帳號:guest(18.119.160.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林正義
作者(外文):Lin, Cheng-Yi
論文名稱(中文):基質硬度與肌動蛋白變異對肝癌細胞生理改變之探討
論文名稱(外文):Matrix stiffness alters the physiological properties of hepatoma cells through actin interactions
指導教授(中文):陳之碩
指導教授(外文):Chen, Chi-Shuo
口試委員(中文):胡尚秀
陳昶瑞
口試委員(外文):Hu, Shang-Hsiu
Chen, Chang-Jui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012544
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:47
中文關鍵詞:肌動蛋白物理微環境硬度肝硬化
外文關鍵詞:actinphysical microenvirinmentstiffnesscirrhosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:85
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
根據臨床報告,肝硬化程度對於肝癌細胞的發展有一定程度的影響,但詳細機制仍尚未明確。在本研究中,我們探討肌動蛋白變異的在不同基質硬度微環境下,對於肝癌細胞的生理特性與機械訊息傳導影響中所造成的影響。實驗中,以人類肝癌Alexander cell(PLC/PRF/5 ATCC® CRL-8024) 和過度表達 Kappa-actin的Alexander cell(Alex-)來做為研究模型,並使用可調控硬度的聚丙烯醯胺基質來模擬人體肝臟硬度環境。
首先,觀察到硬度能夠改變細胞的形態大小,接著更進一步探討細胞與外細胞基質間的連接focal adhesion (FA),發現硬度及肌動蛋白變異影響FA的形成與細胞牽引力(traction force)的大小,進而造成肝癌細胞的黏附能力也隨之改變。而細胞的黏附於不同環境時也會影響細胞的增生能力,細胞在硬度高的環境下增生情形較明顯,其可能原因與focal adhesion kinase(FAK)有關聯性。考量FA對於肝癌細胞轉移的影響,在觀察單顆細胞的遷移中,發現低硬度環境及肌動蛋白變異使得細胞形成較少FA及較低的細胞牽引力,促使細胞有較快的移動速率。而在群體細胞在硬度高的環境下移動速率快且有一致的方向性,推測與細胞之間的adherens junction(AJ)調節有關。最後探討肝癌細胞的異位轉移,即觀察肝癌細胞的在三維空間中侵入情形,肌動蛋白變異使細胞侵入能力降低。
從本研究得知,外部環境硬度增加如同肝硬化程度上升,肝癌細胞的生理特性也隨之改變。細胞內肌動蛋白的變異會改變細胞內FA與AJ 的生成,進而影響肝癌細胞的黏附、增生、遷移與侵入。
Liver cancer is one of the most common cancer in the world, which is highly associated with liver cirrhosis. Thought stiffer extracellular matrix is speculated to facilitate the development of hepatocellular carcinoma development, the detail mechanisms remain to be elucidated. In this study, we investigated the interconnections of substrate stiffness and actin mutation on the HCC cellular physiology.
HCC cell line Alexander (PLC/PRF/5 ATCC® CRL-8024) and Alex- (cells overexpressing Kappa-actin) were selected as study models, and the stiffness tunable polyacrylamide matrixes were applied to mimic the cirrhotic microenvironments. We noticed the spread area of HCC cells increased on stiffer substrates, which consisted with the qPCR data of focal adhesion (FA). In addition to ECM-cell anchorage, in Alex-, the alteration of FA leads to different cell-ECM dynamic interactions. The unique -actin downregulated the formations of FA and adherens junction at the cell-cell contact. The changes of junction formation may contribute to the variety of cell migration on different ECM rigidity. Moreover, the data of traction force microscopy indicated that the mechanical force reduction leaded by actin mutant, which may related to the less invasion observed in our in vitro experiments.
In summary, our results demonstrated that the changes of cell-cell/ cell/ECM adhesion of HCC cell in response to the ECM stiffness, and the expression of -actin can modify the mechano-responses of HCC through cell adhesion alterations.
中文摘要 (II)
Abstract (III)
致謝 (IV)
章節目錄 (V)
圖目錄 (VIII)
表目錄 (X)
第一章 序論 P.1
1-1肝癌 P.1
1-2肝硬化 P.1
1-3物理微環境對癌症發生的影響 P.2
1-5細胞與外細胞基質的細胞牽引力(traction force) P.9
1-6實驗動機 P.11
第二章 材料與方法 P.12
2-1細胞培養 P.12
2-2 聚丙烯酰胺膠(Polyacrylamide gel) P.12
2-3免疫螢光染色 P.15
2-4 Q-PCR(Quantitative real time polymerase chain reaction)P.16
2-5黏附分析(Adhesion assay) P.17
2-6增殖分析(Growth assay) P.17
2-8細胞遷移(migration) P.18
2-8三維細胞培養 P.18
2-9蛋白膠(collagen gel)與侵入(invasion) P.18
2-10細胞牽引力顯微鏡(traction force microscope) P.18
2-11資料統計整理方法 P.19
2-12實驗材料與儀器 P.19
第三章 結果與討論 P.22
3-1細胞在不同硬度上形狀與大小 P.22
3-2過度表達-actin改變肝癌細胞的FA P.25
3-3不同硬度基質上的黏附力 P.29
3-4不同硬度基質上的增生率 P.29
3-5 肝癌細胞的遷移 P.31
3-6 細胞的侵入 P.37
第四章 結論 P.40
參考文獻 P.41
(1) Pellicoro, A.; Ramachandran, P.; Iredale, J. P.; Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014, 14, 181-194.
(2) Toosi, A. E. Liver Fibrosis: Causes and Methods of Assessment, A Review. Rom J Intern Med 2015, 53, 304-314.
(3) Forbes, S. J.; Parola, M. Liver fibrogenic cells. Best Pract Res Clin Gastroenterol 2011, 25, 207-217.
(4) Pinzani, M.; Rosselli, M.; Zuckermann, M. Liver cirrhosis. Best Pract Res Clin Gastroenterol 2011, 25, 281-290.
(5) Singh, S.; Fujii, L. L.; Murad, M. H.; Wang, Z.; Asrani, S. K.; Ehman, R. L.; Kamath, P. S.; Talwalkar, J. A. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2013, 11, 1573-1584 e1571-1572; quiz e1588-1579.
(6) Masuzaki, R.; Tateishi, R.; Yoshida, H.; Sato, T.; Ohki, T.; Goto, T.; Yoshida, H.; Sato, S.; Sugioka, Y.; Ikeda, H.; Shiina, S.; Kawabe, T.; Omata, M. Assessing liver tumor stiffness by transient elastography. Hepatol Int 2007, 1, 394-397.
(7) Afdhal, N. H. Fibroscan (transient elastography) for the measurement of liver fibrosis. Gastroenterol Hepatol (N Y) 2012, 8, 605-607.
(8) Wong, J. S.; Wong, G. L.; Chan, A. W.; Wong, V. W.; Cheung, Y. S.; Chong, C. N.; Wong, J.; Lee, K. F.; Chan, H. L.; Lai, P. B. Liver stiffness measurement by transient elastography as a predictor on posthepatectomy outcomes. Ann Surg 2013, 257, 922-928.
(9) Tatsumi, A.; Maekawa, S.; Sato, M.; Komatsu, N.; Miura, M.; Amemiya, F.; Nakayama, Y.; Inoue, T.; Sakamoto, M.; Enomoto, N. Liver stiffness measurement for risk assessment of hepatocellular carcinoma. Hepatol Res 2015, 45, 523-532.
(10) Masuzaki, R.; Tateishi, R.; Yoshida, H.; Goto, E.; Sato, T.; Ohki, T.; Imamura, J.; Goto, T.; Kanai, F.; Kato, N.; Ikeda, H.; Shiina, S.; Kawabe, T.; Omata, M. Prospective Risk Assessment for Hepatocellular Carcinoma Development in Patients with Chronic Hepatitis C by Transient Elastography. Hepatology 2009, 49, 1954-1961.
(11) Wang, J. H.; Yen, Y. H.; Yao, C. C.; Hung, C. H.; Chen, C. H.; Hu, T. H.; Lee, C. M.; Lu, S. N. Liver stiffness-based score in hepatoma risk assessment for chronic hepatitis C patients after successful antiviral therapy. Liver Int 2016.
(12) Adler, M.; Larocca, L.; Trovato, F. M.; Marcinkowski, H.; Pasha, Y.; Taylor-Robinson, S. D. Evaluating the risk of hepatocellular carcinoma in patients with prominently elevated liver stiffness measurements by FibroScan: a multicentre study. HPB (Oxford) 2016, 18, 678-683.
(13) Ingber, D. E. Can cancer be reversed by engineering the tumor microenvironment? Semin Cancer Biol 2008, 18, 356-364.
(14) Spill, F.; Reynolds, D. S.; Kamm, R. D.; Zaman, M. H. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 2016, 40, 41-48.
(15) Huan, L.; Liang, L. H.; He, X. H. Role of microRNAs in inflammation-associated liver cancer. Cancer Biol Med 2016, 13, 407-425.
(16) Crotti, S.; Piccoli, M.; Rizzolio, F.; Giordano, A.; Nitti, D.; Agostini, M. Extracellular Matrix and Colorectal Cancer: How Surrounding Microenvironment Affects Cancer Cell Behavior? J Cell Physiol 2017, 232, 967-975.
(17) Prauzner-Bechcicki, S.; Raczkowska, J.; Madej, E.; Pabijan, J.; Lukes, J.; Sepitka, J.; Rysz, J.; Awsiuk, K.; Bernasik, A.; Budkowski, A.; Lekka, M. PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. J Mech Behav Biomed Mater 2015, 41, 13-22.
(18) Chaudhuri, O.; Koshy, S. T.; Branco da Cunha, C.; Shin, J. W.; Verbeke, C. S.; Allison, K. H.; Mooney, D. J. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 2014, 13, 970-978.
(19) Provenzano, P. P.; Eliceiri, K. W.; Campbell, J. M.; Inman, D. R.; White, J. G.; Keely, P. J. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 2006, 4, 38.
(20) Sahlgren, C.; Gustafsson, M. V.; Jin, S.; Poellinger, L.; Lendahl, U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. P Natl Acad Sci USA 2008, 105, 6392-6397.
(21) Dong, Y.; Xie, X.; Wang, Z.; Hu, C.; Zheng, Q.; Wang, Y.; Chen, R.; Xue, T.; Chen, J.; Gao, D.; Wu, W.; Ren, Z.; Cui, J. Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin beta1. Biochem Biophys Res Commun 2014, 444, 427-432.
(22) Wei, S. C.; Fattet, L.; Tsai, J. H.; Guo, Y.; Pai, V. H.; Majeski, H. E.; Chen, A. C.; Sah, R. L.; Taylor, S. S.; Engler, A. J.; Yang, J. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol 2015, 17, 678-688.
(23) Schrader, J.; Gordon-Walker, T. T.; Aucott, R. L.; van Deemter, M.; Quaas, A.; Walsh, S.; Benten, D.; Forbes, S. J.; Wells, R. G.; Iredale, J. P. Matrix Stiffness Modulates Proliferation, Chemotherapeutic Response, and Dormancy in Hepatocellular Carcinoma Cells. Hepatology 2011, 53, 1192-1205.
(24) Liu, C.; Liu, Y.; Xie, H. G.; Zhao, S.; Xu, X. X.; Fan, L. X.; Guo, X.; Lu, T.; Sun, G. W.; Ma, X. J. Role of three-dimensional matrix stiffness in regulating the chemoresistance of hepatocellular carcinoma cells. Biotechnol Appl Biochem 2015, 62, 556-562.
(25) Matsuzaki, S.; Canis, M.; Pouly, J. L.; Darcha, C. Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro. Hum Reprod 2016, 31, 541-553.
(26) DuFort, C. C.; Paszek, M. J.; Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 2011, 12, 308-319.
(27) Ohashi, K.; Fujiwara, S.; Mizuno, K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem 2017.
(28) Seong, J.; Wang, N.; Wang, Y. Mechanotransduction at focal adhesions: from physiology to cancer development. J Cell Mol Med 2013, 17, 597-604.
(29) Leube, R. E.; Moch, M.; Windoffer, R. Intermediate filaments and the regulation of focal adhesion. Curr Opin Cell Biol 2015, 32, 13-20.
(30) Rape, A. D.; Guo, W. H.; Wang, Y. L. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 2011, 32, 2043-2051.
(31) Tang, C. L.; Zhao, H. B.; Li, M. Q.; Du, M. R.; Meng, Y. H.; Li, D. J. Focal adhesion kinase signaling is necessary for the Cyclosporin A-enhanced migration and invasion of human trophoblast cells. Placenta 2012, 33, 704-711.
(32) Eke, I.; Cordes, N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 2015, 31, 65-75.
(33) Fogh, B. S.; Multhaupt, H. A.; Couchman, J. R. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 2014, 62, 172-184.
(34) Wu, W.; Zhang, X.; Qin, H.; Peng, W.; Xue, Q.; Lv, H.; Zhang, H.; Qiu, Y.; Cheng, H.; Zhang, Y.; Yu, Z.; Shen, W. Modulation of tumor cell migration, invasion and cell-matrix adhesion by human monopolar spindle-one-binder 2. Oncol Rep 2015, 33, 2495-2503.
(35) Bays, J. L.; DeMali, K. A. Vinculin in cell-cell and cell-matrix adhesions. Cell Mol Life Sci 2017, 74, 2999-3009.
(36) Xu, W. M.; Baribault, H.; Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 1998, 125, 327-337.
(37) Seong, J.; Wang, N.; Wang, Y. X. Mechanotransduction at focal adhesions: from physiology to cancer development. Journal of Cellular and Molecular Medicine 2013, 17, 597-604.
(38) Kawauchi, T. Cell Adhesion and Its Endocytic Regulation in Cell Migration during Neural Development and Cancer Metastasis. Int J Mol Sci 2012, 13, 4564-4590.
(39) Carisey, A.; Ballestrem, C. Vinculin, an adapter protein in control of cell adhesion signalling. Eur J Cell Biol 2011, 90, 157-163.
(40) Kim, M. C.; Kim, C.; Wood, L.; Neal, D.; Kamm, R. D.; Asada, H. H. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix. Integr Biol (Camb) 2012, 4, 1386-1397.
(41) Ezzell, R. M.; Goldmann, W. H.; Wang, N.; Parasharama, N.; Ingber, D. E. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Experimental Cell Research 1997, 231, 14-26.
(42) Xu, W.; Coll, J. L.; Adamson, E. D. Rescue of the mutant phenotype by reexpression of full-length vinculin in null F9 cells; effects on cell locomotion by domain deleted vinculin. J Cell Sci 1998, 111 ( Pt 11), 1535-1544.
(43) Goldmann, W. H.; Ingber, D. E. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation. Biochem Bioph Res Co 2002, 290, 749-755.
(44) Humphries, J. D.; Wang, P.; Streuli, C.; Geiger, B.; Humphries, M. J.; Ballestrem, C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. Journal of Cell Biology 2007, 179, 1043-1057.
(45) Wen, K. K.; Rubenstein, P. A.; DeMali, K. A. Vinculin Nucleates Actin Polymerization and Modifies Actin Filament Structure. J Biol Chem 2009, 284, 30463-30473.
(46) Tai, Y. L.; Chen, L. C.; Shen, T. L. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int 2015, 2015, 690690.
(47) Parsons, J. T. Focal adhesion kinase: the first ten years. J Cell Sci 2003, 116, 1409-1416.
(48) Zhao, J. H.; Reiske, H.; Guan, J. L. Regulation of the cell cycle by focal adhesion kinase. J Cell Biol 1998, 143, 1997-2008.
(49) Zhao, J.; Pestell, R.; Guan, J. L. Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Mol Biol Cell 2001, 12, 4066-4077.
(50) Mitra, S. K.; Schlaepfer, D. D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006, 18, 516-523.
(51) Golubovskaya, V. M.; Virnig, C.; Cance, W. G. TAE226-induced apoptosis in breast cancer cells with overexpressed Src or EGFR. Mol Carcinog 2008, 47, 222-234.
(52) Vultur, A.; Buettner, R.; Kowolik, C.; Liang, W.; Smith, D.; Boschelli, F.; Jove, R. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther 2008, 7, 1185-1194.
(53) Hartsock, A.; Nelson, W. J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008, 1778, 660-669.
(54) Sluysmans, S.; Vasileva, E.; Spadaro, D.; Shah, J.; Rouaud, F.; Citi, S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 2017, 109, 139-161.
(55) Du, J.; Zu, Y.; Li, J.; Du, S.; Xu, Y.; Zhang, L.; Jiang, L.; Wang, Z.; Chien, S.; Yang, C. Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep 2016, 6, 20395.
(56) Friedl, P.; Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009, 10, 445-457.
(57) Rorth, P. Collective cell migration. Annu Rev Cell Dev Biol 2009, 25, 407-429.
(58) Li, L.; Hartley, R.; Reiss, B.; Sun, Y.; Pu, J.; Wu, D.; Lin, F.; Hoang, T.; Yamada, S.; Jiang, J.; Zhao, M. E-cadherin plays an essential role in collective directional migration of large epithelial sheets. Cell Mol Life Sci 2012, 69, 2779-2789.
(59) Vitorino, P.; Meyer, T. Modular control of endothelial sheet migration. Genes Dev 2008, 22, 3268-3281.
(60) Fischer, R. S.; Gardel, M.; Ma, X.; Adelstein, R. S.; Waterman, C. M. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol 2009, 19, 260-265.
(61) De Pascalis, C.; Etienne-Manneville, S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017, 28, 1833-1846.
(62) Plotnikov, S. V.; Sabass, B.; Schwarz, U. S.; Waterman, C. M. High-resolution traction force microscopy. Methods Cell Biol 2014, 123, 367-394.
(63) Leal-Egana, A.; Letort, G.; Martiel, J. L.; Christ, A.; Vignaud, T.; Roelants, C.; Filhol, O.; Thery, M. The size-speed-force relationship governs migratory cell response to tumorigenic factors. Mol Biol Cell 2017, 28, 1612-1621.
(64) Maruthamuthu, V.; Sabass, B.; Schwarz, U. S.; Gardel, M. L. Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci U S A 2011, 108, 4708-4713.
(65) Sunyer, R.; Conte, V.; Escribano, J.; Elosegui-Artola, A.; Labernadie, A.; Valon, L.; Navajas, D.; Garcia-Aznar, J. M.; Munoz, J. J.; Roca-Cusachs, P.; Trepat, X. Collective cell durotaxis emerges from long-range intercellular force transmission. Science 2016, 353, 1157-1161.
(66) Yamashiro, S.; Watanabe, N. A new link between the retrograde actin flow and focal adhesions. J Biochem 2014, 156, 239-248.
(67) Oakes, P. W.; Banerjee, S.; Marchetti, M. C.; Gardel, M. L. Geometry regulates traction stresses in adherent cells. Biophys J 2014, 107, 825-833.
(68) Feldner, J. C.; Brandt, B. H. Cancer cell motility--on the road from c-erbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 2002, 272, 93-108.
(69) Kraning-Rush, C. M.; Califano, J. P.; Reinhart-King, C. A. Cellular traction stresses increase with increasing metastatic potential. PLoS One 2012, 7, e32572.
(70) Indra, I.; Undyala, V.; Kandow, C.; Thirumurthi, U.; Dembo, M.; Beningo, K. A. An in vitro correlation of mechanical forces and metastatic capacity. Phys Biol 2011, 8, 015015.
(71) Rahman, A.; Carey, S. P.; Kraning-Rush, C. M.; Goldblatt, Z. E.; Bordeleau, F.; Lampi, M. C.; Lin, D. Y.; Garcia, A. J.; Reinhart-King, C. A. Vinculin Regulates Directionality and Cell Polarity in 2D, 3D Matrix and 3D Microtrack Migration. Mol Biol Cell 2016.
(72) Physical Sciences - Oncology Centers, N.; Agus, D. B.; Alexander, J. F.; Arap, W.; Ashili, S.; Aslan, J. E.; Austin, R. H.; Backman, V.; Bethel, K. J.; Bonneau, R.; Chen, W. C.; Chen-Tanyolac, C.; Choi, N. C.; Curley, S. A.; Dallas, M.; Damania, D.; Davies, P. C.; Decuzzi, P.; Dickinson, L.; Estevez-Salmeron, L.; Estrella, V.; Ferrari, M.; Fischbach, C.; Foo, J.; Fraley, S. I.; Frantz, C.; Fuhrmann, A.; Gascard, P.; Gatenby, R. A.; Geng, Y.; Gerecht, S.; Gillies, R. J.; Godin, B.; Grady, W. M.; Greenfield, A.; Hemphill, C.; Hempstead, B. L.; Hielscher, A.; Hillis, W. D.; Holland, E. C.; Ibrahim-Hashim, A.; Jacks, T.; Johnson, R. H.; Joo, A.; Katz, J. E.; Kelbauskas, L.; Kesselman, C.; King, M. R.; Konstantopoulos, K.; Kraning-Rush, C. M.; Kuhn, P.; Kung, K.; Kwee, B.; Lakins, J. N.; Lambert, G.; Liao, D.; Licht, J. D.; Liphardt, J. T.; Liu, L.; Lloyd, M. C.; Lyubimova, A.; Mallick, P.; Marko, J.; McCarty, O. J.; Meldrum, D. R.; Michor, F.; Mumenthaler, S. M.; Nandakumar, V.; O'Halloran, T. V.; Oh, S.; Pasqualini, R.; Paszek, M. J.; Philips, K. G.; Poultney, C. S.; Rana, K.; Reinhart-King, C. A.; Ros, R.; Semenza, G. L.; Senechal, P.; Shuler, M. L.; Srinivasan, S.; Staunton, J. R.; Stypula, Y.; Subramanian, H.; Tlsty, T. D.; Tormoen, G. W.; Tseng, Y.; van Oudenaarden, A.; Verbridge, S. S.; Wan, J. C.; Weaver, V. M.; Widom, J.; Will, C.; Wirtz, D.; Wojtkowiak, J.; Wu, P. H. A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci Rep 2013, 3, 1449.
(73) Harris, A. K.; Wild, P.; Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 1980, 208, 177-179.
(74) Dembo, M.; Oliver, T.; Ishihara, A.; Jacobson, K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 1996, 70, 2008-2022.
(75) Butler, J. P.; Tolic-Norrelykke, I. M.; Fabry, B.; Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 2002, 282, C595-605.
(76) Plotnikov, S. V.; Pasapera, A. M.; Sabass, B.; Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 2012, 151, 1513-1527.
(77) Wei, L.; Surma, M.; Shi, S.; Lambert-Cheatham, N.; Shi, J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016, 64, 259-278.
(78) Chang, K. W.; Chou, A.; Lee, C. C.; Yeh, C.; Lai, M. W.; Yeh, T. S.; Chen, T. C.; Liang, K. H.; Yeh, C. T. Overexpression of K-Actin Alters Growth Properties of Hepatoma Cells and Predicts Poor Postoperative Prognosis. Anticancer Res 2011, 31, 2037-2044.
(79) Fischer, R. S.; Myers, K. A.; Gardel, M. L.; Waterman, C. M. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nat Protoc 2012, 7, 2056-2066.
(80) Zanoni, M.; Piccinini, F.; Arienti, C.; Zamagni, A.; Santi, S.; Polico, R.; Bevilacqua, A.; Tesei, A. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 2016, 6, 19103.
(81) Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp 2011.
(82) Lee, M. S.; Kim, S.; Kim, B. G.; Won, C.; Nam, S. H.; Kang, S.; Kim, H. J.; Kang, M.; Ryu, J.; Song, H. E.; Lee, D.; Ye, S. K.; Jeon, N. L.; Kim, T. Y.; Cho, N. H.; Lee, J. W. Snail1 induced in breast cancer cells in 3D collagen I gel environment suppresses cortactin and impairs effective invadopodia formation. Biochim Biophys Acta 2014, 1843, 2037-2054.
(83) Vinci, M.; Gowan, S.; Boxall, F.; Patterson, L.; Zimmermann, M.; Court, W.; Lomas, C.; Mendiola, M.; Hardisson, D.; Eccles, S. A. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 2012, 10, 29.
(84) Massalha, S.; Weihs, D. Metastatic breast cancer cells adhere strongly on varying stiffness substrates, initially without adjusting their morphology. Biomech Model Mechanobiol 2017, 16, 961-970.
(85) Kalluri, R.; Weinberg, R. A. The basics of epithelial-mesenchymal transition. J Clin Invest 2009, 119, 1420-1428.
(86) Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014, 15, 178-196.
(87) von Bilderling, C.; Caldarola, M.; Masip, M. E.; Bragas, A. V.; Pietrasanta, L. I. Monitoring in real-time focal adhesion protein dynamics in response to a discrete mechanical stimulus. Rev Sci Instrum 2017, 88, 013703.
(88) Atherton, P.; Stutchbury, B.; Jethwa, D.; Ballestrem, C. Mechanosensitive components of integrin adhesions: Role of vinculin. Exp Cell Res 2016, 343, 21-27.
(89) Tilghman, R. W.; Blais, E. M.; Cowan, C. R.; Sherman, N. E.; Grigera, P. R.; Jeffery, E. D.; Fox, J. W.; Blackman, B. R.; Tschumperlin, D. J.; Papin, J. A.; Parsons, J. T. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis. PLoS One 2012, 7, e37231.
(90) Klein, E. A.; Yin, L.; Kothapalli, D.; Castagnino, P.; Byfield, F. J.; Xu, T.; Levental, I.; Hawthorne, E.; Janmey, P. A.; Assoian, R. K. Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 2009, 19, 1511-1518.
(91) Firouznia, K.; Ghanaati, H.; Alavian, S. M.; Azadeh, P.; Nasiri Toosi, M.; Haj Mirzaian, A.; Najafi, S.; Shakiba, M.; Jalali, A. H. Transcatheter arterial chemoembolization therapy for patients with unresectable hepatocellular carcinoma. Hepat Mon 2014, 14, e25792.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *