media. Biosens. Bioelectron. 2014, 58, 219-225.
(54) Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L., Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. J. Am. Chem. Soc. 2011, 134, 15-18.
(55) Li, Q.; Zhang, S.; Dai, L.; Li, L.-s., Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134, 18932-18935.
(56) Tang, L.; Ji, R.; Li, X.; Bai, G.; Liu, C. P.; Hao, J.; Lin, J.; Jiang, H.; Teng, K. S.; Yang, Z., Deep Ultraviolet to near-Infrared Emission and Photoresponse in Layered N-Doped Graphene Quantum Dots. ACS Nano 2014, 8, 6312-6320.
(57) Dong, Y.; Pang, H.; Yang, H. B.; Guo, C.; Shao, J.; Chi, Y.; Li, C. M.; Yu, T., Carbon‐Based Dots Co‐Doped with Nitrogen and Sulfur for High Quantum Yield and Excitation‐Independent Emission. Angew. Chem. Int. Ed. 2013, 52, 7800-7804.
(58) Sun, H.; Wu, L.; Gao, N.; Ren, J.; Qu, X., Improvement of Photoluminescence of Graphene Quantum Dots with a Biocompatible Photochemical Reduction Pathway and Its Bioimaging Application. ACS Appl. Mater. Interfaces 2013, 5, 1174-1179.
(59) Yan, X.; Li, B.; Li, L.-s., Colloidal Graphene Quantum Dots with Well-Defined Structures. Acc. Chem. Res. A 2012, 46, 2254-2262.
(60) Zhou, X.; Guo, S.; Zhang, J., Solution‐Processable Graphene Quantum Dots. ChemPhysChem 2013, 14, 2627-2640.
(61) Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A., Optically Tunable Amino‐Functionalized Graphene Quantum Dots. Adv. Mater. 2012, 24, 5333-5338.
(62) Cornell, B. A.; Braach-Maksvytis, V.; King, L.; Osman, P.; Raguse, B.; Wieczorek, L.; Pace, R., A Biosensor That Uses Ion-Channel Switches. Nature 1997, 387, 580.
(63) Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S., Electrochemical Biosensors: Recommended Definitions and Classification1. Biosens. Bioelectron. 2001, 16, 121-131.
(64) Aberl, F.; Kößlinger, C., Biosensor-Based Methods in Clinical Diagnosis. In Molecular Diagnosis of Infectious Diseases, Springer: 1998, pp 503-517.
(65) Rogers, K., Recent Advances in Biosensor Techniques for Environmental Monitoring. Anal. Chim. Acta 2006, 568, 222-231.
(66) Reshetilov, A.; Bezborodov, A., Nanobiotechnology and Biosensor Research. Appl. Biochem. Microbiol. 2008, 44, 1-5.
(67) Gregg, B. A.; Heller, A., Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications. Anal. Chem. 1990, 62, 258-263.
(68) Miao, Y.; Tan, S. N., Amperometric Hydrogen Peroxide Biosensor Based on Immobilization of Peroxidase in Chitosan Matrix Crosslinked with Glutaraldehyde. Analyst 2000, 125, 1591-1594.
(69) Dave, B. C.; Dunn, B.; Valentine, J. S.; Zink, J. I., Sol-Gel Encapsulation Methods for Biosensors. Anal. Chem. 1994, 66, 1120A-1127A.
(70) Gupta, R.; Chaudhury, N., Entrapment of Biomolecules in Sol–Gel Matrix for Applications in Biosensors: Problems and Future Prospects. Biosens. Bioelectron. 2007, 22, 2387-2399.
(71) Williams, R.; Blanch, H., Covalent Immobilization of Protein Monolayers for Biosensor Applications. Biosens. Bioelectron. 1994, 9, 159-167.
(72) Chu, X.; Duan, D.; Shen, G.; Yu, R., Amperometric Glucose Biosensor Based on Electrodeposition of Platinum Nanoparticles onto Covalently Immobilized Carbon Nanotube Electrode. Talanta 2007, 71, 2040-2047.
(73) Razola, S. S.; Ruiz, B. L.; Diez, N. M.; Mark Jr, H.; Kauffmann, J., Hydrogen Peroxide Sensitive Amperometric Biosensor Based on Horseradish Peroxidase Entrapped in a Polypyrrole Electrode. Biosens. Bioelectron. 2002, 17, 921-928.
(74) Xu, J. Z.; Zhu, J. J.; Wu, Q.; Hu, Z.; Chen, H. Y., An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a Carbon Nanotubes Modified Electrode. Electroanalysis 2003, 15, 219-224.
(75) Muhammad-Tahir, Z.; Alocilja, E. C., A Conductometric Biosensor for Biosecurity. Biosens. Bioelectron. 2003, 18, 813-819.
(76) Chouteau, C.; Dzyadevych, S.; Durrieu, C.; Chovelon, J.-M., A Bi-Enzymatic Whole Cell Conductometric Biosensor for Heavy Metal Ions and Pesticides Detection in Water Samples. Biosens. Bioelectron. 2005, 21, 273-281.
(77) Adeloju, S.; Shaw, S.; Wallace, G., Polypyrrole-Based Potentiometric Biosensor for Urea Part 1. Incorporation of Urease. Anal. Chim. Acta 1993, 281, 611-620.
(78) Shamsipur, M.; Kazemi, S. H.; Mousavi, M. F., Impedance Studies of a Nano-Structured Conducting Polymer and Its Application to the Design of Reliable Scaffolds for Impedimetric Biosensors. Biosens. Bioelectron. 2008, 24, 104-110.
(79) Esseghaier, C.; Helali, S.; Fredj, H. B.; Tlili, A.; Abdelghani, A., Polypyrrole–Neutravidin Layer for Impedimetric Biosensor. Sens. Actuators, B 2008, 131, 584-589.
(80) Li, Z.; Wang, Y.; Wang, J.; Tang, Z.; Pounds, J. G.; Lin, Y., Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor Based on Quantum Dots and a Lateral Flow Test Strip. Anal. Chem. 2010, 82, 7008-7014.
(81) Rajeev, G.; Xifre-Perez, E.; Simon, B. P.; Cowin, A. J.; Marsal, L. F.; Voelcker, N. H., A Label-Free Optical Biosensor Based on Nanoporous Anodic Alumina for Tumour Necrosis Factor-Alpha Detection in Chronic Wounds. Sens. Actuators, B 2018, 257, 116-123.
(82) Liu, J.; Zhou, X.; Shi, H., An Optical Biosensor-Based Quantification of Microcystin Synthetase a Gene: Early Warning of Toxic Cyanobacterial Blooming. Anal. Chem. 2018, 90, 2362-2368.
(83) Han, J.; Tong, F.; Chen, P.; Zeng, X.; Duan, Z., Study of Inflammatory Factors’ Effect on the Endothelial Barrier Using Piezoelectric Biosensor. Biosens. Bioelectron. 2018, 109, 43-49.
(84) Haddada, M. B.; Salmain, M.; Boujday, S., Gold Colloid-Nanostructured Surfaces for Enhanced Piezoelectric Immunosensing of Staphylococcal Enterotoxin A. Sens. Actuators, B 2018, 255, 1604-1613.
(85) Kaur, B.; Kaur, N.; Kumar, S., Colorimetric Metal Ion Sensors–a Comprehensive Review of the Years 2011–2016. Coord. Chem. Rev. 2018, 358, 13-69.
(86) He, W.; Luo, L.; Liu, Q.; Chen, Z., Colorimetric Sensor Array for Discrimination of Heavy Metal Ions in Aqueous Solution Based on Three Kinds of Thiols as Receptors. Anal. Chem. 2018, 90, 4770–4775.
(87) Zhao, F.; Koo, B.; Liu, H.; Jin, C. E.; Shin, Y., A Single-Tube Approach for in Vitro Diagnostics Using Diatomaceous Earth and Optical Sensor. Biosens. Bioelectron. 2018, 99, 443-449.
(88) Khatri, A.; Punjabi, N.; Ghosh, D.; Maji, S. K.; Mukherji, S., Detection and Differentiation of Α-Synuclein Monomer and Fibril by Chitosan Film Coated Nanogold Array on Optical Sensor Platform. Sens. Actuators, B 2018, 255, 692-700.
(89) Clark, L. C.; Lyons, C., Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N.Y. Acad. Sci. 1962, 102, 29-45.
(90) Xie, F.; Cao, X.; Qu, F.; Asiri, A. M.; Sun, X., Cobalt Nitride Nanowire Array as an Efficient Electrochemical Sensor for Glucose and H2O2 Detection. Sens. Actuators, B 2018, 255, 1254-1261.
(91) Chen, Y.-X.; Huang, K.-J.; Niu, K.-X., Recent Advances in Signal Amplification Strategy Based on Oligonucleotide and Nanomaterials for Microrna Detection-a Review. Biosens. Bioelectron. 2018, 99, 612-624.
(92) Prodromidis, M. I., Impedimetric Immunosensors—a Review. Electrochim. Acta 2010, 55, 4227-4233.
(93) Pohanka, M.; Skládal, P., Electrochemical Biosensors--Principles and Applications. J. Appl. Biomed. 2008, 6.
(94) Kassanos, P.; Anastasova, S.; Yang, G.-Z., Electrical and Physical Sensors for Biomedical Implants. In Implantable Sensors and Systems, Springer: 2018, pp 99-195.
(95) Alikhani, A.; Gharooni, M.; Abiri, H.; Farokhmanesh, F.; Abdolahad, M., Tracing the pH Dependent Activation of Autophagy in Cancer Cells by Silicon Nanowire-Based Impedance Biosensor. J. Pharm. Biomed. Anal. 2018, 154, 158-165.
(96) Fan, X.; White, I. M.; Shopova, S. I.; Zhu, H.; Suter, J. D.; Sun, Y., Sensitive Optical Biosensors for Unlabeled Targets: A Review. Anal. Chim. Acta 2008, 620, 8-26.
(97) Fang, Y.; Ferrie, A. M., Label‐Free Optical Biosensor for Ligand‐Directed Functional Selectivity Acting on Β2 Adrenoceptor in Living Cells. FEBS Lett. 2008, 582, 558-564.
(98) Szekacs, I.; Orgovan, N.; Peter, B.; Kovacs, B.; Horvath, R., Receptor Specific Adhesion Assay for the Quantification of Integrin–Ligand Interactions in Intact Cells Using a Microplate Based, Label-Free Optical Biosensor. Sens. Actuators, B 2018, 256, 729-734.
(99) Zhu, X.; Yuan, L.; Hu, X.; Zhang, L.; Liang, Y.; He, S.; Zhang, X.-B.; Tan, W., Construction of a Fluorine Substituted Chromenylium-Cyanine near-Infrared Fluorophore for Ratiometric Sensing. Sens. Actuators, B 2018, 259, 219-225.
(100) Ding, L.; Yang, H.; Ge, S.; Yu, J., Fluorescent Carbon Dots Nanosensor for Label-Free Determination of Vitamin B-12 Based on Inner Filter Effect. Spectrochim. Acta, Part A 2018, 193, 305-309.
(101) Chen, F.; Gao, W.; Qiu, X.; Zhang, H.; Liu, L.; Liao, P.; Fu, W.; Luo, Y., Graphene Quantum Dots in Biomedical Applications: Recent Advances and Future Challenges. Frontiers in Laboratory Medicine 2018, 4, 192-199.
(102) Guo, R.; Chen, B.; Li, F.; Weng, S.; Zheng, Z.; Chen, M.; Wu, W.; Lin, X.; Yang, C., Positive Carbon Dots with Dual Roles of Nanoquencher and Reference Signal for the Ratiometric Fluorescence Sensing of DNA. Sens. Actuators, B 2018, 264, 193-201.
(103) Ha, H. D.; Jang, M.-H.; Liu, F.; Cho, Y.-H.; Seo, T. S., Upconversion Photoluminescent Metal Ion Sensors Via Two Photon Absorption in Graphene Oxide Quantum Dots. Carbon 2015, 81, 367-375.
(104) Li, S.; Li, Y.; Cao, J.; Zhu, J.; Fan, L.; Li, X., Sulfur-Doped Graphene Quantum Dots as a Novel Fluorescent Probe for Highly Selective and Sensitive Detection of Fe3+. Anal. Chem. 2014, 86, 10201-10207.
(105) Ma, Q.; Song, J.; Wang, S.; Yang, J.; Guo, Y.; Dong, C., A General Sensing Strategy for Detection of Fe3+ by Using Amino Acid-Modified Graphene Quantum Dots as Fluorescent Probe. Appl. Surf. Sci. 2016, 389, 995-1002.
(106) Qi, Y.-X.; Zhang, M.; Fu, Q.-Q.; Liu, R.; Shi, G.-Y., Highly Sensitive and Selective Fluorescent Detection of Cerebral Lead (II) Based on Graphene Quantum Dot Conjugates. Chem. Commun. 2013, 49, 10599-10601.
(107) Ting, S. L.; Ee, S. J.; Ananthanarayanan, A.; Leong, K. C.; Chen, P., Graphene Quantum Dots Functionalized Gold Nanoparticles for Sensitive Electrochemical Detection of Heavy Metal Ions. Electrochim. Acta, 2015, 172, 7-11.
(108) Roushani, M.; Abdi, Z., Novel Electrochemical Sensor Based on Graphene Quantum Dots/Riboflavin Nanocomposite for the Detection of Persulfate. Sens. Actuators, B 2014, 201, 503-510.
(109) Mazloum-Ardakani, M.; Aghaei, R.; Abdollahi-Alibeik, M.; Moaddeli, A., Fabrication of Modified Glassy Carbon Electrode Using Graphene Quantum Dot, Gold Nanoparticles and 4-(((4-Mercaptophenyl) Imino) Methyl) Benzene-1, 2-Diol by Self-Assembly Method and Investigation of Their Electrocatalytic Activities. J. Electroanal. Chem. 2015, 738, 113-122.
(110) Razmi, H.; Mohammad-Rezaei, R., Graphene Quantum Dots as a New Substrate for Immobilization and Direct Electrochemistry of Glucose Oxidase: Application to Sensitive Glucose Determination. Biosens. Bioelectron. 2013, 41, 498-504.
(111) Myung, S.; Solanki, A.; Kim, C.; Park, J.; Kim, K. S.; Lee, K. B., Graphene‐Encapsulated Nanoparticle‐Based Biosensor for the Selective Detection of Cancer Biomarkers. Adv. Mater. 2011, 23, 2221-2225.
(112) Ju, J.; Chen, W., In Situ Growth of Surfactant-Free Gold Nanoparticles on Nitrogen-Doped Graphene Quantum Dots for Electrochemical Detection of Hydrogen Peroxide in Biological Environments. Anal. Chem. 2015, 87, 1903-1910.
(113) Algar, W. R.; Tavares, A. J.; Krull, U. J., Beyond Labels: A Review of the Application of Quantum Dots as Integrated Components of Assays, Bioprobes, and Biosensors Utilizing Optical Transduction. Anal. Chim. Acta 2010, 673, 1-25.
(114) Li, J.; Zhu, J.-J., Quantum Dots for Fluorescent Biosensing and Bio-Imaging Applications. Analyst 2013, 138, 2506-2515.
(115) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the Development of Advanced Li-Ion Batteries: A Review. Energy Environ. Sci. 2011, 4, 3243-3262.
(116) Wang, G.; Zhang, L.; Zhang, J., A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.
(117) Sharma, P.; Bhatti, T., A Review on Electrochemical Double-Layer Capacitors. Energy Convers. Manage. 2010, 51, 2901-2912.
(118) Pan, Z.; Jiang, Y.; Yang, P.; Wu, Z.; Tian, W.; Liu, L.; Song, Y.; Gu, Q.; Sun, D.; Hu, L., In Situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for High-Performance All-Solid-State Pseudocapacitor. ACS Nano 2018, 12, 2968-2979.
(119) Dubal, D. P.; Chodankar, N. R.; Kim, D.-H.; Gomez-Romero, P., Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics. Chem. Soc. Rev. 2018, 47, 2065-2129.
(120) Helmholtz, H. V., Ueber Einige Gesetze Der Vertheilung Elektrischer Ströme in Körperlichen Leitern Mit Anwendung Auf Die Thierisch‐Elektrischen Versuche. Annalen der Physik 1853, 165, 211-233.
(121) Helmholtz, H. V., Studien Über Electrische Grenzschichten. Annalen der Physik 1879, 243, 337-382.
(122) Anothumakkool, B.; Dupré, N.; Moreau, P.; Guyomard, D.; Brousse, T.; Gaubicher, J., Peculiar Li-Storage Mechanism at Graphene Edges in Turbostratic Carbon Black and Their Application in High Energy Li-Ion Capacitor. J. Power Sources 2018, 378, 628-635.
(123) Kötz, R.; Carlen, M., Principles and Applications of Electrochemical Capacitors. Electrochim. Acta 2000, 45, 2483-2498.
(124) Reddy, A. L. M.; Ramaprabhu, S., Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes. J. Phys. Chem. C 2007, 111, 7727-7734.
(125) Lang, X.; Hirata, A.; Fujita, T.; Chen, M., Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors. Nat. Nanotechnol. 2011, 6, 232.
(126) Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J., Superior Micro‐Supercapacitors Based on Graphene Quantum Dots. Adv. Funct. Mater. 2013, 23, 4111-4122.
(127) Hassan, M.; Haque, E.; Reddy, K. R.; Minett, A. I.; Chen, J.; Gomes, V. G., Edge-Enriched Graphene Quantum Dots for Enhanced Photo-Luminescence and Supercapacitance. Nanoscale 2014, 6, 11988-11994.
(128) Mondal, S.; Rana, U.; Malik, S., Graphene Quantum Dot-Doped Polyaniline Nanofiber as High Performance Supercapacitor Electrode Materials. Chem. Commun. 2015, 51, 12365-12368.
(129) Chen, Q.; Hu, Y.; Hu, C.; Cheng, H.; Zhang, Z.; Shao, H.; Qu, L., Graphene Quantum Dots–Three-Dimensional Graphene Composites for High-Performance Supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 19307-19313.
(130) Hu, Y.; Zhao, Y.; Lu, G.; Chen, N.; Zhang, Z.; Li, H.; Shao, H.; Qu, L., Graphene Quantum Dots–Carbon Nanotube Hybrid Arrays for Supercapacitors. Nanotechnol. 2013, 24, 195401.
(131) Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H., Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Adv. Funct. Mater. 2015, 25, 4929-4947.
(132) Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z. X., Graphene Quantum Dots Coated VO2 Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Lett. 2014, 15, 565-573.
(133) Zhu, Y.; Ji, X.; Pan, C.; Sun, Q.; Song, W.; Fang, L.; Chen, Q.; Banks, C. E., A Carbon Quantum Dot Decorated RuO2 Network: Outstanding Supercapacitances under Ultrafast Charge and Discharge. Energy Environ. Sci. 2013, 6, 3665-3675.
(134) Cooley, H.; Ajami, N.; Ha, M.-L.; Srinivasan, V.; Morrison, J.; Donnelly, K.; Christian-Smith, J., Global Water Governance in the Twenty-First Century. In The World’s Water, Springer: 2014, pp 1-18.
(135) Montgomery, M. A.; Elimelech, M., Water and Sanitation in Developing Countries: Including Health in the Equation. ACS Environ. Sci. Technol 2007, 41, 17–24.
(136) Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M., Science and Technology for Water Purification in the Coming Decades. Nature 2008, 452, 301.
(137) Black, M., The No-Nonsense Guide to Water. Verso: 2004.
(138) Ioannidou, O.; Zabaniotou, A., Agricultural Residues as Precursors for Activated Carbon Production—a Review. Renewable and sustainable energy reviews 2007, 11, 1966-2005.
(139) Marques, R. C., Regulation of Water and Wastewater Services. IWA publishing: 2010.
(140) Oren, Y., Capacitive Deionization (CDI) for Desalination and Water Treatment—Past, Present and Future (a Review). Desalination 2008, 228, 10-29.
(141) Subramani, A.; Jacangelo, J. G., Emerging Desalination Technologies for Water Treatment: A Critical Review. Water Res. 2015, 75, 164-187.
(142) Suss, M.; Porada, S.; Sun, X.; Biesheuvel, P.; Yoon, J.; Presser, V., Water Desalination Via Capacitive Deionization: What Is It and What Can We Expect from It? Energy Environ. Sci. 2015, 8, 2296-2319.
(143) Murphy, G.; Caudle, D., Mathematical Theory of Electrochemical Demineralization in Flowing Systems. Electrochim. Acta 1967, 12, 1655-1664.
(144) Johnson, A.; Newman, J., Desalting by Means of Porous Carbon Electrodes. J. Electrochem. Soc. 1971, 118, 510-517.
(145) Porada, S.; Zhao, R.; Van Der Wal, A.; Presser, V.; Biesheuvel, P., Review on the Science and Technology of Water Desalination by Capacitive Deionization. Prog. Mater Sci. 2013, 58, 1388-1442.
(146) Farmer, J. C.; Mack, G. V.; Fix, D. V. The Use of Carbon Aerogel Electrodes for Deionizing Water and Treating Aqueous Process Wastes; Lawrence Livermore National Lab CA, 1996.
(147) Anderson, M. A.; Cudero, A. L.; Palma, J., Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will It Compete? Electrochim. Acta 2010, 55, 3845-3856.
(148) Zou, L.; Morris, G.; Qi, D., Using Activated Carbon Electrode in Electrosorptive Deionisation of Brackish Water. Desalination 2008, 225, 329-340.
(149) Burke, A., R&D Considerations for the Performance and Application of Electrochemical Capacitors. Electrochim. Acta 2007, 53, 1083-1091.
(150) Xu, P.; Drewes, J. E.; Heil, D.; Wang, G., Treatment of Brackish Produced Water Using Carbon Aerogel-Based Capacitive Deionization Technology. Water Res. 2008, 42, 2605-2617.
(151) Ganganboina, A. B.; Dutta Chowdhury, A.; Doong, R. A., New Avenue for Appendage of Graphene Quantum Dots on Halloysite Nanotubes as Anode Materials for High Performance Supercapacitors. ACS Sustainable Chem. Eng. 2017, 5, 4930-4940.
(152) Ganganboina, A. B.; Chowdhury, A. D.; Doong, R. A., Nano Assembly of N-Doped Graphene Quantum Dots Anchored Fe3O4/Halloysite Nanotubes for High Performance Supercapacitor. Electrochim. Acta 2017, 245, 912-923.
(153) Zhu, J.; Zhang, S.; Wang, L.; Jia, D.; Xu, M.; Zhao, Z.; Qiu, J.; Jia, L., Engineering Cross-Linking by Coal-Based Graphene Quantum Dots toward Tough, Flexible, and Hydrophobic Electrospun Carbon Nanofiber Fabrics. Carbon 2018, 129, 54-62.
(154) Guo, J.; Zhu, H.; Sun, Y.; Tang, L.; Zhang, X., Boosting the Lithium Storage Performance of MoS2 with Graphene Quantum Dots. J. Mater. Chem. A 2016, 4, 4783-4789.
(155) Álvarez-Diduk, R.; Orozco, J.; Merkoçi, A., Paper Strip-Embedded Graphene Quantum Dots: A Screening Device with a Smartphone Readout. Sci. Rep. 2017, 7, 976.
(156) Rao, H.; Zhao, X.; Liu, X.; Zhong, J.; Zhang, Z.; Zou, P.; Jiang, Y.; Wang, X.; Wang, Y., A Novel Molecularly Imprinted Electrochemical Sensor Based on Graphene Quantum Dots Coated on Hollow Nickel Nanospheres with High Sensitivity and Selectivity for the Rapid Determination of Bisphenol S. Biosens. Bioelectron. 2018, 100, 341-347.
(157) Tiwari, J. N.; Vij, V.; Kemp, K. C.; Kim, K. S., Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano 2015, 10, 46-80.
(158) Widenmaier, S. B.; Snyder, N. A.; Nguyen, T. B.; Arduini, A.; Lee, G. Y.; Arruda, A. P.; Saksi, J.; Bartelt, A.; Hotamisligil, G. S., NRF1 Is an ER Membrane Sensor That Is Central to Cholesterol Homeostasis. Cell 2017, 171, 1094-1109.
(159) Sun, Q.; Fang, S.; Fang, Y.; Qian, Z.; Feng, H., Fluorometric Detection of Cholesterol Based on β-Cyclodextrin Functionalized Carbon Quantum Dots Via Competitive Host-Guest Recognition. Talanta 2017, 167, 513-519.
(160) Huang, Y.; Tan, J.; Cui, L.; Zhou, Z.; Zhou, S.; Zhang, Z.; Zheng, R.; Xue, Y.; Zhang, M.; Li, S., Graphene and Au-NPs Co-Mediated Enzymatic Silver Deposition for the Ultrasensitive Electrochemical Detection of Cholesterol. Biosens. Bioelectron. 2018, 102, 560-567.
(161) Dong, S.; Bi, Q.; Qiao, C.; Sun, Y.; Zhang, X.; Lu, X.; Zhao, L., Electrochemical Sensor for Discrimination Tyrosine Enantiomers Using Graphene Quantum Dots and β-Cyclodextrins Composites. Talanta 2017, 173, 94-100.
(162) Lenik, J., Cyclodextrins Based Electrochemical Sensors for Biomedical and Pharmaceutical Analysis. Curr. Med. Chem. 2017, 24, 2359-2391.
(163) Xing, T.-Y.; Zhao, J.; Weng, G.-J.; Zhu, J.; Li, J.-J.; Zhao, J.-W., Specific Detection of Carcinoembryonic Antigen Based on Fluorescence Quenching of Hollow Porous Gold Nanoshells with Roughened Surface. ACS Appl. Mater. Interfaces 2017, 9, 36632-36641.
(164) Li, N.-L.; Jia, L.-P.; Ma, R.-N.; Jia, W.-L.; Lu, Y.-Y.; Shi, S.-S.; Wang, H.-S., A Novel Sandwiched Electrochemiluminescence Immunosensor for the Detection of Carcinoembryonic Antigen Based on Carbon Quantum Dots and Signal Amplification. Biosens. Bioelectron. 2017, 89, 453-460.
(165) Gosselin, D.; Gougis, M.; Baque, M.; Navarro, F. P.; Belgacem, M. N.; Chaussy, D.; Bourdat, A.-G.; Mailley, P.; Berthier, J., Screen-Printed Polyaniline-Based Electrodes for the Real-Time Monitoring of Loop-Mediated Isothermal Amplification Reactions. Anal. Chem. 2017, 89, 10124-10128.
(166) Li, Y.; Chen, Y.; Deng, D.; Luo, L.; He, H.; Wang, Z., Water-Dispersible Graphene/Amphiphilic Pyrene Derivative Nanocomposite: High Aunps Loading Capacity for Cea Electrochemical Immunosensing. Sens. Actuators, B 2017, 248, 966-972.
(167) Ganganboina, A. B.; Dutta Chowdhury, A.; Doong, R. A., N-Doped Graphene Quantum Dots Decorated V2O5 Nanosheet for Fluorescence Turn Off-on Detection of Cysteine. ACS Appl. Mater. Interfaces, 2018, 10, 614–624.
(168) Anh, N. T. N.; Chowdhury, A. D.; Doong, R. A., Highly Sensitive and Selective Detection of Mercury Ions Using N, S-Codoped Graphene Quantum Dots and Its Paper Strip Based Sensing Application in Wastewater. Sens. Actuators, B 2017, 252, 1169-1178.
(169) Dutta Chowdhury, A.; Doong, R. A., Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots. ACS Appl. Mater. Interfaces, 2016, 8, 21002-21010.
(170) Shin, Y.; Park, J.; Hyun, D.; Yang, J.; Lee, J.-H.; Kim, J.-H.; Lee, H., Acid-Free and Oxone Oxidant-Assisted Solvothermal Synthesis of Graphene Quantum Dots Using Various Natural Carbon Materials as Resources. Nanoscale 2015, 7, 5633-5637.
(171) Luo, M.; Hua, Y.; Liang, Y.; Han, J.; Liu, D.; Zhao, W.; Wang, P., Synthesis of Novel β-Cyclodextrin Functionalized S, N Codoped Carbon Dots for Selective Detection of Testosterone. Biosens. Bioelectron. 2017, 98, 195-201.
(172) Lin, X.; Ni, Y.; Kokot, S., Electrochemical Cholesterol Sensor Based on Cholesterol Oxidase and MoS2-AuNPs Modified Glassy Carbon Electrode. Sens. Actuators, B 2016, 233, 100-106.
(173) Rahman, M. M.; Li, X.-b.; Kim, J.; Lim, B. O.; Ahammad, A. S.; Lee, J.-J., A Cholesterol Biosensor Based on a Bi-Enzyme Immobilized on Conducting Poly (Thionine) Film. Sens. Actuators, B 2014, 202, 536-542.
(174) Soylemez, S.; Udum, Y. A.; Kesik, M.; Hızlıateş, C. G.; Ergun, Y.; Toppare, L., Electrochemical and Optical Properties of a Conducting Polymer and Its Use in a Novel Biosensor for the Detection of Cholesterol. Sens. Actuators, B 2015, 212, 425-433.
(175) Shrestha, B. K.; Ahmad, R.; Shrestha, S.; Park, C. H.; Kim, C. S., In Situ Synthesis of Cylindrical Spongy Polypyrrole Doped Protonated Graphitic Carbon Nitride for Cholesterol Sensing Application. Biosens. Bioelectron. 2017, 94, 686-693.
(176) Yang, L.; Zhao, H.; Fan, S.; Zhao, G.; Ran, X.; Li, C.-P., Electrochemical Detection of Cholesterol Based on Competitive Host–Guest Recognition Using a β-Cyclodextrin/Poly (N-Acetylaniline)/Graphene-Modified Electrode. RSC Adv. 2015, 5, 64146-64155.
(177) Cao, S.; Zhang, L.; Chai, Y.; Yuan, R., An Integrated Sensing System for Detection of Cholesterol Based on TiO2–Graphene–Pt–Pd Hybridnanocomposites. Biosens. Bioelectron. 2013, 42, 532-538.
(178) Ahmad, M.; Pan, C.; Gan, L.; Nawaz, Z.; Zhu, J., Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-Incorporated Fullerene-Like ZnO Nanospheres. J. Phys. Chem. C 2009, 114, 243-250.
(179) Agnihotri, N.; Chowdhury, A. D.; De, A., Non-Enzymatic Electrochemical Detection of Cholesterol Using β-Cyclodextrin Functionalized Graphene. Biosens. Bioelectron. 2015, 63, 212-217.
(180) Solanki, P. R.; Kaushik, A.; Ansari, A. A.; Tiwari, A.; Malhotra, B., Multi-Walled Carbon Nanotubes/Sol–Gel-Derived Silica/Chitosan Nanobiocomposite for Total Cholesterol Sensor. Sens. Actuators, B 2009, 137, 727-735.
(181) Huang, H.; Weng, Y.; Zheng, L.; Yao, B.; Weng, W.; Lin, X., Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probe for “Off-On” Detection of Mercury Ions, L-Cysteine and Iodide Ions. J. Colloid Interface Sci. 2017, 506, 373-378.
(182) Zhang, Y.; Keller, D.; Rossell, M. D.; Erni, R., Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructures. Chem. Mater. 2017, 29, 10518-10525.
(183) Bogdanović, U.; Pašti, I.; Ćirić-Marjanović, G.; Mitrić, M.; Ahrenkiel, S. P.; Vodnik, V., Interfacial Synthesis of Gold–Polyaniline Nanocomposite and Its Electrocatalytic Application. ACS Appl. Mater. Interfaces 2015, 7, 28393-28403.
(184) Zhu, J.; Lu, Q.; Chen, C.; Hu, J.; Liu, J., One-Step Synthesis and Self-Assembly of a Luminescent Sponge-Like Network of Gold Nanoparticles with High Absorption Capacity. J. Mater. Chem. C 2017, 5, 6917-6922.
(185) Tsai, Y. S.; Chen, Y. H.; Cheng, P. C.; Tsai, H. T.; Shiau, A. L.; Tzai, T. S.; Wu, C. L., TGF‐β1 Conjugated to Gold Nanoparticles Results in Protein Conformational Changes and Attenuates the Biological Function. Small 2013, 9, 2119-2128.
(186) Krittayavathananon, A.; Sawangphruk, M., Impedimetric Sensor of SS-HSDNA/Reduced Graphene Oxide Aerogel Electrode toward Aflatoxin B1 Detection: Effects of Redox Mediator Charges and Hydrodynamic Diffusion. Anal. Chem. 2017, 89, 13283-13289.
(187) Liu, J.; Chisti, M. M.; Zeng, X., General Signal Amplification Strategy for Nonfaradic Impedimetric Sensing: Trastuzumab Detection Employing a Peptide Immunosensor. Anal. Chem. 2017, 89, 4013-4020.
(188) Chowdhury, A. D.; De, A.; Chaudhuri, C. R.; Bandyopadhyay, K.; Sen, P., Label Free Polyaniline Based Impedimetric Biosensor for Detection of E. Coli O157: H7 Bacteria. Sens. Actuators, B 2012, 171, 916-923.
(189) Diakowski, P. M.; Xiao, Y.; Petryk, M. W.; Kraatz, H.-B., Impedance Based Detection of Chemical Warfare Agent Mimics Using Ferrocene-Lysine Modified Carbon Nanotubes. Anal. Chem. 2010, 82, 3191-3197.
(190) Gerard, M.; Chaubey, A.; Malhotra, B., Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345-359.
(191) Yang, Y.; Liu, Q.; Liu, Y.; Cui, J.; Liu, H.; Wang, P.; Li, Y.; Chen, L.; Zhao, Z.; Dong, Y., A Novel Label-Free Electrochemical Immunosensor Based on Functionalized Nitrogen-Doped Graphene Quantum Dots for Carcinoembryonic Antigen Detection. Biosens. Bioelectron. 2017, 90, 31-38.
(192) Luo, Y.; Habrioux, A.; Calvillo, L.; Granozzi, G.; Alonso‐Vante, N., Thermally Induced Strains on the Catalytic Activity and Stability of Pt–M2O3/C (M= Y or Gd) Catalysts Towards Oxygen Reduction Reaction. ChemCatChem 2015, 7, 1573-1582.
(193) Yuan, Y.; Yuan, R.; Chai, Y.; Zhuo, Y.; Mao, L.; Yuan, S., A Novel Label-Free Electrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on the [Ag–Ag2O]/SiO2 Nanocomposite Material as a Redox Probe. J. Electroanal. Chem. 2010, 643, 15-19.
(194) Zheng, X.; Li, L.; Cui, K.; Zhang, Y.; Zhang, L.; Ge, S.; Yu, J., Ultrasensitive Enzyme-Free Biosensor by Coupling Cyclodextrin Functionalized Au Nanoparticles and High Performance Au-Paper Electrode. ACS Appl. Mater. Interfaces, 2018, 10, 3333–3340.
(195) Liu, J.; Wang, J.; Wang, T.; Li, D.; Xi, F.; Wang, J.; Wang, E., Three-Dimensional Electrochemical Immunosensor for Sensitive Detection of Carcinoembryonic Antigen Based on Monolithic and Macroporous Graphene Foam. Biosens. Bioelectron. 2015, 65, 281-286.
(196) Liu, N.; Ma, Z., Au–Ionic Liquid Functionalized Reduced Graphene Oxide Immunosensing Platform for Simultaneous Electrochemical Detection of Multiple Analytes. Biosens. Bioelectron. 2014, 51, 184-190.
(197) Zhao, D.; Wang, Y.; Nie, G., Electrochemical Immunosensor for the Carcinoembryonic Antigen Based on a Nanocomposite Consisting of Reduced Graphene Oxide, Gold Nanoparticles and Poly (Indole-6-Carboxylic Acid). Microchim. Acta 2016, 183, 2925-2932.
(198) Jin, B.; Wang, P.; Mao, H.; Hu, B.; Zhang, H.; Cheng, Z.; Wu, Z.; Bian, X.; Jia, C.; Jing, F., Multi-Nanomaterial Electrochemical Biosensor Based on Label-Free Graphene for Detecting Cancer Biomarkers. Biosens. Bioelectron. 2014, 55, 464-469.
(199) Shi, W.; Ma, Z., A Novel Label-Free Amperometric Immunosensor for Carcinoembryonic Antigen Based on Redox Membrane. Biosens. Bioelectron. 2011, 26, 3068-3071.
(200) Tang, H.; Chen, J.; Nie, L.; Kuang, Y.; Yao, S., A Label-Free Electrochemical Immunoassay for Carcinoembryonic Antigen (CEA) Based on Gold Nanoparticles (AuNPs) and Nonconductive Polymer Film. Biosens. Bioelectron. 2007, 22, 1061-1067.
(201) Thanzeel, F. Y.; Wolf, C., Substrate‐Specific Amino Acid Sensing Using a Molecular D/L‐Cysteine Probe for Comprehensive Stereochemical Analysis in Aqueous Solution. Angew. Chem. Int. Ed. 2017, 56, 7276-7281.
(202) Luo, Y.; Zhang, L.; Liu, W.; Yu, Y.; Tian, Y., A Single Biosensor for Evaluating the Levels of Copper Ion and L‐Cysteine in a Live Rat Brain with Alzheimer's Disease. Angew. Chem. Int. Ed. 2015, 127, 14259-14262.
(203) Carter, K. P.; Young, A. M.; Palmer, A. E., Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014, 114, 4564-4601.
(204) Chen, C.; Qiao, H.; Lin, S.; Luk, C. M.; Liu, Y.; Xu, Z.; Song, J.; Xue, Y.; Li, D.; Yuan, J., Highly Responsive MoS2 Photodetectors Enhanced by Graphene Quantum Dots. Sci. Rep. 2015, 5, 11830.
(205) Yan, X.; Song, Y.; Zhu, C.; Song, J.; Du, D.; Su, X.; Lin, Y., Graphene Quantum Dot–MnO2 Nanosheet Based Optical Sensing Platform: A Sensitive Fluorescence “Turn Off–On” Nanosensor for Glutathione Detection and Intracellular Imaging. ACS Appl. Mater. Interfaces 2016, 8, 21990-21996.
(206) Luo, X.; Shu, H.; Wan, Q.; Wang, Z.; Yang, N., Biosensing Applications of V2O5‐CeO2 Mesoporous Silica. Electroanalysis 2015, 27, 2194-2200.
(207) Wang, Y.-T.; Whang, W.-T.; Chen, C.-H., Hollow V2O5 Nanoassemblies for High-Performance Room-Temperature Hydrogen Sensors. ACS Appl. Mater. Interfaces 2015, 7, 8480-8487.
(208) Sun, J.; Li, C.; Qi, Y.; Guo, S.; Liang, X., Optimizing Colorimetric Assay Based on V2O5 Nanozymes for Sensitive Detection of H2O2 and Glucose. Sensors 2016, 16, 584.
(209) Jia, X.; Ji, X., Electrochemical Probing of Carbon Quantum Dots: Not Suitable for a Single Electrode Material. RSC Adv. 2015, 5, 107270-107275.
(210) Kuo, N.-J.; Chen, Y.-S.; Wu, C.-W.; Huang, C.-Y.; Chan, Y.-H.; Chen, I.-W. P., One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots Via Exfoliating and Disintegrating Graphite Flakes. Sci. Rep. 2016, 6, 30426.
(211) Karstens, T.; Kobs, K., Rhodamine B and Rhodamine 101 as Reference Substances for Fluorescence Quantum Yield Measurements. J. Phys. Chem. 1980, 84, 1871-1872.
(212) Ju, J.; Zhang, R.; He, S.; Chen, W., Nitrogen-Doped Graphene Quantum Dots-Based Fluorescent Probe for the Sensitive Turn-on Detection of Glutathione and Its Cellular Imaging. RSC Adv. 2014, 4, 52583-52589.
(213) Rui, X.; Lu, Z.; Yu, H.; Yang, D.; Hng, H. H.; Lim, T. M.; Yan, Q., Ultrathin V2O5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage. Nanoscale 2013, 5, 556-560.
(214) Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N., Liquid Exfoliation of Layered Materials. Science 2013, 340, 1226419.
(215) Chaudhary, M.; Doong, R. A.; Kumar, N.; Tseng, T. Y., Ternary Au/ZnO/rGO Nanocomposites Electrodes for High Performance Electrochemical Storage Devices. Appl. Surf. Sci. 2017, 420, 118-128.
(216) Wu, H.; Jiang, J.; Gu, X.; Tong, C., Nitrogen and Sulfur Co-Doped Carbon Quantum Dots for Highly Selective and Sensitive Fluorescent Detection of Fe (III) Ions and L-Cysteine. Microchim. Acta 2017, 184, 2291-2298.
(217) Shang, L.; Dong, S., Sensitive Detection of Cysteine Based on Fluorescent Silver Clusters. Biosens. Bioelectron. 2009, 24, 1569-1573.
(218) Zheng, M.; Huang, H.; Zhou, M.; Wang, Y.; Zhang, Y.; Ye, D.; Chen, H. Y., Cysteine‐Mediated Intracellular Building of Luciferin to Enhance Probe Retention and Fluorescence Turn‐On. Chem. Eur. J. 2015, 21, 10506-10512.
(219) Yu, Y.; Yang, J.; Xu, X.; Jiang, Y.; Wang, B., A Novel Fluorescent Probe for Highly Sensitive and Selective Detection of Cysteine and Its Application in Cell Imaging. Sens. Actuators, B 2017, 251, 902-908.
(220) Niu, L.-Y.; Guan, Y.-S.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z., Bodipy-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine. J. Am. Chem. Soc. 2012, 134, 18928-18931.
(221) Cui, M.-L.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zhang, L.-H.; Zheng, Z.-Y.; Lin, S.-Q., Selective Determination of Cysteine Using Bsa-Stabilized Gold Nanoclusters with Red Emission. Analyst 2012, 137, 5346-5351.
(222) Zhao, F.; Qian, J.; Quan, F.; Wu, C.; Zheng, Y.; Zhou, L., Aconitic Acid Derived Carbon Dots as Recyclable “on–Off–on” Fluorescent Nanoprobes for Sensitive Detection of Mercury (II) Ions, Cysteine and Cellular Imaging. RSC Adv. 2017, 7, 44178-44185.
(223) Zhang, Y.; Li, Y.; Yan, X.-P., Photoactivated CdTe/CdSe Quantum Dots as a near Infrared Fluorescent Probe for Detecting Biothiols in Biological Fluids. Analytical chemistry 2009, 81, 5001-5007.
(224) Han, B.; Yuan, J.; Wang, E., Sensitive and Selective Sensor for Biothiols in the Cell Based on the Recovered Fluorescence of the Cdte Quantum Dots− Hg (II) System. Anal. Chem. 2009, 81, 5569-5573.
(225) Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D., Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels. Proc. Natl. Acad. Sci. 2006, 103, 11206-11210.
(226) Chou, T. C.; Doong, R. S.; Hu, C. c.; Zhang, B.; Su, D. S., Hierarchically Porous Carbon with Manganese Oxides as Highly Efficient Electrode for Asymmetric Supercapacitors. ChemSusChem 2014, 7, 841-847.
(227) Zhi, M.; Yang, F.; Meng, F.; Li, M.; Manivannan, A.; Wu, N., Effects of Pore Structure on Performance of an Activated-Carbon Supercapacitor Electrode Recycled from Scrap Waste Tires. ACS Sustainable Chem. Eng. 2014, 2, 1592-1598.
(228) Liu, J.; Zheng, M.; Shi, X.; Zeng, H.; Xia, H., Amorphous FeOOH Quantum Dots Assembled Mesoporous Film Anchored on Graphene Nanosheets with Superior Electrochemical Performance for Supercapacitors. Adv. Funct. Mater. 2016, 26, 919-930.
(229) Wu, K.; Xu, S.; Zhou, X.; Wu, H., Graphene Quantum Dots Enhanced Electrochemical Performance of Polypyrrole as Supercapacitor Electrode. J. Electrochem 2013, 4, 013.
(230) Wu, G.; Hu, Y.; Liu, Y.; Zhao, J.; Chen, X.; Whoehling, V.; Plesse, C.; Nguyen, G. T.; Vidal, F.; Chen, W., Graphitic Carbon Nitride Nanosheet Electrode-Based High-Performance Ionic Actuator. Nat. Commun. 2015, 6, 7258.
(231) Zhang, W.; Mu, B.; Wang, A., Halloysite Nanotubes Template-Induced Fabrication of Carbon/Manganese Dioxide Hybrid Nanotubes for Supercapacitors. Ionics 2015, 21, 2329-2336.
(232) Zhang, K.; Zhang, L. L.; Zhao, X.; Wu, J., Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22, 1392-1401.
(233) Yuan, P.; Southon, P. D.; Liu, Z.; Green, M. E.; Hook, J. M.; Antill, S. J.; Kepert, C. J., Functionalization of Halloysite Clay Nanotubes by Grafting with Γ-Aminopropyltriethoxysilane. J. Phys. Chem. C 2008, 112, 15742-15751.
(234) Buzaglo, M.; Shtein, M.; Regev, O., Graphene Quantum Dots Produced by Microfluidization. Chem. Mater. 2015, 28, 21-24.
(235) Portet, C.; Yushin, G.; Gogotsi, Y., Electrochemical Performance of Carbon Onions, Nanodiamonds, Carbon Black and Multiwalled Nanotubes in Electrical Double Layer Capacitors. Carbon 2007, 45, 2511-2518.
(236) Ding, J.; Chai, Y.; Liu, Q.; Liu, X.; Ren, J.; Dai, W.-L., Selective Deposition of Silver Nanoparticles onto WO3 Nanorods with Different Facets: The Correlation of Facet-Induced Electron Transport Preference and Photocatalytic Activity. J. Phys. Chem. C 2016, 120, 4345-4353.
(237) Zhang, S.; Li, Y.; Song, H.; Chen, X.; Zhou, J.; Hong, S.; Huang, M., Graphene Quantum Dots as the Electrolyte for Solid State Supercapacitors. Sci. Rep. 2016, 6, 19292.
(238) Li, L.; Gao, P.; Gai, S.; He, F.; Chen, Y.; Zhang, M.; Yang, P., Ultra Small and Highly Dispersed Fe3O4 Nanoparticles Anchored on Reduced Graphene for Supercapacitor Application. Electrochim. Acta 2016, 190, 566-573.
(239) Liu, M.; Sun, J., In Situ Growth of Monodisperse Fe3O4 Nanoparticles on Graphene as Flexible Paper for Supercapacitor. J. Mater. Chem. A 2014, 2, 12068-12074.
(240) Liu, M.; Chang, Y.; Yang, J.; You, Y.; He, R.; Chen, T.; Zhou, C., Functionalized Halloysite Nanotube by Chitosan Grafting for Drug Delivery of Curcumin to Achieve Enhanced Anticancer Efficacy. J. Mater. Chem. B 2016, 4, 2253-2263.
(241) Yuan, P.; Southon, P. D.; Liu, Z.; Kepert, C. J., Organosilane Functionalization of Halloysite Nanotubes for Enhanced Loading and Controlled Release. Nanotechnol. 2012, 23, 375705.
(242) Xie, Y.; Qian, D.; Wu, D.; Ma, X., Magnetic Halloysite Nanotubes/Iron Oxide Composites for the Adsorption of Dyes. Chem. Eng. J. 2011, 168, 959-963.
(243) Zhang, Y.; He, X.; Ouyang, J.; Yang, H., Palladium Nanoparticles Deposited on Silanized Halloysite Nanotubes: Synthesis, Characterization and Enhanced Catalytic Property. Sci. Rep. 2013, 3, 2948.
(244) Shircliff, R. A.; Stradins, P.; Moutinho, H.; Fennell, J.; Ghirardi, M. L.; Cowley, S. W.; Branz, H. M.; Martin, I. T., Angle-Resolved XPS Analysis and Characterization of Monolayer and Multilayer Silane Films for DNA Coupling to Silica. Langmuir 2013, 29, 4057-4067.
(245) Chen, Q.; Zhao, Y.; Huang, X.; Chen, N.; Qu, L., Three-Dimensional Graphitic Carbon Nitride Functionalized Graphene-Based High-Performance Supercapacitors. J. Mater. Chem. A 2015, 3, 6761-6766.
(246) Li, Y.; Zhang, H.; Wang, S.; Lin, Y.; Chen, Y.; Shi, Z.; Li, N.; Wang, W.; Guo, Z., Facile Low-Temperature Synthesis of Hematite Quantum Dots Anchored on a Three-Dimensional Ultra-Porous Graphene-Like Framework as Advanced Anode Materials for Asymmetric Supercapacitors. J. Mater. Chem. A 2016, 4, 11247-11255.
(247) Zhang, W.; Mu, B.; Wang, A., Halloysite Nanotubes Induced Synthesis of Carbon/Manganese Dioxide Coaxial Tubular Nanocomposites as Electrode Materials for Supercapacitors. J. Solid State Electrochem. 2015, 19, 1257-1263.
(248) Owoseni, O.; Zhang, Y.; Su, Y.; He, J.; McPherson, G. L.; Bose, A.; John, V. T., Tuning the Wettability of Halloysite Clay Nanotubes by Surface Carbonization for Optimal Emulsion Stabilization. Langmuir 2015, 31, 13700-13707.
(249) Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F., Hydrophobically Modified Halloysite Nanotubes as Reverse Micelles for Water-in-Oil Emulsion. Langmuir 2015, 31, 7472-7478.
(250) Zhao, B.; Liu, P.; Jiang, Y.; Pan, D.; Tao, H.; Song, J.; Fang, T.; Xu, W., Supercapacitor Performances of Thermally Reduced Graphene Oxide. J. Power Sources 2012, 198, 423-427.
(251) Yan, J.; Wei, T.; Shao, B.; Ma, F.; Fan, Z.; Zhang, M.; Zheng, C.; Shang, Y.; Qian, W.; Wei, F., Electrochemical Properties of Graphene Nanosheet/Carbon Black Composites as Electrodes for Supercapacitors. Carbon 2010, 48, 1731-1737.
(252) Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano lett. 2010, 10, 4863-4868.
(253) Xiao, Y.; Li, X.; Zai, J.; Wang, K.; Gong, Y.; Li, B.; Han, Q.; Qian, X., CoFe2O4-Graphene Nanocomposites Synthesized through an Ultrasonic Method with Enhanced Performances as Anode Materials for Li-Ion Batteries. Nano-Micro Letters 2014, 6, 307-315.
(254) Ma, G.; Peng, H.; Mu, J.; Huang, H.; Zhou, X.; Lei, Z., In Situ Intercalative Polymerization of Pyrrole in Graphene Analogue of MoS2 as Advanced Electrode Material in Supercapacitor. J. Power Sources 2013, 229, 72-78.
(255) Sahu, V.; Grover, S.; Tulachan, B.; Sharma, M.; Srivastava, G.; Roy, M.; Saxena, M.; Sethy, N.; Bhargava, K.; Philip, D., Heavily Nitrogen Doped, Graphene Supercapacitor from Silk Cocoon. Electrochim. Acta 2015, 160, 244-253.
(256) Yan, J.; Liu, J.; Fan, Z.; Wei, T.; Zhang, L., High-Performance Supercapacitor Electrodes Based on Highly Corrugated Graphene Sheets. Carbon 2012, 50, 2179-2188.
(257) Lu, Q.; Lattanzi, M. W.; Chen, Y.; Kou, X.; Li, W.; Fan, X.; Unruh, K. M.; Chen, J. G.; Xiao, J. Q., Supercapacitor Electrodes with High‐Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites. Angew. Chem. Int. Ed. 2011, 123, 6979-6982.
(258) Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H., Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472-7477.
(259) Yuan, P.; Liu, D.; Fan, M.; Yang, D.; Zhu, R.; Ge, F.; Zhu, J.; He, H., Removal of Hexavalent Chromium [Cr(VI)] from Aqueous Solutions by the Diatomite-Supported/Unsupported Magnetite Nanoparticles. J. Hazard. Mater. 2010, 173, 614-621.
(260) Liu, E.; Yuan, H.; Kou, Z.; Wu, X.; Xu, Q.; Zhai, Y.; Sui, Y.; You, B.; Du, J.; Zhai, H., Investigation on Spin Dependent Transport Properties of Core-Shell Structural Fe3O4/ZnS Nanocomposites for Spintronic Application. Sci. Rep. 2015, 5, 11164.
(261) Lun, H.; Ouyang, J.; Yang, H., Natural Halloysite Nanotubes Modified as an Aspirin Carrier. RSC Adv. 2014, 4, 44197-44202.
(262) Yu, B. Y.; Kwak, S.-Y., Assembly of Magnetite Nanocrystals into Spherical Mesoporous Aggregates with a 3-D Wormhole-Like Pore Structure. J. Mater. Chem. 2010, 20, 8320-8328.
(263) Wu, Z. L.; Gao, M. X.; Wang, T. T.; Wan, X. Y.; Zheng, L. L.; Huang, C. Z., A General Quantitative Ph Sensor Developed with Dicyandiamide N-Doped High Quantum Yield Graphene Quantum Dots. Nanoscale 2014, 6, 3868-3874.
(264) Yamaura, M.; Camilo, R.; Sampaio, L.; Macedo, M.; Nakamura, M.; Toma, H., Preparation and Characterization of (3-Aminopropyl) Triethoxysilane-Coated Magnetite Nanoparticles. J. Magn. Magn. Mater. 2004, 279, 210-217.
(265) Mahto, T. K.; Chowdhuri, A. R.; Sahoo, B.; Sahu, S. K., Polyaniline‐Functionalized Magnetic Mesoporous Nanocomposite: A Smart Material for the Immobilization of Lipase. Polym. Compos. 2016, 37, 1152-1160.
(266) Li, X.; Ouyang, J.; Zhou, Y.; Yang, H., Assembling Strategy to Synthesize Palladium Modified Kaolin Nanocomposites with Different Morphologies. Sci. Rep. 2015, 5, 13763.
(267) Nafiujjaman, M.; Revuri, V.; Nurunnabi, M.; Cho, K. J.; Lee, Y.-k., Photosensitizer Conjugated Iron Oxide Nanoparticles for Simultaneous in Vitro Magneto-Fluorescent Imaging Guided Photodynamic Therapy. Chem. Commun. 2015, 51, 5687-5690.
(268) Carli, L. N.; Daitx, T. S.; Soares, G. V.; Crespo, J. S.; Mauler, R. S., The Effects of Silane Coupling Agents on the Properties of PhBv/Halloysite Nanocomposites. Appl. Clay Sci. 2014, 87, 311-319.
(269) Chen, J.; Huang, K.; Liu, S., Hydrothermal Preparation of Octadecahedron Fe3O4 Thin Film for Use in an Electrochemical Supercapacitor. Electrochim. Acta 2009, 55, 1-5.
(270) Oh, I.; Kim, M.; Kim, J., Deposition of Fe3O4 on Oxidized Activated Carbon by Hydrazine Reducing Method for High Performance Supercapacitor. Microelectron. Reliab. 2015, 55, 114-122.
(271) Yuan, L.; Lu, X.-H.; Xiao, X.; Zhai, T.; Dai, J.; Zhang, F.; Hu, B.; Wang, X.; Gong, L.; Chen, J., Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO2 Nanorods Hybrid Structure. ACS Nano 2011, 6, 656-661.
(272) Tai, Z.; Yan, X.; Lang, J.; Xue, Q., Enhancement of Capacitance Performance of Flexible Carbon Nanofiber Paper by Adding Graphene Nanosheets. J. Power Sources 2012, 199, 373-378.
(273) Huang, C.; Zhang, J.; Young, N. P.; Snaith, H. J.; Grant, P. S., Solid-State Supercapacitors with Rationally Designed Heterogeneous Electrodes Fabricated by Large Area Spray Processing for Wearable Energy Storage Applications. Sci. Rep. 2016, 6, 25684.
(274) Song, J.; Bazant, M. Z., Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles. Electrochim. Acta 2014, 131, 214-227.
(275) Rijsberman, F. R., Water Scarcity: Fact or Fiction? Agric. Water Manage. 2006, 80, 5-22.
(276) Elimelech, M.; Phillip, W. A., The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712-717.
(277) Yin, H.; Zhao, S.; Wan, J.; Tang, H.; Chang, L.; He, L.; Zhao, H.; Gao, Y.; Tang, Z., Three‐Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High‐Performance Capacitive Deionization of Saline Water. Adv. Mater. 2013, 25, 6270-6276.
(278) Porada, S.; Borchardt, L.; Oschatz, M.; Bryjak, M.; Atchison, J.; Keesman, K.; Kaskel, S.; Biesheuvel, P.; Presser, V., Direct Prediction of the Desalination Performance of Porous Carbon Electrodes for Capacitive Deionization. Energy Environ. Sci. 2013, 6, 3700-3712.
(279) Suss, M. E.; Biesheuvel, P.; Baumann, T. F.; Stadermann, M.; Santiago, J. G., In Situ Spatially and Temporally Resolved Measurements of Salt Concentration between Charging Porous Electrodes for Desalination by Capacitive Deionization. Environ. Sci. Technol. 2014, 48, 2008-2015.
(280) Bian, Y.; Yang, X.; Liang, P.; Jiang, Y.; Zhang, C.; Huang, X., Enhanced Desalination Performance of Membrane Capacitive Deionization Cells by Packing the Flow Chamber with Granular Activated Carbon. Water Res. 2015, 85, 371-376.
(281) Yang, S. J.; Kim, T.; Lee, K.; Kim, Y. S.; Yoon, J.; Park, C. R., Solvent Evaporation Mediated Preparation of Hierarchically Porous Metal Organic Framework-Derived Carbon with Controllable and Accessible Large-Scale Porosity. Carbon 2014, 71, 294-302.
(282) Porada, S.; Weinstein, L.; Dash, R.; Van Der Wal, A.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P., Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes. ACS Appl. Mater. Interfaces 2012, 4, 1194-1199.
(283) Haro, M.; Rasines, G.; Macias, C.; Ania, C., Stability of a Carbon Gel Electrode When Used for the Electro-Assisted Removal of Ions from Brackish Water. Carbon 2011, 49, 3723-3730.
(284) Liu, Y.; Nie, C.; Pan, L.; Xu, X.; Sun, Z.; Chua, D. H., Carbon Aerogels Electrode with Reduced Graphene Oxide Additive for Capacitive Deionization with Enhanced Performance. Inorg. Chem. Front. 2014, 1, 249-255.
(285) Ma, T.-Y.; Liu, L.; Yuan, Z.-Y., Direct Synthesis of Ordered Mesoporous Carbons. Chem. Soc. Rev. 2013, 42, 3977-4003.
(286) Oschatz, M.; Borchardt, L.; Thommes, M.; Cychosz, K. A.; Senkovska, I.; Klein, N.; Frind, R.; Leistner, M.; Presser, V.; Gogotsi, Y., Carbide‐Derived Carbon Monoliths with Hierarchical Pore Architectures. Angew. Chem. Int. Ed. 2012, 51, 7577-7580.
(287) Fan, L.; Feng, C.; Zhao, W.; Qian, L.; Wang, Y.; Li, Y., Directional Neurite Outgrowth on Superaligned Carbon Nanotube Yarn Patterned Substrate. Nano lett. 2012, 12, 3668-3673.
(288) Benson, J.; Kovalenko, I.; Boukhalfa, S.; Lashmore, D.; Sanghadasa, M.; Yushin, G., Multifunctional Cnt‐Polymer Composites for Ultra‐Tough Structural Supercapacitors and Desalination Devices. Adv. Mater. 2013, 25, 6625-6632.
(289) Yang, Z. Y.; Jin, L. J.; Lu, G. Q.; Xiao, Q. Q.; Zhang, Y. X.; Jing, L.; Zhang, X. X.; Yan, Y. M.; Sun, K. N., Sponge‐Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance. Adv. Funct. Mater. 2014, 24, 3917-3925.
(290) Liu, P.; Wang, H.; Yan, T.; Zhang, J.; Shi, L.; Zhang, D., Grafting Sulfonic and Amine Functional Groups on 3D Graphene for Improved Capacitive Deionization. J. Mater. Chem. A 2016, 4, 5303-5313.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *